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Invited talks

Margit Voigt : List colorings of planar graphs

Margit Voigt

University of Applied Sciences Dresden, Germany

Abstract

Let G = (V,E) be a graph, let f : V (G)→ N, and let k ≥ 0 be an integer. A list-assignment L of G
is a function that assigns to each vertex v of G a set (list) L(v) of colors: usually each color is a
positive integer. We say that L is an f -assignment if |L(v)| = f(v) for all v ∈ V , and a k-assignment
if |L(v)| = k for all v ∈ V .

A coloring of G is a function ϕ that assigns a color to each vertex of G so that ϕ(v) 6= ϕ(w)
whenever vw ∈ E. An L-coloring of G is a coloring ϕ of G such that ϕ(v) ∈ L(v) for all v ∈ V . If
G admits an L-coloring, then G is L-colorable. The graph G is said to be f-list-colorable and f is
called a choice function if G is L-colorable for every f -assignment L of G. When f(v) = k for all
v ∈ V , the corresponding term becomes k-list-colorable or k-choosable. The list-chromatic number
or choice number χ

`
(G) is the least number k such that G is k-list-colorable.

In 1979 Erdős, Rubin and Taylor [1] conjectured that all planar graphs are 5-list-colorable, but
that not all planar graphs are 4-list-colorable. Both conjectures were proved in 1993.

Theorem 1 ([4],[5]). Every planar graph is 5-list colorable but there are planar graphs which are
not 4-list colorable.

Hence the situation seems to be clear for planar graphs. However we may ask for conditions
which guarantee the 4-list colorability or even the 3-list colorability of planar graphs.

Many authors investigated the list colorability of planar graphs with forbidden cycle lengths.
In this talk, we will discuss some aspects of this topic and give an overview on the recent state of
research.

Another interesting direction of research deals with variations of the list lengths. We will consider
some problems and results related to this topic. Finally, this investigations leads us to the concept
of sum-list colorings. Instead of a fixed list length for all vertices we try to minimize the sum over
all list lengths.

For a choice function f define size(f) =
∑
v∈V f(v). The sum choice number χsc(G) is the

minimum of size(f) over all choice functions of G. The concept was introduced by Garth Isaak in
2002 [2]. An overview on the recent state of research is given in the PhD Thesis of Michelle Lastrina
[3]

It is well-known that χsc(G) ≤ |V |+ |E| for every graph G. To see this consider an arbitrary order
v1, . . . , vn of the vertices of G and definef(vi) := 1+ the number of vertices vj adjacent to vi with
j < i. Obviously,

∑
v∈V f(v) = |V |+ |E| and the graph is L-colorable by a greedy algorithm for every

list assignment L with |L(v)| = f(v). Therefore, a graph G is called sc-greedy if χsc(G) = |V |+ |E|.

Corollary 2. If G is a planar graph with n vertices then χsc(G) ≤ 4n− 6.

Corollary 3. For every planar graph G there is a choice function fG such that G is L-list colorable
for every list assignment L with |L(v)| = fG(v) and the average list length of such an assignment is∑

v∈V |L(v)|
|V | ≤ 4− 6

n
.

In this talk we will discuss some problems and results concerning sum list colorings of planar
graphs.
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Maria Chudnovsky : Induced cycles and coloring

Maria Chudnovsky

Columbia University, New York City, USA

Abstract

The Strong Perfect Graph Theorem states that a graph and all its induced subgraphs have equal
clique number and the chromatic number if and only if the graph contains no induced odd cycle of
length at least five, and no complement of one. But what happens if only some induced cycles (and
no complements) are excluded? Gyarfas made a number of conjectures on this topic, asserting that i
n many cases the chromatic number is bounded by a function of the clique number. In this talk we
discuss recent progress on some of these conjectures. This is joint work with Alex Scott and Paul
Seymour.

Mariusz Woźniak : Local irregularity

Mariusz Woźniak

AGH University of Science and Technology, Kraków, Poland

Abstract

A locally irregular graph is a graph whose adjacent vertices have distinct degrees. We say that a
graph G can be decomposed into k locally irregular subgraphs if its edge set may be partitioned into
k subsets each of which induces a locally irregular subgraph in G. We characterize all connected
graphs which cannot be decomposed into locally irregular subgraphs. These are all of odd size and
include paths, cycles and a special class of graphs of maximum degree 3.

Moreover we conjecture that apart from these exceptions all other connected graphs can be
decomposed into three locally irregular subgraphs.

We also investigate a total version of this problem, where in some sense also the vertices are being
prescribed to particular subgraphs of a decomposition.

The both concepts are closely related to the known 1-2-3 Conjecture and 1-2 Conjecture, as well
as to other similar problems concerning edge and arc colorings of graphs and digraphs, respectively.
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Xuding Zhu: Online list colouring of graphs

Xuding Zhu

Department of Mathematics, Zhejiang Normal University, Jinhua, China

Abstract

The on-line colouring game on a family F of graphs is played by two players: Presenter and Algorithm.
In each round, Presenter add one new vertex v to the existing graph, including all edges connecting
v to earlier vertices. The resulting graph must be in the family F . Algorithm colours v with a colour
not used by any of its existing neighbours. The (n-round) on-line chromatic number of F is the least
number of colours sufficient for Algorithm to play the game for n-rounds. Equivalently, it is the
maximum number of colours Presenter can force the Algorithm to use in n-rounds. It was proved by
Lovasz, Saks and Trotter that the (n-round) on-line chromatic number of bipartite graphs is at most
2 logn. A recent result of Bianchi shows that it is at least 1.13746 logn− 0.49887. We improve this
lower bound to 2 logn − 10, which differs from the upper bound by an additive constant. It was
proved by Kierstead that graphs of odd girth 7 has (n-round) on-line chromatic number O(n1/2),
and we give a lower bound and prove that this family of graphs has (n-round) on-line chromatic
number Ω( n

logn
)1/3).

This is a joint work with Grzegorz Gutowski, Jakub Kozik and Piotr Micek.

Gary MacGillivray : The Firefighter Problem: A survey of directions,
results, and problems

Gary MacGillivray

University of Victoria, Victoria, Canada

Abstract

Imagine that a fire breaks out at one or more vertices of a graph, and at each time interval spreads
to all neighbouring vertices that have not been protected so far. This is the general setup for the
Firefighter Problem, which has attracted considerable attention since being introduced by Hartnell in
1995. We shall survey various directions that have been pursued, and results that have been obtained.
Examples include whether the fire can be contained on infinite grids, algorithms, and complexity
theorems. Open problems and possible directions for future research will also be discussed.

Oriol Serra : Isoperimetric orders

Oriol Serra

Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract

The isoperimetric problem for graphs asks for the cardinality of the minimum (edge or vertex)
boundary among sets of vertices with given cardinality. An ordering of the vertex set of a graph
is isoperimetric if its initial segments are optimal sets for the isoperimetric problem. The classical
theorems of Kruskal-Katona and Harper show that the n-cube admits an isoperimetric order. In
the talk we will discuss a local-global principle which extends analogous results for certain classes
of cartesian products of graphs and provides simple proofs for several known results. Algorithmic
aspects concerning the existence of a set of nested solutions for graphs with bounded treewidth will
be also addressed.
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A sufficient condition leading to the domination
number of a bipartite graph

Misa Nakanishi

Keio University, Japan

Extended Abstract

In this paper, a graph G = (V,E) is undirected with no loop. A set of vertices X such that the
closed neighborhood satisfies NG[X] = V is called a dominating set. The minimum and maximum
cardinality taken over all minimal dominating sets of G are the domination number γ(G) and
upper domination number Γ(G) respectively. Also the minimum cardinality taken over all maximal
independent sets of G is the independent domination number i(G). A sufficient condition for
γ(G) = i(G) was represented for a general graph G, that is free from an induced subgraph isomorphic
to claw K1,3 [?]. A bipartite graph G has an induced subgraph isomorphic to K1,3 if the maximum
degree 4(G) ≥ 3 so that γ(G) is not necessarily equal to i(G).

For a graph G, a subgraph I is defined as two adjacent vertices v and w in V (G) and its neighbors
such that the degrees on I satisfy dI(v) ≥ 3 and dI(w) ≥ 3. In this paper, v and w are called
core vertices. We observe that I is a forbidden subgraph for γ(G) = i(G) with a simplest proof.
A property of I is remarkable for dominating sets of a graph. It characterizes 3-connected graphs,
all of which are arranged by contracting edges between core vertices [2], where the independent
domination number and the domination number are significantly different [3] by existence of I.

We have a different approach to the domination number formulation. A bipartite graph G
is decomposed by a vertex set I, which is G = I1 ∪ · · · ∪ Ik ∪ F pairwise disjoint. Obviously,
γ(G1 ∪ G2) ≤ γ(G1) + γ(G2) for arbitrary graphs G1 and G2. On the basis of it, we present a
sufficient condition led to an equation γ(G) = γ(I1) + · · · + γ(Ik) + γ(F ) = 2k + i(F ) as a main
theorem. The k-dominating graph Dk(G) explains the proof of the theorem. It is defined by a vertex
set in which a vertex is corresponding to a dominating set of G with the cardinality at most k and
an edge set of vertex pairs which differ by either adding or deleting a single vertex of corresponding
dominating sets. For any non-trivial bipartite graph G, DΓ(G)+1(G) is connected [6], so a sequence
of minimal dominating sets is a factor.

The independent domination number of a bipartite graph is led in a certain case. The equivalency
of i(G) = |V |/2 for a bipartite graph G was shown in [4]. From the proof, i(G) is generally formulated
with variants represented on a partition by complete bipartite graphs.

The domination number of a bipartite graph is related to a compactness of a topological space.
The graphical representation of an instance of the minimum cover problem is a bipartite graph which
solves the domination number with the use of statements in this paper.

illustration :
the instance of the minimum cover problem with a minimum cover {C_1, C_2, C_4}
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Parametrized complexity of length-bounded cuts
and multi-cuts

Pavel Dvořák and Dušan Knop

Department of Applied Mathematics, Charles University in Prague, Czech Republic

Extended Abstract

The study of network flows and cuts begun in 1960’s by the work of Ford and Fulkerson [4]. It has
many generalizations and applications now. We are interested in a generalization of cuts related to
the flows using only short paths.

Length bounded cuts. Let s, t ∈ V be two distinct vertices of a graph G = (V,E) – we call
them source and sink, respectively. We call a subset of edges F ⊆ E of G an L-bounded cut (or
L-cut for short), if the length of the shortest path between s and t in the graph (V,E \ F ) is at least
L + 1. We measure the length of the path by the number of its edges. In particular, we do not
require s and t to be in distinct connected components as in the standard cut, instead we do not
allow s and t to be close to each other. We call the set F a minimal L-cut if it has the minimum
size among all L-bounded cuts of the graph G.

We state the cut problem formally:

PROBLEM: Minimum Length Bounded Cut (MLBC)
Instance: graph G = (V,E), vertices s, t and integer L ∈ N
Goal: find a minimal L-bounded s, t cut F ⊂ E

Length bounded flows were first considered by Adámek and Koubek [1]. They showed that the
max-flow min-cut duality cannot hold and also that integral capacities do not imply integral flow.
Finding a minimal length bounded cut is NP-hard on general graphs for L ≥ 4 as was shown by Itai
et al. [5] and Baier et al. [2]. Itai et al. [5] also found algorithms for finding L-bounded cut with
L = 1, 2, 3 in polynomial time by reducing it to the usual network cut in an altered graph. The
algorithm of [5] uses the fact that paths of length 1, 2 and 3 are edge disjoint from longer paths,
while this does not hold for length at least 4.

Tree-decomposition Let G = (V,E) be a graph. We say that T = (W, F ) is a tree decomposition
of the graph G if W ⊆ 2V , T is a tree and the following holds:

1. for each v ∈ V there exists a X ∈ W such that v ∈ X,

2. for each e ∈ E there exists a X ∈ W such that e ⊆ X,

3. for each v ∈ V the graph T [Xv] is connected, where Xv = {X ∈ W : v ∈ X}.

We call the elements of the set W the nodes, and the elements of the set F the decomposition edges.
We define a width of a tree decomposition (W, F ) as maxX∈W |X| − 1 and the tree-width tw(G)

of a graph G as the minimal width of a tree decomposition of the graph G. Moreover, if the
decomposition is a path we speak about path-width of G, which we denote as pw(G).
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Our Results. Our main contribution is an FPT-algorithm for the MLBC problem, its consequences
and an FPT-algorithm for a more general multi-terminal version problem. We also prove W[1]-
hardness of the MLBC problem. We denote by n the number of vertices of the input graph.

Theorem 1. Let G be a graph of tree-width k. Let s and t be two distinct vertices of G. Then for
any L ∈ N an minimal L-cut between s and t can be found in time O((Lk

3

)2 · 2k
2

· n).

For the algorithm we use dynamic programming techniques based on a nice tree-decompo-sition
of the input graph, see Kloks [6] for more information about this type of decomposition.

Proposition 2. [6] Given a tree decomposition of a graph G with n vertices that has width k and
O(n) nodes, we can find a nice tree decomposition of G that also has width k and O(n) nodes in
time O(n).

As a corollary when parametrized by the length of paths L only, this algorithm runs in time nf(L)

for some computable function f and so the problem is in XP class. We were interested whether there
can be a FPT-algorithm for this problem when parametrized only by tree-width or even path-width.
However, this seems unlikely due to following theorem.

Another corollary of the Theorem 1 is the following theorem.

Corollary 3. Let G be a graph that has vertex cover of size k. Let s and t be two distinct vertices
of G. Then for any L ∈ N an minimal L-cut between s and t can be found in time O(f(k) · n) for
some recursive function f .

Theorem 4. Minimal Length Bounded Cut parametrized by path-width is W[1]-hard.

Our ideas for a hardness result were inspired by work of Dom et al. [3]. They proved W[1]-
hardness of Capacitated Vertex Cover and Capacitated Dominating Set parametri-zed by
the tree-width of the input graph by a reduction from Multicolor Clique. We remark that their
reduction also proves W[1]-hardness of these problems when parametrized by the path-width of the
input graph.

The research was supported by project SVV-2014-260103, project GAUK1784214 and Kontakt
LH12095.
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On parameterized complexity to determine
b-chromatic and partial Grundy numbers

Brice Effantin 1, Nicolas Gastineau 2, and Olivier Togni 2

1 Université de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205, F-69622, France
2 Université de Bourgogne, CNRS, Le2i, UMR6306, France

Extended Abstract

The Grundy number of a graph G, denoted by Γ(G), is the largest integer k such that there
exists a partition of V (G) into k independent sets V1, . . . , Vk and every vertex of Vi is adjacent to at
least one vertex in Vj , for every j < i. A vertex v of color i is a Grundy vertex if v is adjacent to at
least one vertex colored j, for every j < i. A Grundy k-coloring is a proper k-coloring such that
every vertex is a Grundy vertex. A partial Grundy k-coloring is a proper k-coloring such that every
color class contains at least one Grundy vertex. The partial Grundy number of a graph G, denoted
by ∂Γ(G), is the largest integer k such that there exists a partial Grundy k-coloring of G.

Another coloring parameter with domination constraints on the colors is the b-chromatic number,
denoted by ϕ(G). A vertex v of color i is a b-vertex if v is adjacent to at least one vertex colored j,
for every j 6= i. A b-k-coloring is a proper k-coloring such that every color class contains a b-vertex.
The b-chromatic number of a graph G is the largest integer k such that there exists a b-k-coloring of
G. The concept of b-coloring has been introduced by Irving and Manlove [2]. Since the introduction
of the b-coloring, a large number of papers has appeared [3, 4].

We introduce the following decision problems with parameter t:

b-coloring
Instance : A graph G.
Parameter : An integer t.
Question: Does ϕ(G) ≥ t?

Partial Grundy coloring
Instance : A graph G.
Parameter : An integer t.
Question: Does ∂Γ(G) ≥ t?

The concept of t-atom was introduced by Zaker [1]. The family of t-atoms is a finite family which
only contains finite graphs, for a fixed t. Thus, the presence of a t-atom can be determined in
polynomial time for a fixed t.

Theorem 1 (Zaker ’06 [1]). For a given graph G, Γ(G) ≥ t if and only if G contains an induced
t-atom.

Corollary 2. For a given graph G of order n, determining if Γ(G) ≥ t can be done by an algorithm
in O(n2t−1

).

We introduce the equivalent of the t-atoms for b-coloring and partial Grundy coloring. These
concepts are used to prove that determining some properties is polynomial time solvable if the
parameter t is fixed.

Definition 3. Let t be an integer with t ≥ 2. We begin by taking an independent set of t vertices,
denoted by C(t), called the center of the b-t-atom and associating integers of {1, . . . , t} to each vertex
of H. The vertices should have pairwise different associated integers. Let ck be the vertex of C(t) with
associated integer k, 1 ≤ k ≤ t. Let k be an integer with 1 ≤ k ≤ t. A k-dominating operation on a
graph G containing C(t), consists in adding a set D of ` vertices, with 0 ≤ ` ≤ t− 1 and associated
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integer k and adding edges between G− {ck} and D ∪ {ck} such that every vertex of C(t)− {ck} is
adjacent to a vertex of D ∪ {ck} and D ∪ {ck} is independent. Note that there can be edges between
vertices of D ∪ {ck} and vertices of G− C(t). The family of graphs Ab(t) is obtained as follows: let
G1 = {C(t)}. The family of graphs Gi, for i ≥ 2, is obtained from the graphs in Gi−1 by doing an
i-dominating operation on these graphs. The graphs in Gt are the graphs in Ab(t). A graph in Ab(t)
is called a b-t-atom.

Note that the associated integers correspond to a b-coloring of the b-t-atom. The associated
integers of the b-t-atom are not considered anymore when we use the notion of induced subgraph.

Property 4. For every graph G in Ab(t), we have |V (G)| ≤ t2.

Definition 5. Let G be graph. A b-t-atom G is minimal if G is not contained as induced subgraph
in another b-t-atom G′, for G 6= G′.

Note that the only minimal b-2-atom is P2. The minimal b-3-atoms are C3, P5, C5, P3 ∪ P4 and
P3 ∪ P3 ∪ P3.

For an induced subgraph A of G, let N(A) = {v ∈ V (G)| uv ∈ E(G), u ∈ V (A)}. A b-t-atom
A is feasible in G if there exists a b-t-coloring of V (A) that can be extended to a coloring of N(A)
without using new colors.

Theorem 6. We have ϕ(G) = t for a given graph G if and only if G contains an induced feasible
minimal b-t-atom and no induced feasible minimal b-t′-atom, for t′ > t.

For a given graph G, let ϕr(G) be the maximum value of the b-chromatic number of an induced
subgraph of G.

Theorem 7. For a graph G, we have ϕr(G) ≥ t if and only if G contains an induced b-t-atom.

Corollary 8. Let G be a graph of order n. There exists an algorithm in O(nt
2

) to determine if
ϕr(G) ≥ t.

Moreover, we can construct the equivalent of the b-t-atoms for partial Grundy coloring. We
call these graphs the partial-Grundy-t-atoms. We have the following results for the partial Grundy
number:

Theorem 9. For a graph G, we have ∂Γ(G) ≥ t if and only if G contains an induced partial-
Grundy-t-atom.

Corollary 10. Let G be a graph of order n. There exists an algorithm in O(nt
2

) to determine if
∂Γ(G) ≥ t.
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Extended Abstract

A relational structure (or simply structure) A is a pair (A, (RiA : i ∈ I)), where RiA ⊆ Aδi (i.e., RiA
is a δi-ary relation on A). The family (δi : i ∈ I) is called the type ∆ and it is usually assumed to be
fixed and well understood from the context. Let moreover Rel(∆) denotes the class of all (countable)
relational structures of type ∆. The underlying set A is called the domain of A, whose cardinality is
the corresponding cardinality of the whole relational structure. Here we consider only countable or
finite structures. Moreover we see relational structures as a generalization of digraphs and adopt
standard graph theoretic terms (such as isomorphism, homomorphism or connected structures). For
more details, see [6].

A relational structure A is called ultrahomogeneous if every isomorphism between two induced
finite substructures of A can be extended to an automorphism of A. Ultrahomogeneity describes
a high degree of symmetry for relational structures far beyond vertex or edge transitivity. For
countable structures ultrahomogeneity is usually studied for class K of structures and corresponding
universal structure – such structure contains all structures from class K as induced substructures. For
a class K of relational structures, we denote by Age(K) the class of all finite structures isomorphic
to an (induced) substructure of some A ∈ K and call it the age of K. For a structure A, the age
of A, Age(A), is Age({A}). The classification program for ultrahomogeneous structures is one of
the celebrated lines of research in the model theory, see [1, 8]. Namely classical result of Fraïssé [4]
provides conditions for age to generate ultrahomogeneous universal structure. The class of structures
studied in this work is the class of all structures A for which there is no homomorphism F→ A,
F ∈ F denoted as Forbh(F). The existence of a universal structure for this class is guaranteed for
every finite F , see [3].

Let ∆′ = (δ′i; i ∈ I ′) be a type containing type ∆. (That is I ⊆ I ′ and δ′i = δi for i ∈ I.) Then every
structure X ∈ Rel(∆′) may be viewed as a structure A = (A, (RiA; i ∈ I)) ∈ Rel(∆) together with
some additional relations for i ∈ I ′ \ I. We will thus also write X = (A, (RiA; i ∈ I), (RiX; i ∈ I ′ \ I)).
We call X a lift of A and A is called the shadow of X. Note that a lift is also in the model-theoretic
setting called an expansion.

Let A be a relational structure and let Aut(A) be the automorphism group of A. A k-ary relation
ρ ⊆ Ak is an invariant of Aut(A) if (α(x1), . . . , α(xk)) ∈ ρ for all α ∈ Aut(A) and all (x1, . . . , xk) ∈ ρ.
Let Invk(A) denote the set of all k-ary invariants of Aut(A) and let Inv(A) =

⋃
k≥1 Invk(A),

Inv≤k =
⋃

1≤k′≤k Invk′(A). If can be easily shown that for every structure A = (A, (RiA : i ∈ I))
the lift (A, (RiA : i ∈ I), Inv(A)) (considering possibly an infinite type) is an ultrahomogeneous
structure. For a structure A the relational complexity, rc(A), of a A is the least k such that
(A, (RiA : i ∈ I), Inv≤k

(A)) is ultrahomogeneous, if such a k exist. If no such k exists, we say that
the relational complexity of A is not finite and write rc(A) =∞. Note that if rc(A) is less than the
arity of some relation in ∆, then rc(A) may be lower than the relational complexity of Aut(A) as
defined in [2].

We can restate the result of Fraïssé as definition of the critical property of age K such that there
exists structure U, Age(U) = K, satisfying rc(A) = 0. We seek, for given n, the structural properties
of age K such that there exists structure U, Age(U) = K, rc(A) = n.

Since for many ages there exists structures with trivial automorphism group we restrict ourselves
to ω-categorical structures. Recall that structure is ω-categorical if and only if it has only finitely
many orbits on n-tuples, for every n, and thus also there are only finitely many invariant relations
of arity n, see [6].

Since there is no 1-1 correspondence in between ω-categorical structures and their ages, we can
further restrict ourselves even more. Structure A with Age(A) = K is existentially complete if for
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every structure B, such that Age(B) = K and the identity mapping (of A) is an embedding A→ B,
every existential statement ψ which is defined in A and true in B is also true in A. Moreover by [3]
for every age K defined by forbidden monomorphisms with ω-categorical universal structure there
is also up to isomorphism unique ω-categorical, existentially complete, and ω-saturated universal
structure. This in fact holds more generally. In such cases, for a given age K, the canonical universal
structure of age K is the unique ω-categorical, existentially complete, and ω-saturated structure U
such that Age(U) = K. Given an age K we can thus ask:

I. What is the minimal relational complexity of an ω-categorical structure U such that Age(U) =
K?

II. What is the relational complexity of the canonical universal structure of age K?

We consider universal structures for class Forbh(F) where F is a family of connected structures.
For a structure A = (A, (RiA, i ∈ I)), the Gaifman graph is the graph GA with vertices A and all
those edges which are a subset of a tuple of a relation of A, i.e., G = (A,E), where the neighborhood
of {x, y} ∈ E if and only if x 6= y and there exists a tuple ~v ∈ RiA, i ∈ I, such that x, y ∈ ~v. For a
structure A and a subset of its vertices B ⊆ A, the neighborhood of set B is the set of all vertices of
A \B connected in GA by an edge to a vertex of B. We denote by GA \B the graph created from
GA by removing the vertices in B.

A g-cut in A is a subset C of A that is a vertex cut of GA. A g-cut C is minimal g-separating in
A if there exists structures A1 6= A2 induced by A on two connected components of GA \ C such
that C is the intersection of the neighborhood of A1 and the neighborhood of A2 in A. A family of
structures is called minimal if and only if all structures in F are cores and there is no homomorphism
between two structures in F .

Theorem 1 (Hartman, Hubička, Nešetřil to appear [5]). Let F be a finite minimal family of finite
connected relational structures and U an ω-categorical universal structure for Forbh(F). Denote
by n the size of the largest minimal g-separating g-cut in F . Then (a) rc(U) ≥ n; (b) if U is the
canonical universal structure for Forbh(F), then rc(U) = n.

For further related things see [7]. This work has been supported by by grant ERC-CZ LL-1201 of
the Czech Ministry of Education and CE-ITI P202/16/6061 of GAČR.
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Extended Abstract

We consider simple graphs. A graph parameter p is monotonous if for every subgraph G′ of G, we
have p(G′) ≤ p(G). Two monotonous parameters p1 and p2 are equivalent if for every graph class G,
we have max {p1(G) | G ∈ G} = O(1) if and only if max {p2(G) | G ∈ G} = O(1). We note p1 ∼ p2

if p1 and p2 are equivalent. Notice that p1 ∼ p2 if and only if for every graph G, we can bound
p1(G) in terms of p2(G) and vice-versa.

In this paper, we investigate the family Fa of graph parameters equivalent to the acyclic chromatic
number χa.

An (n,m)-mixed graph M is a graph in which some pairs of vertices are linked by arcs and some
are linked by edges such that the arcs are colored with n colors, the edges are colored with m colors,
and the underlying graph ofM is simple. For (n,m) 6= (0, 0), the mixed chromatic number χ(n,m)(M)
is the minimum of vertices of an (n,m)-mixed graph T such that there exists a homomorphism from
M to T that is compatible with the colors of the arcs and the egdes and with the orientation of the
arcs. We define χ(n,m)(G) as the maximum of χ(n,m)(M) over the (n,m)-mixed graphs M having G
as underlying simple graph of M . We have that

1. χ = χ(0,1) corresponds to chromatic number,

2. χo = χ(1,0) corresponds to the oriented chromatic number,

3. χ2 = χ(0,2) corresponds to the 2-edge-colored chromatic number,

4. for n′ ≤ n and m′ ≤ m, χ(n′,m′) ≤ χ(n,m),

5. χ(n,m) ≤ χa · (2n+m)χa−1 [5],

6. χa ≤ (χo)
2 + (χo)

3+dlog2 log2 χoe [3],

7. χP4 ≤ χa ≤ χa · (2χa − 1) [1], where χP4 is the star chromatic number,

8. χp ≤ χo ≤ 2χp [2], where χp is the pushable chromatic number,

9. χs ≤ χ2 ≤ 2χs [4], where χs is the signed chromatic number.

By (5) and (6), we have χo ∼ χa, so that χo ∈ Fa. We have χP4 ∈ Fa since χP4 ∼ χo by (7) and
χp ∈ Fa since χp ∼ χo by (8). Obviously, χ 6∈ Fa since χ(Kn,n) = 2 whereas χa(Kn,n) = n+ 1.

Theorem 1. For every graph G, χo(G) ≤ χ(G) · χ2(G).

Proof. Consider a proper coloring c : V (G) 7→ {1, . . . , χ(G)} of the simple graph G. Consider an
oriented graph Jo whose underlying simple graph is G. Consider a 2-edge-colored graph J2 whose
underlying simple graph is G. We say that J2 corresponds to Jo if for every edge uv of G such
that c(u) < c(v), the edge uv is colored + in J2 if there is the arc uv in Jo and uv is colored − if
there is the arc vu in Jo. Let Go be an orientation of G such that χo(Go) = χo(G). Let G2 be the
2-edge-colored graph corresponding to Go. We consider a 2-edge-colored homomorphism h2 from
G2 to a 2-edge-colored T2 such that V (T2) = {1, . . . , χ2(G2)}. We define the mapping ho as the
cartesian product of c and h2, that is, for every vertex v ∈ V (G), ho(v) = (c(v), h2(v)). It is not to
hard to check that ho defines an oriented homomorphism from Go to the target graph To defined as
follows:
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• V (To) = [1, . . . , χ(G)]× [1, . . . , χ2(G2)],

• For every i, j,m, n such that 1 ≤ i ≤ j ≤ χ(G), 1 ≤ m ≤ χ2(G2), 1 ≤ n ≤ χ2(G2), m 6= n,
we add in To the arc (i,m)(j, n) if mn is an edge colored + in T2 and we add in To the arc
(j, n)(i,m) if mn is an edge colored − in T2.

We thus have χo(G) = χo(Go) ≤ χ(G) · χ2(G2) ≤ χ(G) · χ2(G).

By Theorem 1, we have χo ≤ (χ2)2. Since χ2 ≤ χa · 2χa−1 by (5), we obtain χ2 ∈ Fa. For
every (n,m) 6= (0, 1), we have χo ≤ χ(n,m) or χ2 ≤ χ(n,m) by (4). Since χo ∈ Fa, χ2 ∈ Fa, and
χ(n,m) ≤ χa · (2n+m)χa−1 by (5), this implies that χ(n,m) ∈ Fa for every (n,m) 6= (0, 1). Finally,
since χs ∼ χ2 by (9), we have that χs ∈ Fa.
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Extended Abstract

Let G be a simple, non-empty graph. We let V (G) and E(G) denote its vertex and edge set,
respectively.

An incidence in G is a pair (u, e) with u ∈ V (G) and e ∈ E(G), where u is an endpoint of
e. In other words, incidences of G are in natural bijection with edges in the graph Gs obtained
from G by subdividing every edge once. The set of all incidences in G is denoted by I(G), where
I(G) = {(v, e) ∈ V (G)× E(G) : edge e is incident to v}.

Two incidences (u, e) and (v, f) are adjacent if one of the following holds :

i) u = v, ii) e = f and iii) the edge uv = e or uv = f .

A k-incidence coloring of a graph G is defined as a function φ on I(G) into a set of colors
C = {1, 2, ..., k}, such that adjacent incidences are assigned distinct colors. We denote by χi(G) the
incidence chromatic number of G which is the smallest integer k such that G admits a k-incidence
coloring. The notion of incidence coloring was introduced by Brualdi and Massey [1] in 1993. They
proved the following theorem :

Theorem 1 (Brualdi and Massey [1]). For every graph G, ∆(G) + 1 ≤ χi(G) ≤ 2∆(G).

And they posed the Incidence Coloring Conjecture, which states that:

Conjecture 2 (Brualdi and Massey [1]). For every graph G, χi(G) ≤ ∆(G) + 2.

However, in 1997, Guiduli [4] disproved the Incidence Coloring Conjecture showing that Paley
graphs have an incidence chromatic number at least ∆ + Ω(log ∆). He also improved the upper
bound proposed by Brualdy and Massey in Theorem 1.

Theorem 3 (Guiduli [4]). For every graph G, χi(G) ≤ ∆(G) +O(log ∆(G)).

The maximum average degree is defined as mad(G) = max
{

2|E(H)|
|V (H)| , H ⊆ G

}
. This a conventional

measure of spareness of arbitrarily graphs (not necessary planar). An upper bound for the incidence
chromatic number in terms of the maximum average degree was given by Dolama and Sopena [3] in
2005. They started looking for such relationships in the case of graphs with low maximum average
degree (i.e. not only bounded, but bounded by a small constant). However, earlier theorems have
implications on graphs with bounded maximum average degree (i.e. bounded by any constant).

Theorem 4. [2] Let k ∈ N, and G be a k-degenerate graph. Then χi(G) ≤ ∆(G) + 2k − 1.

We know that, for every integer k, a graph G with mad(G) < k is (k−1)-degenerate, the following
corollary, can be easily derived from Theorem 4

Corollary 5. Let k ∈ N, if G is a graph with mad(G) < k, then χi(G) ≤ ∆(G) + 2k − 3.

By allowing a lower bound on the maximum degree ∆(G), we seek to reduce the number of colors
necessary for an incidence coloring.
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Theorem 6. Let k ∈ N, and G be a graph with maximum degree ∆(G) and maximum average degree
mad(G) < k.

1. If ∆(G) ≥ k2

2
+ 3k

2
, then χi(G) ≤ ∆(G) + k − 1.

2. For all α > 0, if ∆(G) ≥ 3α+1
2α

k, then χi(G) ≤ ∆(G) + d(1 + α)ke − 1.

However, Theorem 6 can be proved with a relatively simple discharging argument, and gives hope
that further development of more complicated reducible configurations and discharging rules might
unlock generic results with consequences beyond purely extremal.

When considering small values of k, Theorem 6.1 cannot compete with specific results, as we can
for example obtain the following results through discharging arguments that are purely local.

Theorem 7.

1. Let G be a graph with mad(G) < 4, then χi(G) ≤ ∆(G) + 3 for every ∆(G) ≥ 7.

2. Let G be a graph with mad(G) < 9
2
, then χi(G) ≤ ∆(G) + 4 for every ∆(G) ≥ 9 or ∆(G) ≤ 4.

3. Let G be a graph with mad(G) < 5, then χi(G) ≤ ∆(G) + 5 for every ∆(G) ≤ 5 or 9 ≤ ∆(G) ≤
19. If 6 ≤ ∆(G) ≤ 8 then χi(G) ≤ ∆(G) + 6. If ∆(G) ≥ 20 then χi(G) ≤ ∆(G) + 4

4. Let G be a graph with mad(G) < 6, then χi(G) ≤ ∆(G) + 6 for every ∆(G) ≤ 6 or 12 ≤
∆(G) ≤ 26 . If 7 ≤ ∆(G) ≤ 11 then χi(G) ≤ ∆(G) + 7. If ∆(G) ≥ 27 then χi(G) ≤ ∆(G) + 5.

As every planar graph with girth g satisfies mad(G) < 2g
g−2

, the following corollary, can be easily
derived from Theorem 7

Corollary 8.

1. Let G be a triangle free planar graph with ∆(G) ≥ 7. Then, χi(G) ≤ ∆(G) + 3.

2. Let G be a planar graph with girth g ≥ 5 and ∆(G) ≥ 9. Then, χi(G) ≤ ∆(G) + 4.

This Corollary improves, for a restricted family of planar graphs, a result of Yang in [5], where it
is proved by using the link between the incidence chromatic number, the star arboricity and the
chromatic index of a graph, that every planar graph has an incidence coloring with at most ∆ + 5
colors for every ∆ 6= 6.
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Extended Abstract

Let G be an directed graph without loops. We define incidences of two types:

1. An ordered pair (u, uv) where u is a vertex of G and uv is an arc of G

2. An ordered pair (xy, y) where xy is an arc of G and y is a vertex of G

Let IG denote the set of incidences of a digraph, G. A pair of incidences (a1, b1) and (a2, b2) are
adjacent if one of the following conditions hold:

• (a1, b1) is of type (1) with (a1, b1) = (u, uv) and (a2, b2) is of type (2) with (a2, b2) = (uv, v)

• (a1, b1) is of type (1) with (a1, b1) = (u, uv) and (a2, b2) is of type (2) with (a2, b2) = (wu, u)

• (a1, b1) is of type (1) with (a1, b1) = (u, uv) and (a2, b2) is of type (1) with (a2, b2) = (v, vx)

• (a1, b1) is of type (2) with (a1, b1) = (uv, v) and (a2, b2) is of type (2) with (a2, b2) = (vx, x)

An oriented incidence colouring of G assigns to each of the incidences of G a colour such that
adjacent incidences receive different colours. That is, if IG is the set of incidences of G then an
oriented incidence colouring of G with k colours is a function
c: IG → {1, 2, . . . , k − 1, k} such that if α and β are adjacent incidences, then c(α) 6= c(β). For a
digraph G we define the oriented incidence chromatic number to be the least k such that G has an
oriented incidence colouring using k colours. We denote this value as −→χi(G).

By way of example consider the oriented incidence chromatic number of the family of orientations
of stars. Let Sk be an oriented star on k+1 vertices. Let u be the centre vertex of Sk, A be the set of
out-neighbours of u and B be the set of in-neighbours of u. Consider a function, c : ISk → {1, 2, 3}
defined as follows:

For all a ∈ A and all b ∈ B let

• c((u, ua)) = 3,

• c((ua, a)) = 1,

• c((bu, u)) = 2, and

• c((b, bu)) = 1.

It is easy to observe that this is an oriented incidence colouring of Sk.
The notion of colouring incidences arose in 1993 when Brualdi and Quinn Massey first defined

the incidence chromatic number (then called the incidence colouring number), denoted χi(G) [1]. In
this first paper they gave upper and lower bounds for χi(G) based on the maximum degree of the
graph. The authors used their results as a method to improve a bound for the the strong chromatic
index of bipartite graphs. Since then, bounds have been given for a variety of families of graphs
including planar graphs, k-trees, k-regular graphs and k-degenerate graphs ([2], [3], [4]). Our notion
of oriented incidence colouring considers only incidences that arise when the tail of an arc is incident
with the tip of another arc. By restricting the set of incidences in this way we are able to bound the
oriented incidence chromatic number as a function of the chromatic number of the underlying graph.

Returning to our example on orientations of stars, consider a homomorphism that maps Sk to P2,
the directed path on 3 vertices. We notice that we can obtain the oriented incidence colouring of Sk
exhibited above by lifting back an oriented incidence colouring of P2 to the incidences of Sk. This
idea leads us to the following result.
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Theorem 1. If G and H are digraphs such that G→ H, then −→χi(G) ≤ −→χi(H)

Using this result we are able to find upper bounds on the oriented incidence chromatic number for
a variety of families of digraphs by finding the oriented incidence chromatic number for symmetric
complete graphs and tournaments. For example, the symmetric graph on 4 vertices has an oriented
incidence chromatic colouring using 5 colours. Since every orientation of a planar graph admits a
homomorphism to

−→
K4, the symmetric complete graph on 4 vertices, every orientation of a planar

graph admits a oriented incidence colouring using at most 5 colours.
In addition to studying the oriented incidence chromatic number of a families of graphs, we

consider the oriented incidence chromatic number of graph products and decompositions. For
example, we show that 6 colours suffice to colour any digraph who arcs can be partitioned into a
pair of oriented trees.

Finally, we consider the problem of identifying oriented graphs Hk such that an oriented graph G
has oriented incidence chromatic number at most k if and only if G → Hk. For k = 2 and k = 3
we construct oriented graphs H2 and H3. Further, for any input oriented graph, G, we are able to
check in polynomial time if G admits a homomorphism to H2 or H3. For k > 3 we show that no
such target, Hk, exists.
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Extended Abstract

A total coloring of a finite and simple graph G is an assignment of colors to the elements (vertices
and edges) of G such that neighbored elements (two adjacent vertices or two adjaccent edges or
a vertex and an incident edge) are colored differently. The total chromatic number χ′′(G) of G is
defined to be the minimum numbers of colors in a total coloring of G. Obviously, χ′′(G) ≥ ∆(G) + 1,
where ∆(G) is the maximum degree of G, and Behzad and Vizing independently conjectured that
χ′′(G) ≤ ∆(G) + 2 for every graph G. The truth of this so-called total coloring conjecture would
imply that χ′′(G) attains one of two possible values for every graph G: G is called a type-1 graph if
χ′′(G) = ∆(G) + 1 and a type-2 graph if χ′′(G) = ∆(G) + 2, respectively.

The total coloring conjecture is proved so far for some specific classes of graphs, e. g., for complete
graphs, for bipartite graphs, for complete multipartite graphs, for graphs G with ∆(G) ≥ 3

4
|V (G)|

or ∆(G) ≤ 5, and for planar graphs G with ∆(G) 6= 6.
The cartesian product G�H of two graphs G and H has vertex set V (G)×V (H) and two vertices

(ui, vj) and (uk, vl) are adjacent if and only if ui = uk and vj is adjacent to vl in H or if vj = vl and
ui is adjacent to uk in G.

If the total coloring conjecture is true for graphs G and H then it is also true for their cartesian
product G�H (see [3]).

In this talk we give some general upper bounds for χ′′(G�H) improving results of [1]-[3].
Moreover, we determine the total chromatic number of cartesian products Kn�Km of complete
graphs.

Theorem 1. If n is odd and n ≥ m then Kn�Km is of type 1.

Theorem 2. If n and m are even and n ≥ m ≥ 4, n ≡ 0 (mod 4) or n ≡ 6 (mod 8) or n > m ≥ 4,
n ≡ 2 (mod 8) then Kn�Km is of type 1.

Theorem 3. If n is even and m odd and n > (m− 1)2 then Kn�Km is of type 2.

Furthermore, we determine the total chromatic number of cartesian products G�H where H is
a bipartite graph.
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[1] M. Danǔţ. On colouring products of graphs. In Math. Boem. 121:69–71, 1996.

[2] A. Kemnitz, M. Marangio. Total colorings of cartesian products of graphs. In Congr. Numer.
165:99–109, 2003.

[3] B. Zmazek, J. Žerovnik. Behzad-Vizing conjecture and cartesian-product graphs. In J. Appl.
Math. Lett. 15:781–784, 2002.





Forbidden pairs of disconnected graphs implying
hamiltonicity

Binlong Li1,2,3, and Petr Vrána1,2,4

1 Department of Mathematics, University of West Bohemia, Czech Republic
2 European Centre of Excellence NTIS, Czech Republic

3 Department of Applied Mathematics, Northwestern Polytechnical University, P.R. China
4 Centre of Excellence ITI, Czech Republic

Extended Abstract

Let H be a given graph. A graph G is said to be H-free if G contains no induced copies of H. If
G is H-free, then we call H a forbidden subgraph of G. Note that if H1 is an induced subgraph of
H2, then an H1-free graph is also H2-free. For a class H of graphs, the graph G is H-free if G is
H-free for every H ∈ H.

As usual, Kn and Pn denote respectively the complete graph and the path on n vertices. We
write Zn (n ≥ 1) for the graph obtained by identifying a vertex of a K3 with an end-vertex of a
Pn+1, and Ln (n ≥ 2) for the graph obtained from Kn by adding a pendant edge. The graph K1,n

(n ≥ 2) is called a star. We denote by W the graph obtained by identifying two vertices of a K3

with an end-vertex of a P2 and an end-vertices of a P3, respectively, and by N the graph obtained
from a K3 by adding three disjoint pendant edges (these two graphs are sometimes called wounded
and net, respectively).

If a graph is K2-free, then it is an empty graph (contains no edges). To avoid the discussion
of this trivial case, in the following, we throughout assume that our forbidden subgraphs have at
least 3 vertices. If a connected graph G is P3-free, then G is complete, and then is hamiltonian if
n(G) ≥ 3. It is in fact not difficult to show that the only connected graph S of order at least 3 such
that every 2-connected S-free graph is hamiltonian, is P3. The following results involving forbidden
pairs for hamiltonicity of graphs were proved by Duffus et al., Broersma and Veldman, Bedrossian
and Faudree et al., respectively.

Theorem 1. Let G be a 2-connected graph.
(1) ([3]) If G is {K1,3, N}-free, then G is hamiltonian.
(2) ([2]) If G is {K1,3, P6}-free, then G is hamiltonian.
(3) ([1]) If G is {K1,3,W}-free, then G is hamiltonian.
(4) ([5]) If G is {K1,3, Z3}-free, then G is hamiltonian or G = H1 or H2.

s

s
s

�
�
�
�

A
A
A
A

s

s
s

�
�
�
�

A
A
A
A

��
��

HH
HH

H
HHH

�
���

s
s s
�
�

@
@

H1

s

s
s

�
�
�
�

A
A
A
A

s

s
s

�
�
�
�

A
A
A
A

��
��

HH
HH

H
HHH

�
���

s
s s
�
�

@
@

H2

Figure 1. Graphs H1 and H2.

Bedrossian [1] characterized all pairs of forbidden connected subgraphs for hamiltonicity. Faudree
and Gould [4] extended Bedrossian’s result by proving the necessity part of the theorem based on
infinite families of non-hamiltonian graphs.
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Theorem 2 (Faudree and Gould, 1997, [4]). Let R,S be connected graphs with R,S 6= P3 and let G
be a 2-connected graph of order n ≥ 10. Then G is R-free and S-free implies G is hamiltonian if and
only if (up to symmetry) R = K1,3 and S is an induced subgraph of P6, Z3,W or N .

In the above theorems, the forbidden subgraphs are considered to be connected. So what about
the disconnected forbidden subgraphs? In this paper, we consider the forbidden subgraph conditions
in terms of not necessary connected subgraphs.

Theorem 3. The only graphs S of order at least 3 such that every 2-connected S-free graph is
hamiltonian is P3 and 3K1.

Theorem 4. Let R,S be graphs of order at least 3 other than P3 and 3K1. Then there is an integer
n0 such that every 2-connected {R,S}-free graph of order at least n0 is hamiltonian, if and only if,
one of the following is true (up to symmetry):
(1) R = K1,3 and S is an induced subgraph of P6, Z3,W,N,K1 ∪ Z2,K2 ∪ Z1 or K3 ∪ P4;
(2) R = K1,r with r ≥ 4 and S is an induced subgraph of 2K1 ∪K2;
(3) R = rK1 with r ≥ 4 and S is an induced subgraph of Ls with s ≥ 3;
(4) R = rK1 with r ≥ 4 and S is an induced subgraph of 2K1 ∪Ks with s ≥ 2.
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Extended Abstract

Given any colouring of the edges of a graph G with r colours, how many monochromatic cycles1
are needed to partition the vertices of G? This question has been given a considerable amount of
attention during the last years, especially for the case of G being a complete graph. As an easy
construction shows, there are r-edge-colourings2 of the complete graph Kn, such that at least r paths
are needed to cover the vertices of Kn, see [5]. On the other hand, it is far from obvious, that an
r-edge-coloured Kn can be vertex-partitioned into a number of monochromatic cycles independent
of n. However, this is true as the following theorem states.

Theorem 1 ([5]). For any colouring of the edges of Kn with r colours, there exists a vertex-partition
of Kn into 25r2 log r or less monochromatic cycles.3

The approach of Theorem 1 has been refined and complemented with ideas of [13] and [15] to
obtain the following best known general upper bound:

Theorem 2 ([9]). Let r ∈ N and n be sufficiently large. Then for any r-edge-colouring of Kn, there
is a vertex-partition of Kn into at most 100r log r monochromatic cycles.

After showing Theorem 1, Erdős et al. asked if the lower bound of r monochromatic cycles needed
to vertex-partition an r-edge-coloured Kn, could always be achieved:

Conjecture 3 ([5]). For any colouring of the edges of Kn with r colours, one can partition the
vertices of Kn into r or less monochromatic cycles.

For r = 2, Conjecture 3 was known as Lehel’s conjecture, see [2], which, after intermediate results
by Gerencsér and Gyárfás [6], Łuczak et al. [16] and Allen [1], has been resolved by Bessy and
Thomassé [4] in a stronger manner, that is every graph can be vertex-partioned into a cycle and an
anti-cycle. Additional results are known for the case of r = 3:

Theorem 4 ([12]). For n ∈ N sufficiently large, let the edges of Kn be coloured with 3 colours. Then
the following hold:

1. There is a partition of all but o(n) vertices of Kn into 3 or less monochromatic cycles;

2. the vertices of Kn can be partitioned into at most 16 monochromatic cycles.

These results having been obtained, it was somewhat surprising that [17] found a counterexample
to Conjecture 3 by constructing r-edge-colourings of Kn for every r ≥ 3, such that a partition of the
vertices into less than r + 1 monochromatic cycles is not possible. Nonetheless, in these colourings
one can partition all but one vertices into r monochromatic cycles. In light of this, it has been
proposed to tone down Conjecture 3 to the following:

Conjecture 5 ([3]). For every r there is a constant c(r) such that for any colouring of the edges of
Kn with r colours, one can partition all but c(r) vertices of Kn into r or less monochromatic cycles.

1To omit some trivial obstacles, here single vertices and edges count as cycles too.
2An r-edge-colouring is an edge-colouring using r colours.
3The constant of 25 has been calculated later by Sárközy [18].
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Results: In many proofs on this field one-sided vertex-partitions of edge-coloured unbalanced
bipartite graphs into monochromatic cycles play a crucial role, see [5, 13, 9, 10, 12]. But also for
balanced bipartite graphs similar to the above questions have been raised. Specifically, given a
colouring of the edges of a balanced complete bipartite graph Kn,n with r colours, is it possible to
partition the vertices of Kn,n into a number of monochromatic cycles independent of n? see [5] Erdős
proposed 25$ to anyone who could answer the related question of [7], if any 3-edge-coloured Kn,n

could be partitioned into less than 1995 cycles, see [13]. Haxell responded positively by showing:

Theorem 6 ([13]). For large r and any r-edge-colouring of Kn,n it is possible to partition the
vertices of Kn,n into O((r log r)2) monochromatic cycles.

Furthermore her proof yields that a 3-edge-coloured Kn,n can be partitioned into at most 1695
monochromatic cycles. Nevertheless, this is still far from the best known lower bound of 5 cycles,
or in general 2r − 1 cycles, as obtained from another easy construction.4 In the case of r = 2, [17]
showed that a 2-edge-coloured Kn,n can be partitioned into 2 monochromatic paths, unless there is
a colour-preserving homomorphism from the edge-coloured Kn,n to a properly edge-coloured K2,2,
in which case 3 paths suffice though. In this work we significantly improve the bound of [13] for
r = 3 by obtaining the following analogue to Theorem 4:

Theorem 7 (Main result). For n ∈ N sufficiently large, let a 3-edge-colouring of Kn,n be given.
Then the following hold:

(a) There is a partition of all but o(n) vertices of Kn,n into 5 or less monochromatic cycles;

(b) the vertices of Kn,n can be partitioned into at most 18 monochromatic cycles.

The proof of Theorem 7(a) involves the notion of monochromatic connected matchings and an
application of the Regularity Lemma of [19]. A method which has been introduced by [15] and has
become a standard approach in this and related fields, see [8]. A monochromatic connected matching
is a matching in a connected component of the graph spanned by the edges of a single colour. The
following is our key Lemma. Its proof is involved but purely combinatorial.

Lemma 8. Let the edges of Kn,n be coloured with 3 colours. Then there is a partition of the vertices
of Kn,n into 5 or less monochromatic connected matchings.

An application of the Regularity Lemma provides a vertex-partition of Kn,n which is highly
regular with respect to each of the graphs, which are induced by the edges of single colours in
Kn,n. In addition the 3-edge-colouring of Kn,n induces a 3-edge-colouring on the respective reduced
graph R, which is, due to the high regularity, almost complete bipartite. Having established these
structures, we are ready to make use a robust version of Lemma 8, which permits us to partition R
into 5 monochromatic connected matchings. In the subsequent step, we apply a specific case of the
Blow Up Lemma (see [14, 15, 11]) together with some further ideas to find 5 monochromatic cycles,
which together form a partition of almost all vertices of Kn,n, using the monochromatic connected
matchings of R as a roadmap.

The proof of Theorem 7(b) combines ideas of Haxell [13] and Gyárfás et al. [12] on basis of
Theorem 7(a). In a first step we fix a large monochromatic uniform subgraph H, more precisely
H has the property that it is hamiltonian and remains so even if some of the vertices are deleted
from it. Secondly we cover almost all vertices of Kn,n − V (H) with Theorem 7(a) using at most five
vertex-disjoint monochromatic cycles. We denote by S the remaining not yet covered vertices of
Kn,n − V (H). Since the size of S is much smaller than the order of H, we can in a third step apply
a Lemma of Gyárfás et al. [9] to the graph induced by the edges between S and H, in order to cover
the vertices of S with at most 12 vertex-disjoint monochromatic cycles C = C1 + . . . + C12. The
uniformity of H guarantees that H − V (C) is hamiltonian. As H is monochromatic we can finish by
taking one more monochromatic cycle, which covers H − V (C).
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Extended Abstract

The middle levels conjecture. The question whether a graph has a Hamilton cycle is a
fundamental graph theoretical problem, and answering this question is one of the prototypical
NP-complete problems. Even for families of graphs defined by very simple algebraic constructions
this question turns out to be surprisingly difficult. One prominent example is the middle layer
graph whose vertex set consists of all bitstrings of length 2n+ 1 that have exactly n or n+ 1 entries
equal to 1, with an edge between any two vertices for which the corresponding bitstrings differ in
exactly one bit. Note that the middle layer graph is a subgraph of the discrete cube of dimension
2n+ 1, the graph whose vertex set are all bitstrings of length 2n+ 1, with an edge between any two
vertices that differ in exactly one bit. The middle layer graph is bipartite, connected, the number of
vertices is N :=

(
2n+1
n

)
+
(

2n+1
n+1

)
= 2Θ(n), and all vertices have degree n+ 1 = Θ(log(N)) (i.e., the

graph is sparse). Moreover, the middle layer graph is vertex-transitive, i.e., any pair of vertices can
be mapped onto each other by an automorphism (informally speaking, the graph ‘looks’ the same
from the point of view of any vertex). The middle levels conjecture, also known as revolving door
conjecture, asserts that the middle layer graph has a Hamilton cycle for every n ≥ 1. This conjecture
originated probably with Havel [6] and Buck and Wiedemann [1], but has also been attributed to
Dejter, Erdős, Trotter [8] and various others. It also appears as Exercise 56 in Knuth’s book [9,
Section 7.2.1.3].

The bigger picture. There are two main motivations for tackling the middle levels conjecture.
The first motivation are Gray codes: In its simplest form, a Gray code is a cyclic list of all binary
code words (=bitstrings) of a certain length such that any two adjacent code words in the list differ
in exactly one bit. Clearly, such a Gray code corresponds to a Hamilton cycle in the entire cube,
and a Hamilton cycle in the middle layer graph is a restricted Gray code. The second motivation is
a classical conjecture due to Lovász [10], which asserts that every connected vertex-transitive graph
(as e.g. the middle layer graph) has a Hamilton path and, apart from five exceptional graphs, even
a Hamilton cycle. This vastly more general conjecture is still wide open today: Even for explicit
families of vertex-transitive graphs as e.g. Kneser graphs and bipartite Kneser graphs, only the
denser ones are known to have a Hamilton cycle (see e.g. [2]). In fact, the middle layer graph is the
sparsest bipartite Kneser graph, so in some sense it is the hardest obstacle in proving Hamiltonicity
for this family of graphs.

Previous work. The middle levels conjecture has attracted considerable attention over the
last 30 years. With the availability of more powerful computers, so far the conjecture has been
verified for all n ≤ 19 [15, 16] (for n = 19 the middle layer graph has N = 137.846.528.820 vertices).
The first notable asymptotic result is [13], where it was shown that the middle layer graph has
a cycle of length N0.836. Improving on this, it was shown in [5] that there is a cycle that visits
0.25N many vertices of the middle layer graph, and in [14] that there is a cycle that visits 0.839N
many vertices. Another major step towards the conjecture was [7], where the existence of a cycle of
length (1− c/

√
n)N was established, where c is some constant. Unfortunately, attempts to obtain a

Hamilton cycle from the union of two perfect matchings in the middle layer graph have not been
successful so far [3, 4, 8]. More references on partial results and relaxations of the middle levels
conjecture can be found in [11].

Our results. In this work we prove the middle levels conjecture.

Theorem 1. For any n ≥ 1, the middle layer graph has a Hamilton cycle.

In fact, we prove the following more general result:
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Theorem 2. For any n ≥ 1, the middle layer graph has at least 1
4
22b(n+1)/4c

= 22Ω(n)

different
Hamilton cycles.

Note that 22Ω(n)

Hamilton cycles are substantially more than we get from applying all 2(2n+1)! =

2Θ(n logn) automorphisms of the middle layer graph to a single Hamilton cycle (these automorphisms
are given by bit permutations and possibly bit inversion). In fact, any graph G has at most |V (G)|!
different Hamilton cycles, where V (G) denotes the vertex set of G. This establishes an upper
bound of N ! = 22cO(n)

for the number of Hamilton cycles in the middle layer graph and shows that
Theorem 2 is best possible.

Our arguments are constructive and yield an algorithm that outputs each of the Hamilton cycles
referred to in Theorem 2 in polynomial time per cycle (polynomial in the size of the middle layer
graph, which is exponential in n).

The techniques we use to prove these results are an extension of our earlier work [12] (joint
with Franziska Weber). The key idea is to reduce the problem of finding a Hamilton cycle in the
middle layer graph to the problem of finding a spanning tree in a suitably defined auxiliary graph
(which is considerably easier). The preprint [11] contains all proofs and also a more detailed informal
explanation of this reduction.
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Extended Abstract

The square G2 of a graph G is the graph obtained from G by adding an edge between every pair
of vertices having a common neighbor. A proper coloring of G2 is also called a 2-distance coloring of
G.

The maximum average degree Mad(G) of a graph G is the maximum among the average degrees
of the subgraphs of G, i.e. Mad(G) = max

{
2|E(H)|
V (H)

|H ⊆ G
}
. Graphs with bounded maximum

average degree are often called sparse graphs.

There are several result about the chromatic number of G2 when the maximum average degree of
G is bounded (see for example [1, 2]). However, in all these results, the bound for Mad(G) is strictly
less than 4.

We present upper and lower bounds for larger values of Mad(G), and conjecture that our lower
bound is best possible.

Conjecture 1. There exists an integer D such that every graph G with ∆(G) ≥ D and Mad(G) < 4
has χ(G2) ≤ 2∆(G).

Theorem 2. There is an integer ∆ such that every graph G with ∆(G) ≥ D and Mad(G) < 4 has
χ(G2) ≤ 3∆(G) + 3.

Conjecture 3. Let k ≥ 3 be an integer. There is an integer Dk such that every graph G with
∆(G) ≥ Dk and Mad(G) < 2k has χ(G2) ≤ k∆(G)− k.

Theorem 4. Let k ≥ 3 be an integer. There is an integer Dk such that every graph G with
∆(G) ≥ Dk and Mad(G) < 2k has χ(G2) ≤ 2k∆(G).

The construction we use proving our lower bound is inspired by a construction by Alon and Mohar
[3], but we use a different (and seemingly unrelated) notion to construct our graph: graeco-latin
squares.
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Extended Abstract

We consider finite (multi-) graphs G with vertex set V (G) and edge set E(G). The set of edges
which are incident to vertex v is denoted by E(v).

Vizing [8] proved that the edge-chromatic number χ′(G) of a graph G with maximum vertex
degree ∆(G) is an element of {∆(G), . . . ,∆(G) + µ(G)}, where µ(G) is the maximum multiplicity
of an edge of G. We say that G is a class 1 graph if χ′(G) = ∆(G) and it is a class 2 graph if
χ′(G) > ∆(G).

An orientation D of G is an assignment of a direction to each edge, and for v ∈ V (G), E−(v) is
the set of edges of E(v) with head v and E+(v) is the set of edges with tail v. The oriented graph is
denoted by D(G).

A nowhere-zero r-flow (D(G), φ) on G is an orientation D of G together with a function
φ from the edge set of G into the real numbers such that 1 ≤ |φ(e)| ≤ r − 1, for all e ∈
E(G), and

∑
e∈E+(v) φ(e) =

∑
e∈E−(v) φ(e), for all v ∈ V (G). The circular flow number of G

is inf{r|G has a nowhere-zero r-flow}, and it is denoted by Fc(G). It is known [1], that Fc(G) is
always a minimum and that it is a rational number.

For i ∈ {3, 4} there are characterizations of cubic graphs with nowhere-zero i-flow. These results
are due to Tutte [6][7], see also [2].

Theorem 1 ([6][7]). (A) A cubic graph G is bipartite if and only if Fc(G) = 3.
(B) A cubic graph G is a class 1 graph if and only if Fc(G) ≤ 4.

The following theorem generalizes Theorem 1(A) to (2t+ 1)-regular graphs.

Theorem 2 ([5]). Let t ≥ 1 be an integer. A (2t + 1)-regular graph G is bipartite if and only if
Fc(G) = 2 + 1

t
. Furthermore, if G is not bipartite, then Fc(G) ≥ 2 + 2

2t−1
.

Flow numbers of graphs have attracted considerable attention over the last decades. Pan
and Zhu [3] proved that for every rational number r with 2 ≤ r ≤ 5 there is a graph G with
Fc(G) = r. This result is used in [4] to prove that for every integer t ≥ 1 and every rational number
r ∈ {2 + 1

t
} ∪ [2 + 2

2t−1
, 5], there exists a (2t+ 1)-regular graph G with Fc(G) = r.

If G is a cubic graph, then Fc(G) ≤ 4 if and only if G is class 1. Hence, Theorem 1(B) implies
that the flow number 4 separates class 1 and class 2 cubic graphs from each other. We prove the
following generalization of Theorem 1(B).

Theorem 3. Let t ≥ 1 be an integer. A non-bipartite (2t + 1)-regular graph G has a 1-factor F
such that G− F is bipartite if and only if Fc(G) = 2 + 2

2t−1
.

We further show that the case of cubic graphs is exceptional in the sense that for every t > 1
there is no flow number that separates (2t+ 1)-regular class 1 graphs and class 2 graphs. However,
our results imply that a (2t+ 1)-regular graph G with Fc(G) ≤ 2 + 2

2t−1
is a class 1 graph.

We study the question whether there are (2t + 1)-regular graphs H1 and H2 such that H1 is
class 1, H2 is class 2, and Fc(H1) = Fc(H2) = r > 2 + 2

2t−1
. We give an affirmative answer to this

question for some specific values of r. Figure 1 sketches some results.
In [5] it is shown that Fc(K2t+2) = 2 + 2

t
for the complete graph K2t+2 on 2t+ 2 vertices. K2k+2

is a class 1 graph and we conjecture that the circular flow number of any (2t+ 1)-regular class 1
graph is at most 2 + 2

t
. We relate this conjecture to other conjectures on flows on graphs.

In the second part of the talk, we study structural properties of signed graphs that have the
aforementioned numbers in their flow spectrum. For instance, we prove the following theorem:
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Figure .1: Sketch of flow numbers of (2t+ 1)-regular graphs (t > 3)

Theorem 4. Let t ≥ 1 be an integer.
1) A (2t+ 1)-regular graph G has a t-factor if and only if there is a signature σ such (G, σ) has a
nowhere-zero (2 + 1

t
)-flow.

2) If G is (2t+ 1)-regular and has a 1-factor, then there is a signature σ such (G, σ) has a nowhere-
zero 3-flow.
Furthermore, for each t > 1 there is a (2t + 1)-regular graph Gt that has a signature σ such that
(Gt, σ) has a nowhere-zero 3-flow and Gt has no 1-factor.

Furthermore, we generalize Theorem 2 to signed graphs.

Theorem 5. Let t ≥ 1 be an integer and (G, σ) be a signed (2t+ 1)-regular graph. If Fc((G, σ)) = r,
then r = 2 + 1

t
or r ≥ 2 + 2

2k−1
.
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Extended Abstract

We study vertex-colourings of signed graphs as they were introduced by Zaslavsky in [4]. Let G be a
signed graph, that is, a graph in which each edge is labelled with +1 or −1. A proper vertex-colouring
of G, or simply a colouring, is a mapping φ : V (G) → Z such that for each edge e = uv of G the
colour φ(u) is distinct from the colour σ(e)φ(v), where σ(e) is the sign of e. In other words, the
colours of vertices joined by a positive edge must not coincide while those joined by a negative edge
must not be opposite to each other.

This definition is natural for several reasons extensively discussed in [4, 5, 6]. In particular,
colourings are well behaved under switching. Recall that switching of G at a vertex v reverses the
sign of each non-loop edge incident with v. The switching operation does not essentially change the
signed graph, because it preserves the sign product on each circuit. If we switch a signed graph
endowed with a colouring, the colouring must be switched together with the signature, that is to
say, we have to replace the colour φ(v) with −φ(v). It is easy to see that the result of switching is a
proper colouring on the resulting signed graph. Furthermore, a proper vertex-colouring of a balanced
signed graph (one where the sign product on each circuit is positive) is just a proper vertex-colouring
of the underlying unsigned graph.

The next step is to define the chromatic number of a signed graph. We wish to obtain an
extension of the usual chromatic number of an unsigned graph that agrees with it on every balanced
signed graph. We therefore divert from the approach taken by Zaslavsky in [4, 5, 6], which, roughly
speaking, only counts the absolute values of colours. For this purpose we define, for each n ≥ 1,
a subset Mn ⊆ Z by setting Mn = {±1,±2, . . . ,±k} if n = 2k, and Mn = {0,±1,±2, . . . ,±k} if
n = 2k + 1. A proper colouring of G that uses colours from Mn will be called an n-colouring. Note
that if G admits an n-colouring, then it also admits an m-colouring for each m ≥ n. The smallest
n such that G admits an n-colouring will be called the signed chromatic number of G and will be
denoted by χ±(G).

For a signed graph G let χ(G) denote the usual chromatic number of its underlying graph. Our
first result relates χ±(G) to χ(G).

Theorem 1. For every signed graph G one has χ±(G) ≤ 2χ(G)− 1. Moreover, the bound is sharp.

Proof. Take a proper colouring φ of the underlying graph of G with colours 0, 1, . . . , k − 1, where
k = χ(G). Clearly, φ is a proper colouring of G, as well. Since all colours are contained in
{0,±1, . . . ,±(k − 1)}, it is a (2k − 1)-colouring. The inequality follows.

The bound is reached by the family of signed graphs {Gn}n≥2 which can be constructed as
follows. Take one all-positive copy of Kn, denoted by Hn

1 , and n − 1 all-negative copies of Kn,
denoted by Hn

2 , H
n
3 , . . . , H

n
n . Let vi,1, vi,2, . . . , vi,n denote the vertices of Hn

i , and call two vertices
vi,j and vk,l corresponding whenever j = l. To construct Gn, take

⋃n
i=1 H

n
i and add one positive

edge between each pair of non-corresponding vertices from different copies of Kn. It can be shown
that χ±(Gn) = 2χ(Gn)− 1. The details will appear in [3]. �

Our main result is a theorem that bounds the chromatic number of a signed graph in a similar
manner as does the celebrated theorem of Brooks [1] for unsigned graphs. By ∆(G) we denote the
maximum degree of a signed graph G.

Theorem 2. Let G be a simple connected signed graph different from a balanced complete graph, a
balanced circuit of odd length, and an unbalanced circuit of even length. Then

χ±(G) ≤ ∆(G).
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Sketch of proof. The proof is straightforward if G has maximum degree at most 2. If G is an
unbalanced complete graph, the bound can be established by induction. Henceforth we can therefore
assume that G is a signed graph with maximum degree at least 3 different from a signed complete
graph.

If G is 2-connected, we follow the ideas of the proof of Lovász [2]. We find an ordering x1, x2, . . . , xn
of the vertex set of G such that x1 and x2 are not adjacent, xn is adjacent to both of them, and for
every xi with i < n there exists j > i such that xj is adjacent to xi. If the edges x1xn and x2xn
have the same sign, we colour x1 and x2 with the same colour, say +1; if they have different signs,
we colour x1 and x2 with opposite colours, say +1 and −1, respectively. Then we colour the vertices
x3, x4, . . . , xn−1 one by one in the described order. Set ∆ = ∆(G), and assume that the vertices
x1, x2, . . . , xi−1 have already been coloured. At most ∆− 1 neighbours of xi have already received a
colour, and each such neighbour forbids one colour. Therefore at most ∆− 1 values from M∆ are
forbidden for xi, leaving at least one colour in M∆ available for xi. At last, we colour xn. Since the
vertices x1 and x2 are distinct and coloured as mentioned, there is one colour available for xn, and
the colouring of G can be completed.

Next assume that G has a cut-vertex, say v. Let V1, V2, . . . , Vs denote the vertex sets of the
components of G−v, and let Gi be the subgraph induced by Vi∪{v}. If degGi

(v) ≤ ∆−2 for each i,
then all the graphs Gi are (∆−1)-degenerate, and thus admit a ∆-colouring. Since degGi

(v) ≤ ∆−2,
we can choose a non-zero colour for v within each Gi and then permute the colours in such a way
that v receives the same colour from each Gi. By combining these colourings we get a ∆-colouring
of G.

We are left with the case where G has a cut-vertex v and there exists an index j such that
degGj

(v) > ∆ − 2. It follows that degGj
(v) = ∆ − 1, s = 2, and the vertex v is incident with a

bridge joining v to a vertex u of G. Clearly, we can switch the signature to make uv positive. In this
situation we carefully analyse the structure of G and show that in all subcases that may occur at
least one of the components of G− uv has a ∆-colouring which colours the bridge end by a non-zero
colour. After applying a permutation of colours, if necessary, the two colourings can be combined
into a ∆-colouring of G. We defer the details, which are quite involved, to [3]. �

From the the four colour theorem we know that the underlying graph of every signed planar graph
G can be properly coloured by colours from the set {+1,−1,+2,−2}. It is natural to ask whether it
is possible to find a 4-colouring of G that respects the constraints of the signature. Towards this
end, we would like to propose the following conjecture:

Conjecture 3. Every simple signed planar graph G has χ±(G) ≤ 4.

Acknowledgment. The first and the third author acknowledge partial support from the grant
VEGA 1/1005/12.
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Extended Abstract

A nowhere-zero k-flow on a graph G is an orientation of edges of G and a valuation of them by
non-zero integers whose absolute value is smaller than k in such a way that for every vertex of G the
sum of the incoming values is equal to the sum of the outgoing ones. The smallest k, if it exists,
for which a graph G admits a nowhere-zero k-flow is called the flow number of G. If G admits a
nowhere-zero k-flow for some integer k, then G is called flow-admissible.

In the presented work, we study a generalization of nowhere-zero flows on graphs – nowhere-zero
flows on signed graphs. A signed graph (G, σ) is a graph G with a signature σ : E(G)→ {−1, 1}.
Two signed graphs (G, σ1) and (G, σ2) are considered to be equivalent if the symmetric difference of
σ−1

1 (−1) and σ−1
2 (−1) is an edge-cut of G. Equivalent signed graphs have the same flow number.

A nowhere-zero k-flow on a signed graph differs from one on a graph only in the definition of an
orientation of edges. An orientation of edges of a signed graph is obtained as follows. Consider each
edge as two half-edges and orient each half-edge independently in such a way that for a positive
edge the orientations are alike while for a negative edge the orientations are opposite.

Bouchet [1] conjectured the following:

Conjecture 1 (Bouchet 1983 [1]). Every flow-admissible signed graph admits a nowhere-zero 6-flow.

The best current approach to Conjecture 1 is a 12-flow theorem by Matt DeVos [2].
If nσ denotes the number of negative edges of (G, σ), then, according to Seymour [4], the conjecture

is true for signed graphs with nσ = 0, because they correspond to an unsigned case. Since (G, σ)
with nσ = 1 does not admit a flow, two is the smallest value of nσ for which the Bouchet’s conjecture
is open.

We study flow-admissible signed graphs that are equivalent to (G, σ) with nσ = 2. We restrict
our study to cubic graphs, because for each non-cubic signed graph (G, σ) there is a set G(G, σ) of
cubic graphs such that F (G, σ) ≤ min{F (H,σH) : (H,σH) ∈ G(G, σ)}. We prove the following:

Theorem 2. If (G, σ) is a flow-admissible signed cubic graph with nσ = 2, then (G, σ) has a
nowhere-zero 8-flow such that the negative edges receive flow value 1.

The bound given by a previous theorem can be improved to 6 if G has a sufficient cyclic edge-
connectivity. Furthermore we prove better bounds if there is an element (H,σH) of G(G, σ) that
satisfies an additional condition. Namely:

Theorem 3. Let (H,σ) be a flow-admissible signed cubic graph with nσ = 2. If H is bipartite, then
F (H,σ) ≤ 4.

The bound given in the previous theorem is tight. It is reached, for example, on the signed graph
of Figure .2.

In our work we further distinguish cubic graphs according to their chromatic index. An edge-
coloring of a graph G is to set a color to every edge of G in such a way that two adjacent edges
receive different colors. We say that G is c-edge-colorable if there exists an edge-coloring of G that
uses at most c colors. The smallest number of colors needed to edge-color G is chromatic index of G.
By Vizing’s theorem the chromatic index of a cubic graph is either 3 or 4. Bridgeless cubic graphs
with chromatic index 4 are also called snarks. We say that a snark G is critical if G− e admits a
nowhere-zero 4-flow for every edge e.
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Theorem 4. Let (G, σ) be a flow-admissible signed cubic graph with nσ = 2. If G is 3-edge-colorable
or a critical snark, then (G, σ) has a nowhere-zero 6-flow such that the negative edges receive flow
value 1.

We would like to note that a restriction of a flow value on a particular edge of a signed graph
is crucial. The signed graph on Figure .2 is an example of a signed graph that does not admit a
nowhere-zero 4-flow that assigns 1 to negative edges even though its flow number is 4 according to
Theorem 3.

1

1

1

1

1

1

1

-1

-1

Figure .2: A signed graph for which a choice of flow value on negative edges is important

This extended abstract is based on a manuscript [3].
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Extended Abstract

We study balance in random graphs. The theory of balance in graphs was first motivated by
Heider [9] who defined balance as absence of tension in a social system. Since this first work of Heider,
the notion of balance has been extensively studied by many mathematicians and psychologists [3, 10].
From a mathematical point of view, the most appropriate model for studying structural balance
is that of signed graphs. Formally, a signed graph (G, σ) is a graph G = (V, E) together with a
function σ : E → {+,−}, which associates each edge with the sign + or −. In such a signed graph,
a subset H of E(G) is said to be positive if it contains an even number of negative edges; otherwise
it is said to be negative. A signed graph G is balanced if each cycle of G is positive. Otherwise it is
unbalanced. In 1956, Cartwright and Harary [1] obtained the following important result.

Theorem 1 (Cartwright, Harary ’56 [1]). A signed graph is balanced if and only if its vertex set
can be partitioned into two classes so that every edge joining vertices within a class is positive and
every edge joining vertices between classes is negative.

A signed graph is called weakly balanced if it contains no cycle with exactly one negative edge.
We have the following nice characterization of weakly balanced graphs.

Theorem 2 (Davis ’67 [2]). A signed graph is weakly balanced if and only if its vertex set can be
partitioned into different classes so that every edge connecting two vertices that belong to the same
class is positive and every edge connecting two vertices that belong to different classes is negative.

Balance in random social systems was first considered in [6]. In [5] the authors defined the
following random signed graph model G(n, p, q). Let p, q > 0, 0 < p + q < 1. Given a set of n
vertices, between each pair of distinct vertices there is either a positive edge with probability p or a
negative edge with probability q or no edge with probability 1− (p+ q). The edges between different
pairs of vertices are chosen independently.

It is well-known that the threshold for the existence of cycles in the random graph model G(n, p)
is 1/n. Thus, if p+ q = o(1/n) then G(n, p, q) is almost surely balanced. The following theorems
show that essentially this is the best that one could hope for.

Theorem 3 (El Maftouhi, Harutyunyan, Manoussakis ’14 [4]). Let ε, δ > 0 be fixed. If p + q ≥
(1 + ε)/n and q ≥ δ/n then G(n, p, q) is almost surely unbalanced.

Theorem 4 (El Maftouhi, Harutyunyan, Manoussakis ’14 [4]). Let ε, δ > 0 be fixed. If p ≥ (1 + ε)/n
and q ≥ δ/n then G(n, p, q) is almost surely weakly unbalanced.
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Extended Abstract

The distinguishing number of a graph G is a symmetry related graph invariant. Its study starts
a decade ago in a work by Albertson and Collins [1]. Given a graph G the distinguishing number
D(G) is the least integer d such that G has a d-distinguishing coloring. A d-distinguishing coloring
is a coloring c : V (G)→ {1, ..., d} invariant only under the trivial automorphism. More generally
we say that an automorphism σ of a graph G preserves the coloring c or is a colors preserving
automorphism, if for all u ∈ V (G), c(u) = c(σ(u)).

In the last couple of years the study of this invariant was really flourishing. See in particular
[7] and [6] for the work of Imrich, Jerebic and Klažar on the distinguishing number of Cartesian
products or [3] for an analog of Brook’s theorem. Some variant of this distinguishing number were
already introduced. In [2], Chan extends the distinguishing notion to any action of a group H on a
set X and in [3] Collins and Trenk study distinguishing coloring that must be proper coloring. Our
goal will be to introduce a game variant of this invariant in the spirit of the game chromatic number
χG (see [4]) and try to show this approach raises up a lot of promising and interesting questions.

The distinguishing game is a game with two players, the Gentle and the Rascal, with antagonist
goals. This games is played on a graph G with a set of d ∈ N∗ colors. Alternatively, the two players
choose a vertex of G and color it with one of the d colors. The game ends when all the vertices
have been colored. Then the Gentle wins if the coloration is d-distinguishing and the Rascal wins
otherwise.

This game leads to a definition of two new invariants for a graph G. Those invariants are the
minimum numbers of colors needed to ensure that the Gentle has a winning strategy. This means
that the Gentle has a way to win the game whatever his opponent will play. Note that this number
could eventually be infinite and that it really depends on who starts the game.

Definition 1. The game distinguishing numbers of a graph G are defined as follows :

1. GDG(G) is the minimum of colors needed to ensure that the Gentle has a winning strategy
assuming he is playing first. If the Rascal is sure to win whatever the number of colors we
allow, then GDG(G) =∞.

2. GDR(G) is the minimum of colors needed to ensure that the Gentle has a winning strategy
assuming the Rascal is playing first. If the Rascal is sure to win whatever the number of colors
we allow, then GDR(G) =∞.

With the convention that ∞ is greater than any natural number, the following property arises
directly from the definition.

Proposition 2. For any graph G, we have D(G) ≤ GDG(G) and
D(G) ≤ GDR(G).

We first try to figure out what happends when at least one game distinguishing number is infinite.
We give sufficient conditions, but a complete caraterization of graphs with this property is still open.

After that, we introduce a new class of graphs, called involutive graphs. For this class, which
contains cycles, hypercubes and more generally diametrical graphs, we are able to bound quadratically
the game distinguishing number using the classical one. We will prove the following theorem.
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Theorem 3 (Gravier, Meslem, S., Slimani 2014). Let G be an involutive graph whose classical
distinguishing number is d.

1. If bar is an automorphism, then GDG(G) =∞.

2. We have GDR(G) ≤ d2 + d− 2.

A slight improvement of the ideas used to prove this theorem leads to sharper results in the
particular cases of even cycles and hypercubes.

Theorem 4 (Gravier, Meslem, S., Slimani 2014). Let Cn be an even cycle of order n.

1. GDG(Cn) =∞,

2. If n ≥ 8 then GDR(Cn) = 2,

3. If n = 4, 6 then GDR(Cn) = 3.

Theorem 5 (Gravier, Meslem, S., Slimani 2014). Let Qn be the hypercube of dimension n.

1. We have GDG(Qn) =∞.

2. If n ≥ 5, then GDR(Qn) = 2. Moreover GDR(Q2) = GDR(Q3) = 3.

3. We have 2 ≤ GDR(Q4) ≤ 4.
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Extended Abstract

We generalize the methods of Esperet and Zhu [2] providing an upper bound for the game
colouring number of squares of graphs to obtain upper bounds for the game colouring number of
m-th powers of graphs, m ≥ 3, which rely on the maximum degree and the game colouring number
of the underlying graph. Furthermore, we improve these bounds in case the underlying graph is a
forest.

The game colouring number of a graph, introduced by Zhu [4], is defined by the following
maker-breaker marking game. We are given a finite graph G = (V,E). At the beginning every vertex
v ∈ V is unmarked. Two players, Alice and Bob, alternately mark vertices, one vertex in a turn,
with Alice beginning. The game ends if every vertex is marked. The players thereby create a linear
ordering L of the vertices. The back degree bdL(v) of a vertex v (with respect to L) is the number of
neighbours of v that precede v in L, i.e. the number of previously marked neighbours of v in the
game. The score sc(G,L) (with respect to L) is the maximum back degree over all vertices. Alice
tries to minimize the score, Bob tries to maximize the score. The smallest score Alice can achieve
with some strategy against every strategy of Bob is called game score scg(G) of the graph G, i.e. the
game score is the score obtained if both players use optimal strategies.

The game colouring number colg(G) of G is defined as

colg(G) = 1 + scg(G).

The game colouring number is a useful tool (cf. [3, 4]) to bound the game chromatic number which
was introduced by Bodlaender [1].

The m-th power of a graph G = (V,E), denoted by Gm, is a graph (V,Em) with vw ∈ Em if and
only if 1 ≤ distG(v, w) ≤ m. The 2nd power is also called square of a graph.

Esperet and Zhu [2] obtained the following upper bound for the game colouring number of the
square of a graph G, which uses the game colouring number of G and the maximum degree of G.

Theorem 1 (Esperet and Zhu ’09 [2]). Let G be a graph with maximum degree ∆. Then

colg(G
2) ≤ (colg(G)− 1)(2∆− colg(G) + 1) + 1.

We extend the methods of Esperet and Zhu and obtain the following generalization of Theorem 1
to arbitrary powers of a graph.

Theorem 2. Let G be a graph with maximum degree ∆ ≥ 3 and m ∈ N \ {0}.

(a) If colg(G) ∈ {∆,∆ + 1}, then

colg(G
m) ≤ colg(G) + ∆(colg(G)− 1)

(∆− 1)m−1 − 1

∆− 2
.

(b) If colg(G) = ∆− 1, then

colg(G
m) ≤ 1− 2m+ ∆

(∆− 1)m − 1

∆− 2
.
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(c) If colg(G) ≤ ∆− 2, then

colg(G
m) ≤ 1 + ∆

(∆− 1)m − 1

∆− 2
− (∆− colg(G) + 1)

(∆− colg(G))m − 1

∆− colg(G)− 1
.

The main idea of the proof is to estimate the number of unmarked and marked vertices at distance
1, 2, 3, . . . ,m from an unmarked vertex during the game in a recursive way, and simplifying a system
of two recursions to a single recursion.

In case the graph of the game is a power of a forest, Theorem 2 can be improved in the following
way.

Theorem 3. Let F be a forest with maximum degree ∆ ≥ 3. Let m ∈ N. Then we have

colg(F
m) ≤ 2(∆− 1)m − 2

∆− 2
+ 2.

To obtain the upper bound in Theorem 3 we use a variation of the well-known activation strategy
for trees [3].
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Extended Abstract

Let be given a graph G, an additive hereditary property P and a set of colours {1, . . . , r}. The
two players are Alice and Bob and they play alternately with Alice having the first move. The player
may colour a vertex v with colour i ∈ {1, . . . , r} if after the move a subgraph induced by vertices
with colour i has the property P. If after |V (G)| moves the graph G is coloured, then Alice wins,
otherwise Bob wins. The above game is called the P-colouring game. The P-game chromatic number
χPg (G) of G is the least number r for which Alice has a winning strategy for the P-colouring game
with r colours.

Let us denote O = {G : E(G) = ∅} and Sd = {G : ∆(G) ≤ d}.
If P = O, then we obtain the most known variant of the P-game – the r-colouring game. The

variant of the P-game such that P = Sd is called the (r, d)-relaxed colouring game. The parameter
associated with these games χg(G) = χOg (G) and χ(d)

g (G) = χ
Sd
g (G) are called the game chromatic

number and the d-relaxed game chromatic number, respectively.
We introduce an unilateral game in which Bob is more powerful than Alice, he has more freedom

in colour selection and can miss his move. We say that colour i is (P, r)-admissible for an uncoloured
vertex v if i ∈ {1 . . . , r} and after colouring v with i no monochromatic minimal forbidden subgraph
for the property P containing v appears. Again two players Alice and Bob colour vertices of G.
Alice starts the game. The players play alternately, but Bob can miss his move. Bob colours a
vertex with an arbitrary colour from {1, . . . , r}, while Alice must colour a vertex with a colour that
is (P, r)-admissible for this vertex. If all vertices of the graph G are coloured, then Alice wins the
game, otherwise Bob wins. Thus, Bob wins the game if after a move of some player there is an
uncoloured vertex v which has no (P, r)-admissible colour. The above game is called the unilateral
P-game. The P-unilateral game chromatic number, denoted by χPug(G), is the least number r such
that Alice has a winning strategy, when playing the unilateral P-game with r colours on G.

Since in the unilateral P-game Bob is more powerful than Alice, the P-unilateral game chromatic
number is the upper bound on the the P-game chromatic number.

Theorem 1 (E.S.’14 [2]). For any graph G, it holds χPg (G) ≤ χPug(G).

Moreover, we prove other useful properties of the unilateral game chromatic number.

Theorem 2 (E.S.’14 [2]). For any graph G,

1. χg(G) ≤ χOug(G) ≤ colg(G),

2. χ(d)
g (G) ≤ χSdug (G).

Theorem 3 (E.S.’14 [2]). If G′ is a subgraph of G, then χPug(G′) ≤ χPug(G).

Theorem 4 (E.S.’14 [2]). If Alice has a winning strategy for the unilateral P-game on G with r
colours, then she also has a winning strategy for the unilateral P-game on G with t colours for any
t ≥ r.

Let Hk = {G : every block of G has at most k vertices}.
We consider the unilateral Sd-game on the class Hk that contains many well-known classes of graphs.
For example H2 is the class of forests. If G ∈ Hk and every block is a complete graph, then G is a
Husimi tree. If G ∈ Hk and every block is a cycle or K2, then G is a cactus graph. The class Hk is
also interesting because it contains line graphs of forests. If every block of G ∈ Hk is a complete
graph and every vertex of G is in at most two blocks, then G is the line graph of a forest. We prove
the following theorems:



40

Theorem 5. Let k ≥ 2, 0 ≤ d ≤ k − 1 and G ∈ Hk. Then χSdug (G) ≤ k + 2− d.

Theorem 6. Let k ≥ 5, 1 ≤ d ≤ k − 2 and G ∈ Hk. Then χSdug (G) ≤ k + 1− d.

From Theorem 5 immediately follows result for the d-relaxed game chromatic number:

Corollary 7. Let k ≥ 2, 0 ≤ d ≤ k − 1 and G ∈ Hk. Then χ(d)
g (G) ≤ k + 2− d.

In [1] was proved:

Theorem 8 (E.S.’10 [1]). Let k ≥ 6 and G ∈ Hk. Then χg(G) ≤ k + 1.

Thus, from Theorem 6 and Theorem 8 we obtain:

Corollary 9. Let k ≥ 6, 0 ≤ d ≤ k − 2 and G ∈ Hk. Then χ(d)
g (G) ≤ k + 1− d.

An (r, d)-relaxed edge-colouring game is the version of the (r, d)-relaxed colouring game which is
played on the edge set of a graph G. The d-relaxed game chromatic index of G is denoted by (d)χ′g(G).
Since the line graph of the forest with maximum degree k belongs to Hk, from results for Hk we
obtain some new results for line graphs of forests, i.e., for the relaxed game chromatic index of
forests.

Corollary 10. Let T be a forest and 0 ≤ d ≤ ∆(T )− 1. Then (d)χ′g(T ) ≤ ∆(T ) + 2− d.

Corollary 11. Let T be a forest with ∆(T ) ≥ 5 and 0 ≤ d ≤ ∆(T )−2. Then (d)χ′g(T ) ≤ ∆(T )+1−d.
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Extended Abstract

The achromatic (resp. harmonious) number of a graph G, denoted by ψ(G) (resp. h(G)) is the
largest (resp. the smallest) number of colors in a good vertex coloring of G such that for any pair of
colors there is at least one (resp. at most one) edge of G whose endpoints are colored with this pair
of colors. By P kn (resp. Ckn) we denote the kth power of the n-vertex path (resp. n-vertex cycle), i.e.
the graph obtained from the path Pn (resp. the cycle Cn) by joining with edges all pairs of vertices
at distance not exceeding k . The problem of finding the exact values of achromatic and harmonious
numbers is not fully solved even for the graphs P 2

n and C2
n. We show that for every fixed k and

ε > 0, ψ(P kn ) =
√

2kn−Onε) and h(P kn ) =
√

2kn+O(n0.263). Moreover, for k = nα , we prove that
ψ(P kn ) =

√
2kn(1− o(1)), if α is any constant satisfying 0 < α < 1 and h(P kn ) =

√
2kn(1 + o(1)), if

0 < α < 1/3. We get similar results for the graphs Ckn. The research is motivated by some problems
occurring in large data transfer.
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Extended Abstract

We define several notions of rank-width for countable graphs. We compare, for each of them, the
width of a countable graph with the least upper-bound of the widths of its finite induced subgraphs.
A width has the compactness property if these two values are equal.

Tree-width has the compactness property [7]. Clique-width has the compactness property for
some gap function [1], which means that the clique-width of a countable graph is bounded by a
function of the least upper-bound of the widths of its finite induced subgraphs.

Rank-width is a width measure on finite graphs investigated first by Oum and Seymour [8, 9]. Its
variant called linear rank-width (similar to path-width) has been investigated in [3, 5]. Our main
notion of rank-width for countable graphs uses subcubic quasi-trees: "trees" where "paths" between
two nodes may have the order type of rational numbers. It has the compactness property. So has
linear rank-width, based on arbitrary linear orders.

A more natural notion of rank-width based on countable subcubic trees that we call discrete
rank-width, has compactness with gap : the discrete rank-width is at most twice the least upper
bound of the rank-widths of the finite induced subgraphs. The notion of discrete linear rank-width,
based on discrete linear orders (e.g. the integers) has no compactness property. Our results are in
this table.

measure compactness
rank-width yes
discrete rank-width yes for gap λn.2n
linear rank-width yes
discrete linear rank-width no

To prove that discrete linear rank-width has no compactness property, we consider the disjoint
union of countably many copy of an infinite path: it has infinite discrete linear rank-width but its
finite induced subgraphs have linear rank-width 1.

This research is based on ideas used for studying the clique-width of countable graphs and for
defining the modular decomposition of such graphs [2].

We now define quasi-trees. We associate with each tree T its ternary betweenness relation,
BT ⊆ NT ×NT ×NT (NT is the set of nodes of T ) defined as follows:

BT (x, y, z) holds if and only if x, y, z are pairwise different and y is on the unique path
in T between x and z.

We let Q(T ) := (NT , BT ).

Proposition : The betweenness relation B = BT of a finite or countable tree T satisfies the
following properties for all u, x, y, z in NT :

A1 : B(x, y, z)⇒ x 6= y 6= z 6= x.
A2 : B(x, y, z)⇒ B(z, y, x).
A3 : B(x, y, z)⇒ ¬B(x, z, y).
A4 : B(x, y, z) ∧B(y, z, u)⇒ B(x, y, u) ∧B(x, z, u).
A5 : B(x, y, z) ∧B(x, u, y)⇒ B(x, u, z) ∧B(u, y, z).
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A6 : B(x, y, z) ∧B(x, u, z)⇒
y = u ∨ (B(x, u, y) ∧B(u, y, z)) ∨ (B(x, y, u) ∧B(y, u, z)).
A7 : x 6= y 6= z 6= x⇒
B(x, y, z) ∨B(x, z, y) ∨B(y, x, z) ∨ (∃w.B(x,w, y) ∧B(y, w, z) ∧B(x,w, z)).

Definitions : A quasi-tree is a structure S = (NS , BS) such that NS , called the set of nodes,
has at least 3 elements, and BS is a ternary relation that satisfies conditions A1-A7. A leaf of T is a
node z such that BS(x, z, y) holds for no x, y.

Let x a node of S. We say that y, z ∈ NS − {x} are in the same direction relative to x if, either
y = z or BS(y, z, x) or BS(z, y, x) or BS(y, u, x) ∧BS(z, u, x) holds for some node u. This relation
is an equivalence, denoted by y ∼x z, and its classes are the directions relative to x. The degree of x
is the number of classes of ∼x. A node has degree 1 if and only if it is a leaf. We say that S is cubic
(resp. subcubic) if its nodes have degree 1 or 3 (resp. degree at most 3).

A cut of a quasi-tree S is a partition {X,Xc} of NS into two convex sets. X is convex if:
BS(x, y, z) ∧ x ∈ X ∧ z ∈ X =⇒ y ∈ X.

Definition : Rank-width. A layout of a graph G is a subcubic quasi-tree S whose set of leaves
LS contains VG. Its width rwd(G,S) is the least upperbound of the ranks of the adjacency matrices
MG[X ∩ VG, Xc ∩ VG] over all cuts {X,Xc} of S. The rank-width of G, denoted by rwd(G), is the
minimal width of all its layouts.
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Extended Abstract

An interval representation R is a collection of intervals {〈x〉 : x ∈ V (G)} where 〈x〉 ∩ 〈y〉 6= ∅ if and
only if xy ∈ E(G). A graph is an interval graph (INT) if it has an interval representation.
Partial Representations. The partial representation extension problem was introduced by Klavík
et al. [9]. For interval graphs, a partial representation R′ is an interval representation {〈x〉′ : x ∈
V (G′)} of an induced subgraph G′ of G. The vertices of G′ are called pre-drawn. A representation
R of G extends R′ if and only if it assigns the same intervals to the vertices of G′, i.e., 〈x〉 = 〈x〉′ for
every x ∈ V (G′). The partial representation extension problem asks whether there exists an interval
representation of G extending R′.

For interval graphs, the partial representation extension problem was solved in (n2) time in [9],
and currently there are two linear-time algorithms [1, 8] for this problem. A linear-time algorithm
for proper interval graphs and an almost quadratic-time algorithm for unit interval graphs are given
in [6]. Polynomial-time algorithms are further known for circle graphs [4], and permutation and
function graphs [5]. The partial representation extension problems for chordal graphs [7] and contact
representations of planar graphs [3] are NP-hard.
Our Results. Lekkerkerker and Boland [10] describe INT by five types of minimal forbidden induced
subgraphs which we call Lekkerkerker-Boland obstructions (LB). We generalize [10] to extendible
partial representations. We add ten new classes of minimal obstructions (see arXiv:1406.6228 for
details):

• SE obstructions: These are two simple shared endpoint obstructions which deal with shared
endpoints in R′. They are depicted in Fig. .3a.
• k-FAT obstructions: The class of forced asteroidal triple obstructions is defined inductively.
The 1-FAT obstruction contains pre-drawn non-adjacent vertices x1, y1 and z1 such that y1

is between x1 and z1. Further, x1 and z1 are connected by an induced path P1 and y1 is
non-adjacent to the inner vertices of P1. The k-FAT obstruction is constructed from the
(k − 1)-FAT obstruction as shown in Fig. .3b.
• Derived Classes: The remaining eight classes, depicted in Fig. .4, are derived from k-FAT

obstructions.
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Figure .3: (a) Two SE obstructions. (b) A k-FAT obstruction is created from a (k − 1)-FAT
obstruction by adding vertices xk and tk connected by an induced path Pk. Curly lines denote
induced paths, dashed edges are non-edges and pre-drawn intervals are bold.
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Figure .4: The classes of obstructions derived from k-FAT.

Theorem 1. A partial representation R′ of G is extendible if and only if G and R′ contain no LB,
SE, k-FAT, k-BI, k-FS, k-EFS, k-FB, k-FDS, k-EFDS, k-FNS and (k, `)-CE obstructions.

Corollary 2. A partial representation is extendible if and only if every four pre-drawn intervals are
extendible by themselves.

Corollary 3. There exists an (nm) certifying algorithm for partial representation extension, where
n is the number of vertices and m is the number of edges of the input graph.
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Extended Abstract

Well-quasi-order theory has been the subject of an increasing interest in the last sixty years,
from its introduction in the 50’s to recent results on graph containment relations. Formally, a
well-quasi-order (wqo for short) is a partial order which contains no infinite decreasing sequence,
nor infinite set of pairwise incomparable elements. The most significant result on wqos is certainly
the celebrated Graph Minor Theorem, proved at the culminating point of the Graph Minors series
of Robertson and Seymour and which can be stated as follows: graphs are well-quasi-ordered by
the minor relation [10]. Robertson and Seymour later proved in [9] that this result also holds for
the immersion relation. Prior work includes results of Higman on sequences from a wqo [4] and
Kruskal’s Tree Theorem [6], as well as techniques that are now standard tools in the study of
wqos, e.g. the minimal bad sequence argument of Nash-Williams [7]. Unlike minors and immersions,
most of the common containment relations do not well-quasi-order the class of all graphs, and
therefore attention has been naturally brought to subclasses that are well-quasi-ordered. In this
direction, Damaschke proved that cographs are well-quasi-ordered by induced subgraphs [1] and Ding
characterized ideals that are well-quasi-ordered by the subgraph relation [3]. Last, Liu and Thomas
recently announced that graphs not containing the elements of a set of graphs called “Robertson
chain” are well-quasi-ordered by the topological minor relation [5].

In this paper, we consider graphs where parallel edges are allowed, but not loops. The usual
contraction relation is extended to this setting in the obvious way: an edge contraction is the
operation that identifies two adjacent vertices and deletes the possibly created loops (but keeps
multiple edges), and a graph H is said to be a contraction of a graph G, denoted H EG, if it can
be obtained from G by a sequence of edge contractions. A bond is a minimal non-empty collection
of edges disconnecting the graph. The contraction relation defines a partial order on the class of
graphs. However, this order is not a wqo, and an illustration of this fact is the infinite sequence
of incomparable graphs {θi}i∈N, where θk is the graph with two vertices and k edges, for every
integer k. Our main result is the following.

Theorem 1. Let G be a class of connected graphs and let k ≥ 1 be an integer. If no graph of G has
a bond of order more than k, then G is well-quasi-ordered by E.

Remark that a graph does not have a bond of order more than k iff it contains no graph of
{θi}i>k as contraction. The torso of a bag Xt of a tree-decomposition (T, (Xt)t∈V(T )) of a graph G
is the graph obtained from G[Xt] by adding all edges {u, v} ∈ Xt ∩Xt′ for some neighbor t′ of t.
Our proof of Theorem 1 uses the two following propositions.

Proposition 2 (Tutte, [11], see also [2, Exercise 20 of Chapter 12]). Every 2-connected graph has
a a tree-decomposition (T, (X)t)t∈V(T )) such that |Xt ∩Xt′ | = 2 for every edge {t, t′} ∈ T and all
torsos are either 3-connected, or a cycle.

In the sequel, such a decomposition is called a Tutte decomposition.

Proposition 3 (Oporowski et al., [8]). For every k ∈ N∗ there is a wk ∈ N such that every
3-connected graph of order at least wk has a bond of order k.
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Sketch of the proof of Theorem 1. A sequence of graphs {Gi}i∈N is said to be bad if there is no pair
(i, j) ∈ N with i < j and Gi EGj . If additionnaly for every i ∈ N, Gi is a smallest graph such a bad
sequence starts with G1, . . . , Gi, then this bad sequence is minimal. Let Gk be the class of graphs
not containing a bond of order more than k, for some k ∈ N. In order to be able to use Proposition 2,
we first prove a structural lemma that reduces the study of (unlabeled) graphs of Gk to the case of
2-connected graphs of G that are labeled by the elements of a wqo.

In the sequel, we deal with labeled graphs. Remark that we can encode every 2-connected G
graph of Gk as the sequence 〈J,G1, . . . , Gl〉, where J is the torso of an arbitrarily chosen bag Xt in
a Tutte decomposition (T, (Xt)t∈V(T )) of G, and G1, . . . , Gl are the subgraphs induced in G by bags
corresponding to the connected components of T \ t. Roughly speaking, constructing a graph from
such an encoding can be done by gluing each Gi to the edge of J it corresponds to. Proposition 3
ensures that J will be either a cycle, or one of the finitely many possible 3-connected graphs of Gk.

By contradiction, let us consider a minimum bad sequence {Ai}i∈N of Gk and for each i ∈ N a
sequence Qi encoding Ai. We are able prove that the set of graphs used in these encodings of graphs
is well-quasi-ordered by E, by an argument similar to the one of Nash-Williams in [7] with some
more technicalities due to the nature of the contraction relation. Let us say that two encodings of
{Qi}i∈N are related if their first elements are isomorphic, or if both are a cycle. Remark that this is
an equivalence relation, and that there is a finite number of equivalence classes, as a consequence of
Proposition 3. Therefore, {Qi}i∈N has a subsequence {Qϕ(i)}i∈N (where ϕ : N→ N is an increasing
function) whose elements are all related, otherwise it would be finite. The following lemma shows
that the subsequence {Aϕ(i)}i∈N is well-quasi-ordered by E, a contradiction.

Lemma 4. Let (H,E) be a wqo of 2-rooted graphs. The class of graphs obtained by attaching graphs
of H to the edges of cycles (resp. to of a fixed graph J) is well-quasi-ordered by E.

Therefore, there is no bad sequence in Gk, and this concludes the proof.
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Extended Abstract

From the starting point of Hall’s stable marriage theorem, a new notion of complement graph is
introduced. This concept is defined only in the Category of Bipartite Graphs, which means that all
graphs considered, even the new complement graph should be bipartite, except if the general case is
stated explicitly.

If G = (V,W ;E) is a bipartite and connected, we define the bipartite complement graph of G as
the bipartite graph Gcb with the same bipartition V ∪W and where u ∈ V and w ∈W are adjacent in
Gcb if and only if they are not adjacent in G. The basic properties of this new concept are established.
The bipartite complement is directly used to prove the Complete Unstable Marriage Theorem. Many
examples illustrate this notion.˙

If G is not connected there is, in general, not a unique bipartite complement associated to G. We
clarify this case and give several results on the structure of the bipartite complement graph in case
where G is not connected. The main results are the case where special connected components are
considered and when we establish the conditions under which the bipartite complement is connected
while the original graph is not. This is an analogous of the classical result saying that the usual
complement of a non connected graph is connected. This new concept in bipartite graphs theory
raises many new problems, some of which are given in the conclusion, especially the notion of b-self
complement graph. The notion of bipartite matrix is helpful in an algorithmic approach of bipartite
complementation.

Bibliography

[1] ASRATIAN A.S. Bipartite Graphs and Their Applications; Cambridge Univ. Press (1998).

[2] BONDY J.A. & MURTY U.S.B. Graph Theory; Springer (2008).

[3] BRANSTEIDT A., LE V.B., SPINRAD J.P. Graph Classes: a Survey; SIAM Monographs in
Disc. Math. And Appli. (1999).

[4] AKIYAMA J., HARARY F. A Graph and its Complement with Specific Properties I: Connectivity
Intren. J. Math. & Math. Sci. Vol. 2, No 2, 223 – 228 (1979).

[5] SIMIC S. Graphs which are Switching Equivalent to Their Complementary Line Graph I;
Publications de l’Institut de Maths. Nouvelle Série, t 27 (41) 229 – 235 (1980).

[6] KHELLADI A. Bipartite Complement of a Bipartite Graph: I. Structure” ; Pré Publication No

312, USTHB, Faculté de Mathématiques, Juin 2014.





The Rectangle Covering Number of Random
Boolean Matrices

Mozhgan Pourmoradnasseri, Dirk Oliver Theis

Institute of Computer Science, University of Tartu, Estonia

Extended Abstract

The rectangle covering number of an n×n Boolean matrixM is the smallest number of 1-rectangles
which are needed to cover all the 1-entries of M . The concept is an important lower bound in
Communication Complexity and Combinatorial Optimization [11]. It is also known as the Boolean
rank [1] of M : the smallest k such that M is the product of an n × k and a k × n matrix under
Boolean arithmetic (1 + 1 = 1). Under the name of biclique covering number of a bipartite graph,
the concept is important in graph theory and algorithmics (e.g., [8, 1]).

By a construction of Lovász and Saks [7], the rectangle covering number is the chromatic number
of a graph constructed from M : The Lovász-Saks matrix-graph G�(M) has as its vertex set the set
of pairs (k, `) with Mk,` = 1, and two vertices (k, `), (k′, `′) are adjacent iff Mk,`′Mk′,` = 0. Every
graph is an induced subgraph of a Lovász-Saks matrix-graph of some matrix.

Generally speaking, the importance of the Lovász-Saks construction lies in making available the
tools and approaches of graph coloring to the application areas of rectangle covering (cf., e.g., [5]).
(Specifically for Communication Complexity, however, its overwhelming importance comes from the
fact that it connects the famous log-rank conjecture in Communication Complexity to the equivalent
conjecture in graph theory: the chromatic number of a graph is a most 2 to a polylog in the rank of
the adjacency matrix.)

In our paper, we study the rectangle covering number of random n × n matrices, where each
entry is 1 with probability p, and the entries are independent.

As usual, we are interested in n→∞ and p is allowed to vary with n. To bound the rectangle
covering number, i.e., the chromatic number of the Lovász-Saks graph, we also study its clique
number (cliques are called “fooling set” in Communication Complexity vernacular [6]; and “sets of
independent entries” in Matrix Theory [3]) and its independence number.

In some aspects, the random Lovász-Saks graph behaves like similar to an Erdős-Renyi random
graph with density 1− p2, but the differences are more profound.

The clique number of the random Lovász-Saks graph with p = 1/2 has been disussed by Diet-
zfelbinger et al. [4] (see also [10]). The inedependence number is known for constant p from work
of Park & Szpankowski [9]; and the chromatic number for constant p = 1/2 appears in Sherstov’s
lecture notes [10].

As in the Erdős-Renyi model, things get more difficult with p→ 0 and, especially, p→ 1. For
example, the clique number, for p→ 0, is dominated by the largest matching in the bipartite graph
defined by matrix, which is well studied. For p = Ω(1), we prove lower bounds using the first moment
method, and upper bounds by analyzing a greedy algorithm. For p → 1 fast enough, the clique
number becomes a constant. Our upper and lower bound differ by a factor of 4. Whereas for the
independence number, we rely entirely on concentration bounds to prove that the size of the largest
independent set is near −1/(e ln p), and it is of a particular form.

We conclude with a number of open questions.
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The notion of the Sierpiński graph S(n, k) was introduced by Klavžar and Milutinović [5]. The
extended Sierpiński graph S++(n, k) has also been introduced by Klavžar and Mohar [6]. Because
of their interesting self-similar structures, various properties on the Sierpiński-like graphs have
been investigated: hamiltonicity, hub numbers, colorings, covering codes, average eccentricity, and
crossing numbers (e.g., see [2, 8]). Motivated by self-similar structures of Sierpiński graphs, the
subdivided-line graph operation Γ has been introduced in [2]. The subdivided-line graph Γ(G) of
an undirected graph G = (V,E) is defined to be the line graph of the barycentric subdivision of
G, and Γ is called the subdivided-line graph operation. For n ≥ 1, the n-iterated subdivided-line
graph Γn(G) of G is the graph obtained from G by iteratively applying Γ n times. Then, it holds
that S◦(n, k) ∼= Γn(Kk

1 ), where Kk
1 is the graph with one vertex and k self-loops and S◦(n, k) is

the graph obtained from S(n, k) by adding self-loops to vertices called extreme vertices. We also
have S++(n, k) ∼= Γn−1(Kk+1), where Kk+1 is the complete graph with k + 1 vertices (see Figure 1).
Thus, the class of iterated subdivided-line graphs generalizes the class of Sierpiński-like graphs. In
this paper, we study various colorings (labelings) of iterated subdivided-line graphs.

Figure .5: K3
1 , Γ(K3

1 ), Γ2(K3
1 ), Γ3(K3

1 ), K4, Γ(K4), and Γ2(K4).

The disjoint union of m copies of G is denoted by mG. We denote by ∆(G) the maximum number
of edges incident to a vertex in G. A vertex incident to ∆(G) edges is called a major vertex of G.
Let Gmaj be the graph obtained from G by deleting every edge not incident to a major vertex. For
vertex-colorings, we have the following.

Theorem 1. χ(Γn(G)) = ∆(G) for n ≥ 1.

From Theorem 1, the facts that χ(S(n, k)) = k and χ(S++(n, k)) = k on Sierpiński-like graphs
shown in [7] and [4], respectively, are obtained as corollaries. A linear-coloring of G is a vertex-
coloring such that for any pair of colors, the subgraph of G induced by the set of vertices with one
of the two colors is a disjoint union of paths. The minimum number of colors in a linear-coloring of
G is denoted by χ`(G). Xue et al. [8] showed the next result.

Theorem 2. [8] χ`(S(n, k)) = k for n ≥ 1 and χ`(S++(n, k)) = k for n ≥ 2.

In Γ(G), each vertex v in G is replaced with the complete graph K(v), and an edge in some
K(v) is called a generated edge, while an edge not in any K(v) is called an original edge. For a
∆(G)-vertex-coloring of Γn(G) and S ⊆ {1, 2, . . . ,∆(G)}, let 〈S〉◦n be the graph obtained from the
subgraph induced by the vertices with a color in S by adding a self-loop to each vertex not incident
to an original edge. Let K◦k = Γ(Kk

1 ). Then, we can show the following result. Considering the case
that |S| = 2 in Theorem 3, Theorem 2 for n ≥ 3 is obtained.



54

Theorem 3. Let n ≥ 2. Given a ∆(G)-vertex-coloring of Γ(G), there exists a ∆(G)-vertex-coloring
of Γn(G) such that for any S ⊆ {1, 2, . . . ,∆(G)},

〈S〉◦n ∼= Γn−1(〈S〉◦1) ∪ (∪v∈V (G),0≤i≤n−2|K(v)− 〈S〉◦1| · |K(v)|i · Γn−2−i(K◦|K(v)∩〈S〉◦1 |)).

For edge-colorings, we have the next result which generalizes the results that χ′(S(n, k)) = k and
χ′(S++(n, k)) = k on edge-colorings of Sierpiński-like graphs proved in [4].

Theorem 4. Let n ≥ 1. If ∆(G) is even, then χ′(Γn(G)) = ∆(G). If ∆(G) is odd, then ∆(G) ≤
χ′(Γn(G)) ≤ χ′(Gmaj).

A k-L(p, q)-labeling of G is a function f : V (G) 7→ {0, 1, . . . , k} such that |f(u)−f(v)| ≥ p for any
pair of adjacent vertices u and v, and |f(u)− f(v)| ≥ q for any pair of vertices u and v at distance
two. The minimum k for a k-L(p, q)-labeling of G is denoted by λp,q(G). For L(1, 1)-labelings, we
have the next result from which the results that λ1,1(S(n, k)) = k and λ1,1(S++(n, k)) = k follow.

Theorem 5.

∆(G) ≤ λ1,1(Γn(G)) ≤
{
λ1,1(G) if G has a major vertex without a self-loop,
λ1,1(G) + 1 if every major vertex of G has a self-loop.

Multiplying the upper bounds in Theorem 5 by two, we have upper bounds on λ2,1(Γn(G)).
Gravier, Klavžar, and Mollard [1] showed that λ2,1(S(n, k)) = 2k for n ≥ 2 and k ≥ 3. From their
result, a general lower bound on λ2,1(Γn(G)) is obtained, since S(2,∆(G)) ⊆ Γn(G) for n ≥ 2.
Therefore, we have the following result.

Theorem 6. Let n ≥ 2 and ∆(G) ≥ 3.

2∆(G) ≤ λ2,1(Γn(G)) ≤
{

2λ1,1(G) if G has a major vertex without a self-loop,
2λ1,1(G) + 2 if every major vertex of G has a self-loop.

From Theorem 6, the new result that λ2,1(S++(n, k)) = 2k for n ≥ 2 and k ≥ 3 is obtained.
Besides, using Theorem 5, we can show the next result on total-colorings.

Theorem 7. Let n ≥ 1. If ∆(G) is odd, then χ′′(Γn(G)) = ∆(G) + 1. If ∆(G) is even, then

∆(G) + 1 ≤ χ′′(Γn(G)) ≤
{
λ1,1(G) + 1 if G has a major vertex without a self-loop,
λ1,1(G) + 2 if every major vertex of G has a self-loop.

Applying Theorem 7 to K◦k and Kk+1, the result that χ′′(S(n, k)) = k + 1 shown in [3] and the
new result that χ′′(S++(n, k)) = k + 1 are obtained, respectively.
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Extended Abstract

In this paper we study the chromatic number of P5-free graphs. Our work was motivated by the
following conjecture of Gyárfas.

Conjecture 1. (Gyárfas’ conjecture [1])
Let T be any tree (or forest). Then there is a function fT such that every T -free graph G satisfies
χ(G) ≤ fT (ω(G)).

Gyárfas [1] proved this conjecture when T is a path Pk for all k ≥ 3 by showing χ(G) ≤
(k − 1)ω(G)−1. The currently best known upper bound for P5-free graphs is due to Esperet, Lemoine,
Maffray, and Morel [2]

Theorem 2. Let G be a P5-free graph with clique number ω(G). Then χ(G) ≤ 5 · 3ω(G)−3.

One may wonder whether this exponential bound can be improved. In particular:

Question 3. Is there a polynomial (χ-bounding) function fk such that every Pk-free graph G satisfies
χ(G) ≤ fk(ω(G))?

Our first main result is the following:

Theorem 4. There is no linear χ-binding function for the class of P5-free graphs.

In 1998, Reed proposed the following Conjecture which gives, for any graph G, an upper bound
for the chromatic number χ(G) in terms of the clique number ω(G) and the maximum degree ∆(G).

Conjecture 5. (Reed’s conjecture [3])
Every graph G satisfies χ(G) ≤ dω(G)+∆(G)+1

2
e.

Reed’s conjecture is still open in general. It has shown to be true for some classes of graphs,
especially for several subclasses of P5-free graphs like (P5, C4)-free graphs, (P5, kite, bull)-free graphs
(Fouquet and Vanherpe [4]), and (P5, house, dart)-free graphs (Fouquet and Vanherpe [4]).

Question 6. Does Reed’s conjecture hold for the class of P5-free graphs?

Our second main result is that the answer is affirmative in the asymptotic sense.

Theorem 7. For every fixed ω ≥ 3 there exists n(ω) such that if G is a connected P5-free graph of
order n ≥ n(ω) and clique number ω, then χ(G) ≤ dω(G)+∆(G)+1

2
e.

We now relax question 6.

Question 8. Does Reed’s conjecture hold for the class of (P5, F )-free graphs, where F ∈ {House, bull, dart, kite}?
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Extended Abstract

It was shown by Garey, Johnson, and Stockmeyer [6] that the 3-coloring decision problem for
planar graphs is NP-complete. However, there are some interesting and well-studied characterizations
of planar graphs that are 3-colorable. One famous condition is a result of Grötzsch [7] who proved
that every planar triangle-free graph is 3-colorable. In 1976, Steinberg [9] conjectured the following
related result:

Conjecture 1. Steinberg’s conjecture. Every planar graph without 4- and 5- cycles is 3-colorable.

Steinberg’s conjecture is still open. Much interest has been given to this and related 3-coloring
problems in recent years. Most partial results involve excluding additional cycle lengths, such as
excluding cycles of length 4 through 7 [3] or adding other structural restrictions to the graphs as
in [1], [2], or [4]. There even exist results for graphs on arbitrary surfaces. For instance, Zhao [10]
showed that for every surface Σ, there exists some k so that if G is a graph embedded on Σ and
there are no cycles of length 4 up to length k, then G is 3-colorable.

In 2003, Raspaud and Borodin [4] conjectured another related result that every planar graph
with minimum distance between triangles at least one and without 5-cycles is 3-colorable. This
conjecture, called the Bordeaux coloring conjecture, is stated as follows:

Conjecture 2. Bordeaux coloring conjecture. Every planar graph without intersecting triangles
and 5-cycles is 3-colorable.

By intersecting triangles we mean triangles sharing edges or vertices. Another stronger version of
the Bordeaux conjecture is described as follows:

Conjecture 3. Strong Bordeaux coloring conjecture. Every planar graph with no adjacent
triangles and no 5-cycles is 3-colorable.

Adjacent triangles refer to several triangles sharing edges. Both Conjectures 1 and 2 follow if the
strong Bordeaux conjecture holds. In this presentation we will focus on the Bordeaux conjecture.
Rather than prove a theorem about 3-colorability, we will prove a related statement about on the
family of planar graphs satisfying the hypotheses of the Bordeaux conjecture.

We now define properties associated with the concept of near-coloring. A graph G is called
improperly (d1, d2, ..., dk)-colorable, or just (d1, d2, ..., dk)-colorable, if the vertex set of G can be
partitioned into k sets V1, V2, ..., Vk, such that for every i, 1 ≤ i ≤ k, the subgraph G[Vi] has
maximum degree at most di. Such an improper coloring is defined as a near-coloring. As an example,
the Four Color Theorem can be restated by saying that every planar graph is (0, 0, 0, 0)-colorable.
Similarly, Steinberg’s conjecture states that every planar graph without cycles of length 4 and 5 is
(0, 0, 0)-colorable.

A recent paper of Chang, Havet, Montassier, and Raspaud [5] relates Steinberg’s conjecture and
near-coloring. The authors prove that if F is the family of planar graphs without cycles of 4 and
5, every graph of F is (2,1,0)-colorable and (4,0,0)-colorable. Furthermore, O. Hill and G. Yu [8]
recently improved this result to show that all graphs of F are, in fact, both (1,1,0)-colorable and
(3,0,0)-colorable, a step closer to Steinberg’s conjecture.

In light of the aforementioned results, our aim is to prove analogous results related to the
Bordeaux conjecture. Define H as the family of planar graphs without cycles of length 5 and without
intersecting triangles. In this presentation, we will describe aspects of the proof of the following
theorem:
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Theorem 4. Every graph of H is (4,0,0)-colorable and (2,1,0)-colorable.

Notice that the set of graphs in H is significantly different than the graphs in F because H
includes cycles of length four. Based on this difference, the discharging rules and structural lemmas
are more complicated than in the near-coloring based papers associated primarily with Steinberg’s
conjecture. We will discuss some modifications of the discharging rules to handle cycles of length
four and give a description of structural results associated with our proof. If time permits, we will
also discuss open problems including some involving coloring by an independent set and a set that
induces a forest.
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Extended Abstract

1 Introduction, notation, and basic definitions

Let G = (V,E) be a simple, undirected, connected graph with vertex set V and edge set E. The
distance between any two vertices x and y, denoted by dG(x, y), is the length of any shortest path
between x and y.

For any vertex v ∈ V and integer r ≥ 1, the ball of radius r and centre v, denoted by BG,r(v), is
the set of vertices within distance r from v:

BG,r(v) = {x ∈ V : dG(v, x) ≤ r}.

Two vertices x and y with BG,r(x) = BG,r(y) are called (G, r)-twins. If G has no (G, r)-twins,
then we say that G is r-twin-free or r-identifiable.

Whenever two vertices x and y are within distance r from each other in G, i.e., x ∈ BG,r(y)
and y ∈ BG,r(x), we say that x and y r-cover each other. When three vertices x, y, z are such that
x ∈ BG,r(z) and y /∈ BG,r(z), we say that z r-separates x and y in G (note that z = x is possible).
A set is said to r-separate x and y in G if it contains at least one vertex which does.

A code C is simply a subset of V , and its elements are called codewords. For each vertex v ∈ V ,
the r-identifying set of v, with respect to C, is the set of codewords r-covering v, and is denoted by
IG,C,r(v):

IG,C,r(v) = BG,r(v) ∩ C.

We say that C is an r-dominating code in G if all the sets IG,C,r(v), v ∈ V , are nonempty.
We say that C is an r-identifying code ([5]; see also the bibliography at [6] for references on

identifying codes and related topics) if all the sets IG,C,r(v), v ∈ V , are nonempty and distinct:
in other words, every vertex is r-covered by at least one codeword, and every pair of vertices is
r-separated by at least one codeword. Or: given the (nonempty) identifying set IG,C,r(v) of an
unknown vertex v ∈ V , we can uniquely recover v (we also say that we r-identify v).

It is quite easy to observe that a graph G admits an r-identifying code if and only if G is
r-twin-free; this is why r-twin-free graphs are also called r-identifiable.

When G is r-twin-free, we denote by γr(G) the smallest cardinality of an r-identifying code in G.
Any r-identifying code C such that |C| = γr(G) is said to be optimal. The search for an optimal
r-identifying code in given graphs or families of graphs is an important part of the studies devoted
to identifying codes. In general, this problem is NP-hard [1].

2 Main results

In this communication, following [7] and [8] where the notion of “completely different codes” is
discussed in the framework of infinite lattices, we are interested in finding graphs which have a large
number of different optimal r-identifying codes. Typically, we construct graphs with n vertices which
admit 2α·n different optimal r-identifying codes, and we want to have α as close to 1 as possible.
Our results are (see [4] for the proofs and other results on the subject):
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• for r = 1, there exist graphs with n vertices and about 20.77003n optimal identifying codes;
• for r > 1, there exist graphs with n vertices and about 20.664n optimal identifying codes;
Note that if we are interested in the number of r-identifying codes that a graph G can admit

(without requiring optimality), then we obtain the upper bound

Σni=dlog2(n+1)e

(
n

i

)
= 2n − Σ

dlog2(n+1)e−1
i=0

(
n

i

)
.

On the other hand, consider the graph G defined as a q × q square array of vertices in which any
two vertices are adjacent if and only if they are on the same row or column. Then we may prove
that, if we set n = q2, we have at least

2n
(
1− n(

√
n+ 1)

2
√
n

)
1-identifying codes in G.

In comparison, some results are known for 1-dominating codes with respect to minimality (for
inclusion): it has been proved in [3] that graphs with n vertices exist which admit 20.651n different
minimal 1-dominating codes, and that any graph with n vertices admits at most 20.779n different
minimal 1-dominating codes; the upper bound is obviously valid also for optimal codes, and the
lower bound is obtained by a construction which works for optimal codes too. See also [2]. The
clique on n vertices is an obvious example where all the 2n − 1 nonempty subsets of vertices are
1-dominating codes.
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Extended Abstract

An identifying code of a graph is a subset of its vertices such that every vertex of the graph is
uniquely identified by its closed neighbourhood within the code. We consider lower bounds and
approximation algorithms for the minimum size of identifying codes in classes of graphs closed under
induced subgraphs.

We first give a dichotomy result for the size of the smallest identifying code in these classes.
Our dichotomy is derived from the Vapnik-Chervonenkis dimension (VC-dimension for short) of
the considered class, defined as follows. Let H = (V, E) be a hypergraph. A subset of vertices X
is shattered if for every subset X ′ of X, there exists a hyperedge e in E such that e ∩ X = X ′.
The VC-dimension of H is the maximal size of a shattered set of H. We define the VC-dimension
of a graph G as the VC-dimension of the hypergraph of the closed neighbourhoods of G. The
VC-dimension of a class of graphs C is the maximum VC-dimension among the elements of C. If it is
not bounded, we say that C has infinite VC-dimension.

Theorem 1. Let C be a class closed under induced subgraphs. Either

1. C has infinite VC-dimension and then, for every k ∈ N, there exists a graph Gk ∈ C with more
than 2k − 1 vertices and an identifying code of size 2k, or

2. C has finite VC-dimension d and then, there is a constant c such that no graph G ∈ C with n
vertices has an identifying code of size smaller than n1/d.

The second part of this theorem allows us to derive lower bounds for several classes of graphs
such as graphs with girth at least 5, chordal bipartite graphs, interval graphs, permutations graphs,
undirected path graphs. The order of the lower bound can be tight (interval graphs, graphs of girth
at least 5) or not (line graphs, planar graphs, permutation graphs).

We then turn to approximation algorithms. Foucaud [1] proved that Min Id Code, the problem
of computing an identifying code of minimum size, is log-APX-hard even restricted to bipartite
graphs, split graphs or co-bipartite graphs. In particular, Min Id Code cannot be approximated
to within a c · log |V | factor (for some c > 0) in polynomial time in these three classes. We prove
that any class closed under induced subgraphs with infinite VC-dimension must contain one of these
three classes.

Theorem 2. Let C be a class of graphs closed under induced subgraphs. If C has infinite VC-
dimension, then it contains either the class of bipartite graphs or the class of split graphs or the class
of co-bipartite graphs.

Corollary 3. Min Id Code is log-APX-hard when the input graph is restricted to a class of graphs
closed under induced subgraphs of infinite VC-dimension.

In classes of finite VC-dimension, constant approximation algorithms are known for line graphs
[2], planar graphs [5] or unit-interval graphs [3]. We complete this study by giving a constant factor
approximation algorithm for interval graphs, answering an open question in [1]. Our algorithm is
based on linear programming.
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Theorem 4. There is a polynomial time 6-approximation algorithm for Min Id Code on interval
graphs.

However, not all classes of finite VC-dimension admit a constant approximation algorithm. Indeed,
we show the class of C4-free bipartite graphs which is of VC-dimension 2 has no such algorithm.

Theorem 5. Min Id Code with input restricted to C4-free bipartite graphs cannot be approximated
to within a c · logn factor (for some c > 0) in polynomial time, unless NP ⊆ ZTIME(nO(log logn))
(where n is the size of the input).

This theorem is proved by reducing Min Id Code to Set Cover with intersection 1 which
cannot be approximated to within a c logn factor for some c > 0 in polynomial time [4].
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Abstract

Consider a simple graph G = (V,E) and its proper edge colouring c with the elements of the
set {1, 2, . . . , k}. The colouring c is said to be neighbour sum distinguishing if for every pair of
vertices u, v adjacent in G, the sum of colours of the edges incident with u is distinct from the
corresponding sum for v. The smallest integer k for which such colouring exists is known as the
neighbour sum distinguishing index of a graph and denoted by χ′∑(G). The definition of this
parameter, which makes sense for graphs containing no isolated edges, immediately implies that
χ′∑(G) ≥ ∆, where ∆ is the maximum degree of G. On the other hand, it was conjectured by
Flandrin et al. that χ′∑(G) ≤ ∆ + 2 for all those graphs, except for C5. We shall sketch a proof
that this bound is asymptotically correct, as indeed χ′∑(G) ≤ ∆(1 + o(1)). The main idea of the
argument confirming this fact relays on a random assignment of the colours, where the choice for
every edge is biased by so called attractors, randomly assigned to the vertices. The conjecture’s
exact bound in turn holds for several classes of graphs, as e.g. planar graph of sufficiently large
maximum degree. Similar results concerning the total version of the problem, as well as the
protoplast of our problem focused on distinguishing neighbours by sets rather than sums shall
also be briefly commented on.

Extended Abstract

One of the most elementary facts we learn in the very first lecture of a basic combinatorial course
is that every (simple) graph of order at least two contains a pair of vertices of the same degree.
This datum gave rise to the natural question studied e.g. by Chartrand, Erdős and Oellermann
in [3], on a possible definition of an irregular graph, intended as the antonym to the term ‘regular
graph’. With no convincing individual solution to the problem, Chartrand et al. [2] altered towards
measuring the ‘irregularity of a graph’ instead. Suppose that given a graph G = (V,E) we wish to
construct a multigraph with pairwise distinct vertex degrees of it by multiplying some of its edges.
The least k so that we are able to achieve such goal using at most k copies of every edge is known as
the irregularity strength of G and denoted by s(G), see [2]. Alternatively, one may consider (not
necessarily proper) edge colourings c : E → {1, 2, . . . , k} with the weighted degree, defined as

dc(v) :=
∑
e3v

c(e),

of every vertex v ∈ V distinct from all the remaining ones. Then the least k which permits defining
a colouring c with this feature equals s(G). It is straightforward to notice that s(G) is well defined
for all graphs containing no isolated edges and at most one isolated vertex. The irregularity strength
was studied in numerous papers and was the cornerstone of the later additive graph labelings, or more
generally – vertex distinguishing graph colourings. Many consequential and related graph parameters
have been studied ever since its development.

In particular, a proper edge colouring c : E → {1, 2, . . . , k} is said to be neighbour sum distin-
guishing if for every pair of vertices u, v adjacent in G, dc(v) 6= dc(v). The least integer k for which
such colouring exists is known as the neighbour sum distinguishing index of a graph and denoted by
χ′∑(G). The definition of this parameter, which makes sense for graphs containing no isolated edges,
immediately implies that χ′∑(G) ≥ ∆, where ∆ is the maximum degree of G. On the other hand,
Flandrin et al. posed the following daring conjecture.

Conjecture 1 ([4]). If G is a connected graph of order at least three different from the cycle C5,
then χ′∑(G) ≤ ∆(G) + 2.
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We shall sketch a proof that this bound is asymptotically correct.

Theorem 2 ([6]). If G is a connected graph of maximum degree ∆ ≥ 2, then χ′∑(G) ≤ (1 + o(1))∆.

The main idea of the argument relays on a random assignment of the colours, where the choice
for every edge is biased by so called attractors, randomly assigned to the vertices. The conjecture’s
exact bound in turn holds for several classes of graphs. In particular, we prove the following.

Theorem 3 ([1]). Any planar graph G with ∆(G) ≥ 28 and no isolated edge satisfies χ′Σ(G) ≤
∆(G) + 1.

Similar results concerning the total version of the problem, as well as the protoplast of our problem
focused on distinguishing neighbours by sets rather than sums shall also be briefly commented on.
In particular, the latter of these was a great boost to the field, as it triggered and inspired a large
number of associated results and new concepts, including the main focus of this talk. The least
integer k so that a proper colouring c : E → {1, 2, . . . , k} exists such that the sets of colours incident
with u and v are distinct for every edge uv of G is called the neighbour set distinguishing index (or
adjacent strong chromatic index ) of G, denoted by χ′a(G). This graph invariant was introduced by
Zhang, Liu and Wang in 2002 together with the following challenging conjecture

Conjecture 4 ([7]). If G is a connected graph of order at least three different from the cycle C5,
then χ′a(G) ≤ ∆(G) + 2.

This was verified for several graph classes. In particular it was studied in a few papers for
the case of planar graphs, and confirmed for those of sufficiently large maximum degree. The
following asymptotically best result was also proved by Hatami by means of a multistage probabilistic
construction.

Theorem 5 ([5]). If G is a graph with no isolated edges and with maximum degree ∆ > 1020, then
χ′a(G) ≤ ∆ + 300.
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Extended Abstract

A graph is called d-distinguishable if there is a ‘coloring’ of the vertices with the integers 1, . . . , d
so that no nontrivial automorphism of G preserves the colors. The idea is to break the symmetries
of the graph with the minimum number of colors. This concept was introduced by Albertson and
Collins [2] and has spawned a wealth of results for both finite and infinite graphs.

Though Kn requires n colors and Km,n requires max{m,n}, there are many families of graphs
in which each member requires only 2 colors. For finite graphs these include: hypercubes Qn with
n ≥ 4; Cartesian powers Gn for a connected graph G 6= K2,K3 and n ≥ 2 [10]; Kneser graphs Kn:k

with n ≥ 6, k ≥ 2 [1]; and (with seven small exceptions) 3-connected planar graphs [9]. Families of
infinite graphs include: tree-like graphs with not more than continuum many vertices; the hypercube
of dimension ℵ0 [11]; and locally finite, connected graphs whose automorphism group is countably
infinite [12].

Interestingly, in many such cases the size of the smaller color class can be extremely small. For
example the hypercube Q2k of dimension 2k can be 2-distinguished by coloring k+ 2 vertices red and
the remaining 22k

− k − 2 vertices white [5]. In this talk we consider upper bounds on the minimum
size of such a color class for a variety of graph families.

More formally, all a color class in a 2-distinguishing coloring a distinguishing class and call the
minimum size of a distinguishing class for a 2-distinguishable graph G the cost of 2-distinguishing G,
denoted by ρ(G). As a tool, we will also use the determining number, Det(G), the smallest size of a
set of vertices with the property that every automorphism of the graph is uniquely determined by its
action on this set [3]. This is sometimes called the size of a base for the automorphism group action.

This talk will introduce the concepts above and then sample some of the following results for
finite graphs:

• ρ(K2m−1:2m−1−1) = m+ 1 [5];

• ρ(Q2m−2) = ρ(Q2m−1) = ρ(Q2m) = m+ 2 [5];

• dlog2 ne+ 1 ≤ ρ(Qn) ≤ 2dlog2 ne − 1 for n ≥ 5 [4];

• if Det(G) ≤ k and max{2,Det(G)} < Det(Gk), then ρ(Gk) ∈ {Det(Gk),Det(Gk) + 1} [6]:

• if G and H are relatively prime, H is 2-distinguishable with a distinguishing class of size at
least as large as Det(G), then ρ(G�H) = max{ρ(H),Det(G)} [8].

This talk will also discuss results for connected, locally finite, infinite graphs with infinite
automorphism group, including:

• ρ(G) < ℵ0 if and only if Aut(G) is countable;

• if Aut(G) is countable, ρ(G) < 3Det(G); and

• if G exhibits linear growth c, then ρ(G) ≤ c+ 1 [7].
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Extended Abstract

The chromatic number of a graph G is denoted by χ(G), and the clique number of G (i.e. the size
of the maximum clique of G) is denoted by ω(G). A graph G is perfect if for all induced subgraphs
H of G, χ(H) = ω(H). A graph is imperfect if it is not perfect. A graph G is Berge if neither G
nor G (the complement of G) contains an induced odd cycle of length at least five. The Strong
Perfect Graph Theorem [3] states that a graph is perfect if and only if it is Berge. One direction of
this theorem is an easy exercise: it is easy to see that odd cycles of length at least five and their
complements are imperfect, and consequently, all perfect graphs are Berge. However, the proof of
other direction (“all Berge graphs are perfect”) is long and complicated, and the main ingredient
of the proof is a decomposition theorem for Berge graphs [2, 3]. One of the decompositions in this
decomposition theorem is the “balanced skew-partition.” A skew-partition of a graph G is a partition
(X,Y ) of V (G) such that G[X] and G[Y ] are both disconnected. The length of a path is the number
of edges that it contains, and a path is odd if its length is odd. A skew-partition (X,Y ) of G is
balanced if it satisfies the following two conditions:

• G contains no induced odd path of length greater than one whose endpoints belong to Y and
all of whose interior vertices belong to X;

• G contains no induced odd path of length greater than one whose endpoints belong to X and
all of whose interior vertices belong to Y .

It was shown in [3] that a minimimum imperfect Berge graph does not admit a balanced skew-
partition, and so this decomposition was “good enough” for the purposes of proving the Strong
Perfect Graph Conjecture. However, for other purposes, the balanced skew-partition is notoriously
difficult to handle, and this has led to the study of perfect (equivalently: Berge) graphs that do not
admit this particular decomposition (see for instance [4, 6, 8]).

A clique-coloring of a graph G is an assignment of colors to the vertices of G in such a way
that no inclusion-wise maximal clique of G of size at least two is monochromatic. A graph G is
k-clique-colorable if it can be clique-colored with at most k colors, and the clique-chromatic number
of G is the smallest number k such that G is k-clique-colorable. There exist graphs of arbitrarily
large clique-chromatic number (this is because for triangle-free graphs, clique-coloring is the same as
proper coloring, and there exist triangle-free graphs of arbitrarily large chromatic number [7]), but it
is not known whether the clique-chromatic number of perfect graphs is bounded. Progress in this
direction has been made in some special cases. For example, Bacsó et al. [1] proved that all {claw,
odd-hole}-free graphs are 2-clique-colorable, and Défossez [5] proved that all {bull, odd-hole}-free
graphs are 2-clique-colorable. (If H is a family of graphs, we say that a graph G is H-free if no
induced subgraph of G is isomorphic to a graph from H. An odd-hole is an induced odd cycle of length
at least five, and so every perfect graph is odd-hole-free. The claw is the complete bipartite graph
K1,3, and the bull is the five-vertex graph consisting of a triangle and two vertex-disjoint pendant
edges.) In addition, Bacsó et al. [1] proved that “almost all” perfect graphs are 3-clique-colorable. On
the other hand, there exist perfect graphs whose clique-chromatic number is three: one well-known
example is the graph obtained from the cycle of length nine by choosing three evenly spaced vertices
and adding edges between them. There are currently no known examples of perfect graphs whose
clique-chromatic number is greater than three. All this suggests that it might be true that all perfect
graphs are 3-clique-colorable. Our main result is the following.

Theorem 1. Every perfect graph that does not admit a balanced skew-partition is 2-clique-colorable.
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The main tool used in the proof of Theorem 1 is a decomposition theorem for “tame Berge
trigraphs” due to Chudnovsky et al. [4]. Roughly speaking, a “trigraph” is a generalization of
a graph in which there are three types of adjacency: strongly adjacent pairs (edges), strongly
anti-adjacent pairs (non-edges), and semi-adjacent pairs (pairs with “undetermined” adjacency).
Obviously, every graph can be seen as a trigraph (a graph is simply a trigraph with no semi-adjacent
pairs). A “tame trigraph” is a trigraph with certain restrictions on the occurence of semi-adjacent
pairs (in particular, every graph is a tame trigraph). While there is no such thing as a “perfect
trigraph,” it is straightforward to define a “Berge trigraph” as well as the “balanced skew-partition”
for trigraphs. For the purposes of certain decompositions, trigraphs are more convenient to work
with than graphs; indeed, trigraphs were originally introduced by Chudnovsky [2] for the purposes
of studying decompositions of Berge (tri)graphs. The decomposition theorem from [4] is particularly
well suited for the study of tame Berge trigraphs that do not admit a balanced skew-partition.

A realization of a trigraph G is any graph that can be obtained from G by turning each semi-
adjacent pair of G into an edge or a non-edge. (Thus, a trigraph with m semi-adjacent pairs has 2m

realizations.) We generalize the notion of clique-coloring to trigraphs as follows: a clique-coloring
of a trigraph G is an assignment of colors to the vertices of G in such a way that this assignment
of colors is a clique-coloring of all the realizations of G simultaneously. Using the decomposition
theorem from [4], we show that, with the exception of two small trigraphs (each of which contains
exactly two semi-adjacent pairs), every tame Berge trigraph that does not admit a balanced skew-
partition is 2-clique-colorable. Since every graph is a tame trigraph that does not contain any
semi-adjacent pairs, we obtain as an immediate corollary that every Berge (equivalently: perfect)
graph is 2-clique-colorable.
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Cores of cubic graphs: structure and oddness
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Abstract

Let G be a bridgeless cubic graph. Consider a list of k 1-factors of G. Let Ei be the set of
edges contained in precisely i members of the k 1-factors. Let µk(G) be the smallest |E0| over all
lists of k 1-factors of G. If G is not 3-edge-colorable, then µ3(G) > 0. In [2] it is shown that if
µ3(G) 6= 0, then 2µ3(G) is an upper bound for the girth of G. We show that µ3(G) bounds the
oddness ω(G) of G as well. We prove that ω(G) ≤ 2

3
µ3(G). We show that for any given oddness

there is a cyclically 4-edge-connected cubic graph G with ω(G) = 2
3
µ3(G). We also show that

the difference between ω(G) and 2
3
µ3(G) can be arbitrarily big. In addition, we prove that for

every integer k ≥ 3, there exists a bridgeless cubic graph G such that µ3(G) = k.

Extended Abstract

Let G be a cubic graph and S3 be a list of three 1-factors M1,M2,M3 of G. Let M = E2 ∪ E3,
U = E0, and |U| = k. The k-core of G with respect to S3 (or to M1,M2,M3) is the subgraph Gc of
G which is induced byM∪U ; that is, Gc = G[M∪U ]. If the value of k is irrelevant, then we say
that Gc is a core of G. If M1 = M2 = M3, then Gc = G. A core Gc is proper if Gc 6= G. If Gc is a
cycle, i.e. the union of pairwise disjoint circuits, then we say that Gc is a cyclic core.

Cores are introduced in [2], and were used to prove partial results on some hard conjectures which
are related to 1-factors of cubic graphs. In particular, the following conjecture of Fan and Raspaud
is true for cubic graphs G with µ3(G) ≤ 6.

Conjecture 1 ([1]). Every bridgeless cubic graph has a cyclic core.

Let G be a bridgeless cubic graph and Gc a core of G with respect to three 1-factors M1,M2,M3.
Gc is called a Petersen core if the following two conditions hold:

(1) Gc is cyclic.
(2) If P is a 5-path of Gc, then there exists no pair of edges e1, e2 of P and two integers i, j such

that e1, e2 ∈Mi ∩Mj and 1 ≤ i < j ≤ 3.
Let G be a bridgeless cubic graph and M a 1-factor of G. Denote by M the complement to M

and by |M |odd the number on odd circuits of M .

Theorem 2. Let G be a bridgeless cubic graph. If Gc is a k-core of G with respect to three 1-factors
M1,M2,M3, then |M1|odd+ |M2|odd+ |M3|odd ≤ 2k. Moreover, if Gc is a k-core such that the equality
holds, then Gc is a Petersen core.

Corollary 3. If G is a bridgeless cubic graph, then ω(G) ≤ 2
3
µ3(G). Moreover, if ω(G) = 2

3
µ3(G),

then every µ3(G)-core is a Petersen core.

By the following theorem, we show that there exists an infinite class of cubic graph such that the
equality ω(G) = 2

3
µ3(G) holds. Hence the upper bound 2

3
µ3(G) for ω(G) is best possible.

Theorem 4. For every positive integer k, there is a cyclically 4-edge connected cubic graph G of
order 36k and ω(G) = 2

3
µ3(G) = 2k.

Next we show that the difference between the oddness of a cubic graph G and 2
3
µ3(G) can be

arbitrary big.

Theorem 5. For any given positive integers k and c, there exists a connected cubic graph G with
ω(G) = 2k and µ3(G) ≥ c.
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Theorem 6. For every positive integer k, there is a cyclically 5-edge connected cubic graph G such
that ω(G) = 2k and µ3(G) = 4k.

By the following theorem, we give a positive answer to the existence of a cubic graph with any
given µ3(G).

Theorem 7. For every integer k ≥ 3, there exists a bridgeless cubic graph G such that µ3(G) = k.

Figure .6: One example for Theorem 4: cubic graph G with ω(G) = 2
3
µ3(G) = 4

Figure .7: One example for Theorem 6: cubic graph G with ω(G) = 1
2
µ3(G) = 4
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Safe set problem on graphs
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Extended Abstract

Facility location problems involve placing certain facilities on given topologies of living spaces (i.e.
cities, buildings, etc.) so that given demands are efficiently served. These are intensively studied
in the literature on combinatorial optimization (see [3]). We treat the following variation of the
problem: for a given topology of a building, it is required to place temporary accident refuges in
addition to business spaces like discussion or conference rooms. Each temporary refuge should be
available for the staff in every adjacent business space; hence its capacity must be at least that of
each adjacent business space. (To mitigate the space cost, we assume that each temporary refuge
will be used by the people in at most one of the adjacent business space.) Subject to the topology of
the building being given, how can the temporary refuges be efficiently located so that the amount
of business spaces is maximized? To address this problem, we propose the following mathematical
model, namely, a safe set of a graph.

We use [1] for terminology and notation not defined here. Only finite, simple graphs are considered.
We write |G| as shorthand for |V (G)|. The subgraph of G induced by the subset S ⊆ V (G) is
denoted by G[S]. When A and B are vertex-disjoint subgraphs of G, the set of edges that join some
vertex of A and some vertex of B is denoted by E(A,B).

A non-empty subset S ⊆ V (G) is a safe set if, for every component C of G[S] and every component
D of G − S, we have |C| ≥ |D| whenever E(C,D) 6= ∅. If G[S] is connected, then S is called a
connected safe set.

In our model, the graph G describes the topology of the building. The safe sets of G correspond
to candidates for locations of the temporary refuges in the building.

As an initial step, let us observe some basic properties in safe sets.

Proposition 1. Let n be an integer with n ≥ 2. Any connected graph G of order n has a connected
safe set of size at most dn/2e.

Proof. Let T be a spanning tree of G, and S be any subset of dn/2e vertices such that T [S] is
connected. Clearly, S is a connected safe set. (Q.E.D.)

The following two parameters are therefore well-defined. For a connected graph G, the safe
number s(G) of G is defined as s(G) = min{|S| : S is a safe set of G}, and the connected safe
number cs(G) of G is defined as cs(G) = min{|S| : S is a connected safe set of G}.

It is easy to see that the path on n vertices has s(Pn) = cs(Pn) = dn/3e, and the cycle on n
vertices has s(Cn) = cs(Cn) = dn/2e.

Proposition 2. Let G be a connected graph. Then s(G) ≤ cs(G) ≤ 2s(G)− 1.

Proof. It is clear that s(G) ≤ cs(G). We prove the second inequality. Let S be a safe set of
cardinality s(G), and assume G[S] is not connected.

Let H be the bipartite graph with bipartition (A,B), where A is the set of components of G[S],
B is the set of components of G− S, and there is an edge from a ∈ A to b ∈ B if there is an edge of
G joining a vertex of a to a vertex of b.

The graph H is connected because G is connected. Since G[S] is not connected, |A| ≥ 2 and
hence there exists a vertex of B with degree at least two. Let T be a spanning tree of H. Note that
some vertex of B is not a leaf of T .

Let T ′ be the rooted tree obtained from T by deleting any leaf belonging to B, and choosing as
root any remaining vertex r ∈ B. The tree T ′ has a matching in which every vertex in b ∈ B ∩ T ′ is
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paired with a child vertex in ab ∈ A. By definition of a safe set, |b| ≤ |ab|. Consequently, V (T ′) is a
connected safe set.

Since r is not a leaf of T ′, there exists a ∈ NT ′(r) which is not matched with any vertex of B.
Thus |V (T ′)| < 2s(G). (Q.E.D.)

In this work, we showed that the following two decision problems are NP-complete in general and
also gave a linear algorithm when the input is restricted to be a tree.

SAFE SET
INSTANCE: A graph G and an integer t.
QUESTION: Does there exist S ⊆ V (G) with 1 ≤ |S| ≤ t such that, for every component C of
G[S] and every component D of G− S, we have |C| ≥ |D| whenever E(C,D) 6= ∅?

CONNECTED SAFE SET
INSTANCE: A graph G and an integer t.
QUESTION: Does there exist S ⊆ V (G) with 1 ≤ |S| ≤ t such that G[S] is connected and |S| ≥ |C|
for every component C of G− S?

We obtained several results on the safe number of trees. Further results will be presented in this
talk. The full paper version of this work is available as [2].
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Colouring graphs with no odd holes
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Extended Abstract

The chromatic number χ(G) of a graph G is always at least the size of its largest clique (denoted
by ω(G)), and there are graphs with ω(G) = 2 and χ(G) arbitrarily large. On the other hand,
the perfect graph theorem asserts that if neither G nor its complement has an odd hole, then
χ(G) = ω(G). (An ”odd hole” is an induced cycle of odd length at least five.)

What happens in between?

With Alex Scott, we have just proved the following, a 1985 conjecture of Gyarfas: For graphs G
with no odd hole, χ(G) is bounded by a function of ω(G). The proof is short and quite pretty.
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Extended Abstract

We present results referring to famous Hadwiger-Nelson problem which asks for the minimum
number of colours required to colour the plane in such a way that no two points at distance 1 from
each other have the same colour. Nelson first showed that at least 4 colours are needed (see the
proof by Mosers [1]) and Isbell was first to prove that 7 colours are enough (this result was published
by Hadwiger [2]). For a comprehensive history of the Hadwiger-Nelson problem consult a recent
monograph [8]. Exoo [3] considers a more general problem which is colouring of infinite graphs
G[a,b], where all points on the plane are vertices and two vertices are neighbours when the distance
between them is in the interval [a, b]. So the Hadwiger-Nelson problem actually asks for χ(G[1,1]).
Exoo proved χ(G[a,b]) ≥ 5 for b > 1.3114 · a and conjectured χ(G[a,b]) ≥ 7 for b > a. We partially
answer his conjecture.

Theorem 1. For any 0 < a < b we have χ(G[a,b]) ≥ 5.

The fractional and j-fold chromatic number of the graph G[1,1] was also considered [4]. A j-fold
colouring of graph G = (V,E) is an assignment of j-element sets of colours to the vertices of G, in
such a way that for any two adjacent vertices the sets assigned to them are disjoint. The smallest
number of colours needed for j-fold colouring of a graph G is called j-fold chromatic number and
denoted by χj(G). Fractional chromatic number is defined to be: χf (G) := infj∈N

χj(G)

j
. Since

1-fold colouring is classic colouring we have χf (G) ≤ χ(G).
The best upper bound for the fractional chromatic number of the G[1,1] graph are due to Hochbeg

and O’Donnell [5] and the best lower bound can be found in the book of Scheinerman and Ullman
[4] (alongside with a good explanation of the upper bound): 3.555 ≤ χf (G[1,1]) ≤ 4.36

We present some bounds for j-fold chromatic number of G[a,b] for small j in particular of G[1,1].
The j-fold colouring for small j has strong practical motivation especially in scheduling theory.

Theorem 2. There exists a j-fold colouring with k colours of the graph G[1,1] where j and k are
given in a table

k = 7 12 16 25 33 35 37
j = 1 2 3 4 5 6 7
k/j ≈ 7 6 5.33 6.25 6.6 5.83 5.26

Our method of colouring is based on various shiftings of hexagon grid. See Figure 1 for 2-fold
colouring with 12 colours. It founds application in more general case, too:

Theorem 3. There exists a nm-fold colouring with d( 2b√
3

+ 1) · ne · d( 2b√
3

+ 1) ·me colours of the

graph G[1,b] e.i. χf (G[1,b]) ≤
χnm(G[1,b])

nm
≤ d(2b/

√
3 +1)·ne·d(2b/

√
3 +1)·me

nm
.

(Note that it is enough to consider G[1,b] graphs since G[a,b]
∼= G[1,b/a].)

Graph G[1,2] is often used to model hidden conflicts in radio networks, hence its colourings have
application in telecommunication [7]. Ivanov [6] showed that 12 colours are enough to colour G[1,2].
Theorem 3 for G[1,2] gives us the following values:
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k = 12 100 2809 9216 19321
j = 1 9 256 841 1764
k/j ≈ 12 11.1111 10.9726 10.9583 10.9529

Moreover we generalize method from [5] for G[a,b] graphs for fractional colouring.

Theorem 4. If b ≥ 1 then χf (G[1,b]) ≤
√

3
3
· b+
√

1−x2

x
where x is the root of

bx = Π
6
− arcsin(x). See Figure 2 for chart. In particular χf (G[1,2]) ≤ 9.9.

The proof is constructive e.i. we give an infinite sequence of j-fold colourings such that
χj(G[a,b])

j

converges to stated bound with j converging to infinity.

1 2 3 1

1 2 3 1
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10 11 12 10

4 5 6 4

1

1 2 3 4 5 6 7 8 9

20

40
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100

120

χf (G[1,b])

b

Figure 1: 2-fold colouring of G[1,1] Figure 2: The upper bound for χf (G[1,b])
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Splitting cycles in triangulations
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Extended Abstract

A splitting cycle on a topological surface is a simple closed curve that cuts the surface into two
non-trivial pieces, none of which is homeomorphic to a disk. See Fig. .8. A torus does not have any
splitting cycle but any closed surface (orientable or not) of genus at least two admits a splitting
cycle. Given a combinatorial surface, that is a cellular embedding of a graph G into a surface Σ, it
is natural to ask whether G contains a circuit that is a splitting cycle in Σ. As usual, a circuit in a
graph is a closed path without any repeated vertex.

C1

C3
C2

Figure .8: A cycle may be null-homotopic (C1), or null-homologous but non null-homotopic (C3) or
neither null-homotopic nor null-homologous (C2). C3 is also called a splitting cycle.

It is known to be NP-hard to decide whether a combinatorial surface contains a splitting circuit
or not [2, 3]. However, it was conjectured by Barnette that

Conjecture 1 (Barnette ’1982 [7, p. 166]). Every triangulation of a surface of genus at least 2 has
a splitting circuit.

Here, the graph of a triangulation of a surface Σ is the 1-skeleton of a simplicial complex
homeomorphic to Σ. Another relevant parameter for the existence of a splitting circuit is the
face-width of a graph embedding on Σ (non necessarily triangulated). This is the least number
of intersections between the graph and any non-contractible cycle on Σ. It was proved by Zha
and Zhao [12] that a graph embedding of face-width at least 6 for Σ orientable and at least 5 in
the non-orientable case has a splitting cycle. In the specific case of a genus two surface, those
conditions were lowered to face-width 4 for Σ orientable [5] and face-width 3 otherwise [9]. Note
that a triangulation has face-width at least three. Turning back to triangulations, Sulanke [11]
obtained by brute force computations that every orientable genus two triangulation has a splitting
cycle. A formal proof appears in Jennings’ thesis [6]. To our knowledge, no progress has been made
on Conjecture 1 since then. A stronger version of the Conjecture was later proposed by Mohar and
Thomassen.

Conjecture 2 (Mohar and Thomassen ’2001 [7, p. 167]). Let Σ be a surface of genus g ≥ 2 and let
h ∈ N such that 1 ≤ h < g. Any triangulation of Σ has a splitting circuit which cuts the surface into
2 punctured surfaces of genera h and g − h.

In this talk we present counter-examples to conjecture 2 obtained with the help of a computer.
Let M19 be the embedding of K19, the complete graph on 19 vertices, given by Ringel and Youngs [8].
From the Euler characteristic it is easily seen that M19 has genus 20. A brute force approach to
compute a splitting circuit in the spirit of Sulanke would lead to years of computations. Thanks to
a branch and bound heuristic we were able to show that Conjecture 2 fails for M19 and for every
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h ∈ [5, 10]. In particular, it is not possible to split M19 into two pieces of equal genus. We obtain
similar results for M31 and other orientable or non-orientable embeddings of bigger complete graphs.

Computational approaches are interesting for trying to either prove or disprove the conjectures.
With the help of edge contractions, the conjectures can be reduced to the case of irreducible
triangulations. For a fixed genus there is only a finite number of them that can be listed following an
algorithm by Sulanke [10]. However, there are already more than millions of irreducible triangulations
of genus 3 so that Conjecture 1 could only be verified for genus 2 irreducible surfaces in practice. On
the other hand, trying to disprove the conjectures, we need to find counter-example candidates. As
remarked by Ellingham and Stephen [4], complete graphs are often good candidates. It is possible
to test all the 59 non-isomorphic orientable embeddings of K12 [1] and all of them confirm the
conjectures. Generating larger complete graph embeddings is difficult and we decided to use the
specific Ringel and Youngs’ examples [8]. There are too many circuits in Kn (namely 2n −

(
n+1

2

)
) to

just list all of them and check if one is splitting. However, as we explore the vertices of a circuit, we
can 2-color their incident edges in Kn depending on their position (left of right) with respect to the
circuit. If the circuit is not separating this coloration will induce an inconsistent coloring of some
vertex star. This simple remark allows to stop exploring most of the circuits after visiting 5 or 6 of
their vertices. This leads to an efficient branch and bound heuristic and we were able to check all
the circuits of K19, M31 or K40 and perform some experiments. In particular, our computations
invalidate Conjecture 2.
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Extended Abstract

One of the most challenging problems in geometric graph theory is the Hadwiger-Nelson problem
(originally proposed by Nelson) about determining the minimal number of colors to color every point
on the Euclidean plane R2 in such a way that there are no two points in the same color distance
one apart. It can be equivalently stated as determining the chromatic number of the so-called unit
distance graph on the set R2 in which every two points in distance one are adjacent. The classic
result states that this number is at least 4 and at most 7. Nothing better in general has been proved
for more than 50 years, although it inspired a stream of research and many interesting results have
been obtained in various related areas. See for example [7] for an extensive discussion on the history
of the question and some related problems.

A sequence a1a2 . . . arn such that ai = ai+jn for i = 1, ., n and j = 1, ..., r − 1 is called an
r-repetition. The classic theorem of Thue [8] states that there exists an arbitrarily long sequence
avoiding 2-repetitions over just three symbols. This result is one of the foundations of a whole branch
of combinatorics called combinatorics on words - area with many interesting results, challenging
open problems and various applications. One of the concepts in this field is avoiding repetitions in
graphs: the Thue number of a graph G denoted by π(G)) is the minimal number of colors to color
the vertices in such a way that no simple path produce an 2-repetition (where ’produce’ corresponds
to reading the sequence of colors of vertices on the path).

The Thue-like problems on geometrical structures were studied for example in [1, 3, 6]. We will
refer to the Thue number of the unit distance graph on R2 as the Thue number of R2 (and π(R2)).
J. Grytczuk in his survey [4] on many Thue-like problems asked the following question:

Problem 1. Determine the Thue number of R2.

Grytczuk observed that π(R2) has to be infinite. In our work we solve the problem, by proving
that countable set of colors is not enough:

Theorem 2. The Thue number of R2 is greater than ℵ0.

This infiniteness of this number leads to relaxing the condition by examining only ’some’ paths of
the unit distance graph on R2. In [5] authors propose to take into account only line paths - sequences
of collinear points where consecutive points are in distance one. The coloring of the plane is line
r-nonrepetitive if colors of no line path determine an r-repetition. The minimal number of colors for
a line 2-nonrepetitive coloring of R2 is denoted by π(R2). It turns out that this number is finite:

Theorem 3 ([5]).
π(R2) ≤ 36.

Our main result in the area of 2-repetitions on the plane is the following strong improvement on
the bound. In the proof we use a special rectangle tiling of the plane combined with a help of the
classic Thue sequence.

Theorem 4. π(R2) ≤ 18.

Tools created for the proof of this theorem also give an additional result concerning another
concept studied in the theory of combinatorics on words: palindromes. A palindrome is a sequence
of length greater than 1 such that it is the same if we reverse the order of elements. We will call a
coloring of R2 line palindrome-free if colors of no line path produce a palindrome.
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Theorem 5. There exists a 32-coloring of R2 that is line 2-nonrepetitive and line palindrome-free.

With other authors we also studied r-repetitions. Clearly it should be easier to avoid r-repetitions
as the r grows, but how far can we get? We managed to prove that for sufficiently large r there
exists a line r-nonrepetitive coloring of the plane using only two colors. The technique used in this
result is the weighted version of the Lovasz Local Lemma.

Theorem 6 ([2]).
There exists a 2-coloring of the plane that is 47-nonrepetitive.

It may be interesting to reverse the question: if we are given a natural number k, what is the
minimal r such that there exists a line r-nonrepetitive coloring of R2 using k colors. I other words:
how nonrepetitive on the plane can we get with k colors? We admit that our work in [2] gives bounds
for this question.

The ’machinery’ developed in this work also gives the following result for greater dimensions.

Theorem 7 ([2]).
For any natural number n there exists a sufficiently large number r(n) such that Rn admits a line
r(n)-nonrepetitive coloring using 2 colors.

Where the line r-nonrepetitive coloring of Rn is the natural generalization of the concept for R2 -
no sequence of collinear points of consecutive distance one produces an r-repetition.
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Extended Abstract

Introduction. In graph theory, there are too many parameters and numbers with motivation
from theory or application which describe the properties of a given graph. Coloring numbers,
Domination numbers, Alliance numbers, Clique number, Independence number are a few examples of
such parameters. In lack of a hierarchy or a unifying framework, there is no guideline for introducing
absent concepts and parameters. In such condition, seeking for unifying frameworks is a demanded
area of research in graph theory.
For example Mihok et al. introduced an elegant language for expressing various coloring theorems in
a unified framework.[1] Also K. H. Shafique in his PhD thesis introduced a high level description for
alliance numbers to study the complexity of some related computational problem.[2]

This work can be seen as another attempt in this direction.

Generation and propagation parameters. Consider a situation in which a quantity, say
information or some material, can be generated and propagated in a given network. Let g (g′) be
the rate of generation in each vertex (edge), and p (p′) be the rate of propagation in each vertex
(edge). Call the 4-tuple (g, g′; p, p′) a GP-code.

For a given graph G and a given GP -code consider the following 0, 1-programming problem:

Minimize
∑

v∈V (G)

xv

subject to
∑
v∈[u]

≥ (p′du + p)xu + (g′du + g)∑
v∈V (G)

xv > 0

Where [u] denotes the closed neighborhood of vertex u and the first constrain is valid for every ver-
tex u. The optimum value of this problem is called (g, g′; p, p′)-parameter. A (g, g′; p, p′)-parameter
represents a known parameter of a graph if for every graph the result of the above problem is equal
to that known parameter. As an evidence for the power of the above model for representing known
graph parameters. One can prove the following elementary result:

Theorem. The following statements are true:
(1, 0; 0, 0) represents the Domination number.
(0, 1; 0, 0) represents the 2-packing number.
(0, 0; 1, 0) represents Proper Nearly Perfect number. [3]

In the above theorem we use only 0 and 1 as the components of the GP -code while the components
can be fractional or negative. In general case many parameters like k-domination number (and some
other domination numbers), Independence number, deffensive alliance number are among known
parameters which can be represented by GP-codes. For example (0, 0; 1

2
, 0) represents the Deffensive

Alliance nubmer.

Now one can ask the reverse questions: what is the parameter which is represented by a given
GP -code? In this paper we show that many new interesting parameters can be introduced as a
GP -parameter.
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Extended Abstract

A proper k-coloring of a graph G is a partition of V (G) into k independent sets V1, . . . , Vk.
A (d1, . . . , dk)-coloring of a graph G is a partition of V (G) into sets V1, . . . , Vk such that for
every 1 ≤ i ≤ k, the subgraph G[Vi] of G induced by Vi has maximum degree at most di. If
d1 = . . . = dk = 0, then a (d1, . . . , dk)-coloring is simply a proper k-coloring. If at least one of di
is positive, then a (d1, . . . , dk)-coloring is called improper or defective. Several papers on improper
colorings of planar graphs with restrictions on girth and of sparse graphs have appeared.

In this talk, we consider the simplest versions of improper colorings, the (j, k)-colorings. Even such
colorings are not simple if (j, k) 6= (0, 0). In particular, Esperet, Montassier, Ochem and Pinlou [5]
proved that the problem of verifying whether a given planar graph of girth 9 has a (0, 1)-coloring is
NP-complete. Since the problem is hard, it is natural to consider related extremal problems.

The maximum average degree, mad(G), of a graph G is the maximum of 2|E(H)|
|V (H)| over all subgraphs

H of G. It measures sparseness of G. Kurek and Rucin’ski [10] called graphs with low maximum
average degree globally sparse.

In particular, it is an easy consequence of Euler’s formula that

if G is a planar graph of girth g, then mad(G) < 2g
g−2

. (1)

We will use the following slight refinement of the notion of mad(G). For a, b ∈ R, a graph G is
(a, b)-sparse if |E(H)| < a|V (H)|+ b for all H ⊆ G. For example, every forest is (1, 0)-sparse, and
every graph G with mad(G) < a is (a/2, 0)-sparse.

Glebov and Zambalaeva [6] proved that every planar graph G with girth at least 16 is (0, 1)-
colorable. Then Borodin and Ivanova [1] proved that every graph G with mad(G) < 7

3
is (0, 1)-

colorable. By (1), this implies that every planar graph G with girth at least 14 is (0, 1)-colorable.
Borodin and Kostochka [2] proved that every graph G with mad(G) < 12

5
is (0, 1)-colorable, and

this is sharp. This implies that every planar graph G with girth at least 12 is (0, 1)-colorable. As
mentioned above, Esperet et al. [5] proved that the problem of verifying whether a given planar
graph of girth 9 has a (0, 1)-coloring is NP-complete. Dorbec, Kaiser, Montassier, and Raspaud [4]
mention that because of these results, the remaining open question is whether all planar graphs with
girth 10 or 11 are (0, 1)-colorable.

In this talk, instead of considering planar graphs with given girth, we consider graphs G with
given girth that are (a, b)-sparse for small a. Let Fj,k(g) denote the supremum of positive a such
that there is some (possibly negative) b with the property that every (a, b)-sparse graph G with
girth g is (j, k)-colorable. The above mentioned result in [2] implies F0,1(3) = 12

5
= 1.2. It turns out

that F0,1(g) does not differ much from F0,1(3) even for large g. In the [9] we prove that for every g,
F0,1(g) ≤ 1.25 and we also find there the exact values of Fj,k(g) for all g in the cases k ≥ 2j + 2 for
all j.

Theorem 1 (Kim, Kostochka, and Zhu, ’2014+ [9]). For all k ≥ j ≥ 0 and g ≥ 3, Fj,k(g) ≤
2− (k+2)

(j+2)(k+1)
. Moreover, if k ≥ 2j + 2, then Fj,k(g) = 2− (k+2)

(j+2)(k+1)
.

In [8], we prove the exact result: F0,1(4) = F0,1(5) = 11
9
. In fact, we also find the best possible

value of b as follow.
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Theorem 2 (Kim, Kostochka, and Zhu, ’2014 [8]). If a graph G is triangle-free and 11|A| −
9|E(G[A])| ≥ −4 for all A ⊆ V (G), then G is (0, 1)-colorable. On the other hand, there are
infinitely many non-(0, 1)-colorable graphs G with girth 5 such that 11|V (G)| − 9|E(G)| = −5 and
11|A| − 9|E(G[A])| ≥ −4 for all A ( V (G)

This theorem yields the following.

Corollary 3 (Kim, Kostochka, and Zhu, ’2014 [8]). Every planar graph with girth at least 11 is
(0, 1)-colorable.

This answers half of the question above by Dorbec et al. [4].
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Extended Abstract

Garey and Johnson [1] proved that deciding if a graph is k-colorable is NP-complete even when
k = 3. Moreover, deciding if a graph is 3-colorable is still NP-complete when restricted to planar
graphs [2]. Therefore, even though planar graphs are 4-colorable by the celebrated Four Color
Theorem [3, 4, 5], finding sufficient conditions for a planar graph to be 3-colorable has been an active
area of research. A landmark result in this area is Grötzsch’s Theorem [6], which is the following:

Theorem 1 ([6]). Every triangle-free planar graph is 3-colorable.

We direct readers to a nice survey by Borodin [7] for more results and conjectures regarding
3-coloring planar graphs.

A graph G is k-critical if it is not (k − 1)-colorable but every proper subgraph of G is (k − 1)-
colorable. Critical graphs are important since they are (in a certain sense) the minimal obstacles in
reducing the chromatic number of a graph. Numerous coloring algorithms are based on detecting
critical subgraphs. Despite its importance, there is no known characterization of k-critical graphs
when k ≥ 4. On the other hand, there has been some success regarding 4-critical planar graphs. See
[11] for more details.

Given a graph G and a proper subgraph C of G, we say G is C-critical for k-coloring if for every
proper subgraph H of G where C ⊆ H, there exists a proper k-coloring of C that extends to a proper
k-coloring of H, but does not extend to a proper k-coloring of G. Roughly speaking, a C-critical
graph for k-coloring is a minimal obstacle when trying to extend a proper k-coloring of C to a proper
k-coloring of the entire graph. Note that (k + 1)-critical graphs are exactly the C-critical graphs for
k-coloring with C being the empty graph.

In the proof of Theorem 1, Grötzsch actually proved that any proper coloring of a 4-cycle or a
5-cycle extends to a proper 3-coloring of a triangle-free planar graph. This implies that there are no
triangle-free planar graphs that are C-critical for 3-coloring when C is a face of length 4 or 5. This
sparked the interest of characterizing triangle-free planar graphs that are C-critical for 3-coloring
when C is a face of longer length. Since we deal with 3-coloring triangle-free planar graphs in this
paper, from now on, we will write “C-critical” instead of “C-critical for 3-coloring” for the sake of
simplicity.

The investigation was first done on planar graphs with girth 5. Thomassen [13] and Walls [12]
independently characterized C-critical planar graphs with girth 5 when C is a face of length at most
11. The case when C is a 12-face was initiated in [13], but a complete characterization was given by
Dvořák and Kawarabayashi in [14]. Moreover, a recursive approach to identify all C-critical planar
graphs with girth 5 when C is a face of any given length is given in [14]. Dvořák and Lidický [15]
implemented an algorithm and used a computer to generate all C-critical graphs with girth 5 when
C is a face of length at most 16. The graphs generated were then used to reveal some structure of
4-critical graphs on surfaces without short contractible cycles.

The situation for planar graphs with girth 4, which are triangle-free planar graphs, is more
complicated since the list of C-critical graphs is not finite when C has size at least 6. We already
mentioned that there are no C-critical triangle-free planar graphs when C is a face of length 4 or
5. An alternative proof of the case when C is a 5-face was given by Aksionov [8]. Gimbel and
Thomassen [16] not only showed that there exists a C-critical triangle-free planar graph when C
is a 6-face, but also characterized all of them. Aksenov, Borodin, and Glebov [17] independently
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proved the case when C is a 6-face using the discharging method, and also characterized all C-critical
triangle-free planar graphs when C is a 7-face in [18]. Dvořák and Lidický [19] used properties of
nowhere-zero flows to give simpler proofs of the case when C is either a 6-face or a 7-face, and also
characterized C-critical triangle-free planar graphs when C is an 8-face. The case where C is a 7-face
was used in [11].

We push the project further and characterize all C-critical triangle-free planar graphs when C is
a face of length 9.
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Extended Abstract

Many hard problems can be solved efficiently when restricted to graphs of bounded treewidth,
and more generally to graphs of bounded clique-width. But there is a price to be paid for this
generality, exemplified by the four problems MaxCut, Graph Coloring, Hamiltonian Cycle
and Edge Dominating Set that are all FPT parameterized by trewidth but none of which can
be FPT parameterized by clique-width unless the Exponential Time Hypothesis fails, as shown by
Fomin et al [3]. We therefore seek a structural graph parameter that shares some of the generality
of clique-width without paying this price.

Based on splits, branch decompositions and the work of Vatshelle [6] on maximum matching-width,
we consider the graph parameter sm-width which lies between treewidth and clique-width. Some
dense graph classes of unbounded tree-width, like distance-hereditary graphs, have bounded sm-width.
We show that MaxCut, Graph Coloring, Hamiltonian Cycle and Edge Dominating Set
are all FPT parameterized by sm-width.

We accomplish this by two main results. Firstly, given a graph G with sm-width k we use
split decompositions of graphs and an approximation algorithm for width parameters defined by
submodular functions due to Oum and Seymour [4] to provide a O∗(8k) time algorithm returning
a branch decomposition of sm-width at most O(k2). Secondly, we give dynamic programming
algorithms solving each of the four problems in FPT time when parameterized by the width of this
decomposition.

1 Results

We give some definitions and a sketch of the approximation algorithm for sm-width. We use split
decompositions of graphs, see [4, 1, 5], that are based on the notion of a split of a connected graph
G, which is a partition of V (G) into two sets V1, V2 such that |V1| ≥ 2, |V2| ≥ 2 and every vertex in
V1 with a neighbor in V2 has the same neighborhood in V2. We also use branch decompositions over
the vertex set of a graph, and a cut function that assigns a value to every cut of a graph, to define
graph parameters, see [4]. A cut (A,A) for A ⊆ V (G) is the bipartite graph with the same vertices
as G but with edge set {uv ∈ E(G) : u ∈ A, v ∈ A}.

Vatshelle [6] defined the maximum-matching-width mmw(G) of a graph G based on the cut
function mm defined for any graph G and A ⊆ V (G) by letting mm(A) be the cardinality of a
maximum matching of the bipartite graph

(
A,A

)
.

Theorem 1 ([6]). Let G be a graph, then 1
3
(tw(G) + 1) ≤ mmw(G) ≤ tw(G) + 1

We define the split-matching-width smw(G) of a graph G based on branch decompositions over
vertices and the cut function sm defined for any graph G and A ⊆ V (G) by:

sm(A) =

{
1 if

(
A,A

)
is a split of G

mm(A) = max{|M | : M is a matching of
(
A,A

)
} otherwise

A cut function f : 2V (G) → N is said to be submodular if for any A,B ⊆ V (G) we have f(A)+f(B) ≥
f(A ∪B) + f(A ∩B). The following very general result of Oum and Seymour will be useful to us
since we show that the cut function mm is symmetric and submodular.

Theorem 2 ([4]). For symmetric submodular cut-function f and graph G of optimal f-width k, a
branch decomposition of f-width at most 3k + 1 can be found in O∗(23k+1) time
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Our algorithm that given a graph G finds a branch decomposition of G having sm-width
O(smw(G)2), in time FPT parameterized by smw(G), has four steps:

1. Find a split decomposition of G into prime graphs G1, G2, ..., Gq.

2. For each Gi find a branch decomposition (Ti, δi) of sm-width O(smw(Gi)).

3. For each Gi restructure (Ti, δi) into (T ′i , δ
′
i) having the property that any cut of Gi, induced

by an edge of (T ′i , δ
′
i) and having split-matching value k, is lifted, by the split decomposition

of G, to a cut of G having split-matching value O(k2).

4. Combine all (T ′i , δ
′
i) into a branch decomposition of G of sm-width O(smw(G)2).

For step 1 there exists a well-known polynomial-time algorithm by Cunningham [4]. For step
2 we are dealing with a prime graph Gi, which by definition has no non-trivial splits and hence
sm(Vi) = mm(Vi) for all Vi ⊆ V (Gi) meaning that mmw(Gi) = smw(Gi). Furthermore, as the
cut function defining mmw is submodular we can apply the algorithm of Oum and Seymour from
Theorem 2 to accomplish the task of step 2. Steps 3 and 4 require more work.
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Extended Abstract

The study of limits of graphs recently gained much interest (see [7]). A sequence (Gn)n∈N of graphs
is said left-convergent if, for every graph F , the probability that a random map f : V (F )→ V (Gn)
is a homomorphism (that is an adjacency preserving map) converges as n grows to infinity. The
limit object can be represented by means of a graphon, that is a symmetric measurable function
W : [0, 1]2 → [0, 1]. A graphon W is random-free if it is almost everywhere {0, 1}-valued. A
random-free graphon is essentially the same (up to isomorphism mod 0) as a Borel graph — that
is a graph having a standard Borel space V as its vertex set and a Borel subset of V × V as its
edge set — equipped with a non-atomic probability measure on V . A class of graph C is said to be
random-free if every left-convergent sequence of graphs in C has a random-free limit. For instance,
Janson derived from a structural characterization of random-free hereditary classes of graphs given
by Lovász and Szegedy [8] that the class of cographs is random-free [5].

For k-regular hypergraphs, left-limits have been constructed by Elek and Szegedy [2] using
ultraproducts as measurable functions W : [0, 1]2

k−2 → [0, 1] (called hypergraphons), and have also
been studied by Hoover [4], Aldous [1], and Kallenberg [6] in the setting of exchangeable random
arrays. Relational structures are a natural generalization of k-uniform hypergraphs. Recall that a
σ-structure A is defined by its domain A, its signature σ (which is a set of symbols of relations and
functions with their arities, which contains no function symbols in the case of a relational structure),
and the interpretation in A of all the relations and functions in σ.

A general notion of convergence driven by a fragment X of first-order logic has been introduced
for σ-structures by Nešetřil and the third author [10]: a sequence (An)n∈N of σ-structures is X-
convergent if, for every formula φ ∈ X, the probability 〈φ,An〉 that φ is satisfied for a random
assignment of elements of An to the free variables converges as n grows to infinity. In particular,
denoting QF the fragment of quantifier-free formulas, QF-convergence is equivalent (for sequences of
graphs with increasing orders) to left-convergence.

We extend the notion of Borel graph to σ-structures: A Borel σ-structure is a σ-structure A such
that the domain A of A is a standard Borel space, such that for every relational (resp. functional)
symbol R (resp. f) with arity k, the interpretation RA (resp. fA) of R (resp. f) is a Borel subset
of Ak (resp. a Borel function Ak → A). We mainly consider pairs (A, ν) of Borel σ-structures A
together with a probability measures ν. Being almost surely the left limit of a sequence of random
induced subgraphs with growing orders, a Borel graph G is the left limit of a sequence of finite
graphs. However, in presence of functional symbols, particularly when substructures generated by
finitely many elements can be infinite, the situation is less clear. Extending the notion of random-free
classes of graphs, we say that a class C of finite σ-structures is random free if every QF-convergent
sequence of σ-structures in C has a Borel σ-structure (with suitable probability measure) QF-limit.

Theorem 1. The class of weighted colored tree-semilattices is a random-free class. Precisely, for
every QF-convergent sequence (Tn, µn)n∈N of finite weighted colored tree-semilattices there exists a
Borel colored tree-semilattice T and a probability measure µ on T , such that (T, µ) is a QF-limit of
the sequence (Tn, µn)n∈N.

Conversely, for every Borel colored tree-semilattice T and every probability measure µ on T there
exists a QF-convergent sequence (Tn, µn)n∈N of finite weighted colored tree-semilattices with QF-limit
(T, µ).
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Noteworthy, although QF-convergence does not in general preserve structural properties, the
Borel structures we obtain as limits in Theorem 1 are still tree-semilattices.

The m-partite cographs — introduced in [3] by generalizating the construction of cographs
through cotrees — are defined by means of quantifier-free formulas from tree-semilattices: A graph
G is an m-partite cograph if there exists a colored tree-semilattice T such that V (G) is the set of
maximal elements of T, each element v of V (G) is assigned a color γ(v) ∈ {1, . . . ,m}, each other
element of T is assigned a symmetric function , τ(v) : {1, . . . ,m} × {1, . . . ,m} → {0, 1}, and two
vertices u, v are adjacent exactly if τ(u ∧ v)(γ(u), γ(v)) = 1. Note that every graph is an m-partite
cograph for some m. This allows to derive from Theorem 1 an explicit characterization of left limits
of m-partite cographs as interpretations of Borel tree-semilattices.

The possibility to approximate a large graph (or a graphon) by a small graph of order N(ε) —
where ε measures the distance between the graph and its approximation — is an essential consequence
of Szemerédi’s regularity lemma. The order of the approximation is, in general, very fast growing
with ε−1. Nevertheless, the number of parts in a regular partition of a graph G with parameter ε
can be bounded by O(1/εk) for stable classes of graphs [9]. It is thus expected that graphs in a
random-free hereditary class, like the class of m-partite cographs, can be ε-approximated by relatively
small graphs (of order polynomial in ε−1), and that such a property extends to random-free classes
of σ-structures. We prove that this holds for the class of tree-semilattices.
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Extended Abstract

Motivated by applications in computer graphics, where we seek to convert a triangulation into
a quadrangulation, Brazil et al. [1] studied the ratio η between the maximum weight of a perfect
matching and the maximum weight of a general matching. Due to the computer graphics application,
their study focused mostly on cubic graphs. The parameter η can be defined for any graph which
admits a perfect matching. Therefore, it is natural to consider other graph classes such as grids
and regular bipartite graphs. Surprisingly, the determination of η is often non-trivial even for
such restricted types of graphs. Moreover, the original study left an open question with respect to
nonhamiltonian bipartite cubic graphs, which we answer herein.

Let G = (V,E) be a connected undirected graph. A matching in G is a set M ⊂ E such that no
two edges in M share a common vertex. Given a matching M in a graph G, we say that M saturates
a vertex v and that vertex v is M-saturated, if some edge of M is incident to v. A matching P is
perfect if |P | = |V |/2. A matching is maximal if it is not a subset of any other matching and is
maximum if it has maximum cardinality.

Let w : E → R+ be the weight of the edges. Given a subset E′ ⊆ E, we refer to the quantity
w(E′) =

∑
e∈E′ w(e) as the weight of E′. A maximum weight matching is a matching M∗(G) of

maximum possible weight in G. A maximum weight perfect matching is a perfect matching P ∗(G) of
maximum possible weight (among all perfect matchings of G). Given a graph G which admits a
perfect matching, the parameter η(G) is defined as follows:

η(G) = min
w:E→R+

w(P ∗(G))

w(M∗(G))

Let G be a graph class and consider a graph G ∈ G. Since η(G) is only defined if G admits a
perfect matching, we assume that all graphs in G admit perfect matchings. Notice that for different
graphs G,G′ ∈ G we may have η(G) 6= η(G′). In the worst case scenario, in terms of the motivation
of approximating a maximum weight matching with a perfect matching, there exists a graph G ∈ G
for which the value of η(G) is very small. Therefore, we define the value of η(G) in terms of this
worst case behavior:

η(G) = min
G∈G

η(G)

Sometimes, when the graph G or the graph class G is clear from the context, we refer to η(G) or
η(G) simply as η.

An immediate consequence of this definition is that given two graph classes G1 ⊆ G2, we have
η(G1) ≥ η(G2). Therefore, in order to prove bounds on η that apply to as many graph classes as
possible, it is useful to obtain lower bounds on η for “large” graph classes and upper bounds on η for
“small” graph classes. It is important to notice that in many applications is not possible to know a
priori all graphs that will be given as input, thus the worst case scenario is very useful information.
Therefore, we will treat the upper bounds as valuable knowledge about the whole graph class even
when it is proved only for a single example.

In this work, we present the following two general results that help us to determine bounds of the
parameter η.
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Lemma 1. Let G be a graph with minimum degree δ ≥ 2, containing a perfect matching and such
that there exists a maximal matching that does not saturate a vertex v of degree δ. Then, η(G) ≤ δ−1

δ
.

Lemma 2. Let G = (V,E) be a graph and let G1 = (V,E1), G2 = (V,E2), . . . , Gk = (V,Ek) be
subgraphs of G with minimum degree δ ≥ 1, such that each edge of G is in at least one of E1, E2, . . . , Ek
and such that each subgraph Gi admits a perfect matching. If η(Gi) ≥ c for i = 1, . . . , k, then
η(G) ≥ c/k.

Furthermore, we establish the exact value of the parameter η for rectangular grid graphs and
provide bounds for toroidal grids, cylindrical grids, and cubic bipartite graphs that are dual of
4, 8-meshes. The proofs of these results use the previous theorems. Due to space constraints, the
latter result has been omitted.

A rectangular grid of width w ≥ 2 and height h ≥ 2 is a graph G = (V,E) where V = {(i, j) : i =
1, . . . , w; j = 1, . . . , h} and E = {(i, j)(i + 1, j) : i = 1, . . . , w − 1; j = 1, . . . , h} ∪ {(i, j)(i, j + 1) :
i = 1, . . . , w; j = 1, . . . , h− 1}. A cylindrical grid is a graph obtained from a rectangular grid by
adding edges (w, j)(1, j) for j = 1, . . . , h. A toroidal grid is a graph obtained from a cylindrical grid
by adding edges (i, h)(i, 1) for i = 1, . . . , w.

Theorem 3. Let GEE and GEO be the classes of rectangular grid graphs with even width and even
height respectively with even width and odd height. Then η(GEE) = 1/2 and η(GEO) = 1/3.

Theorem 4. Let CEE, CEO, and COE be the classes of cylindrical grid graphs with even width and
even height, respectively with even width and odd height, respectively with odd width and even height.
Then 1/2 ≤ η(CEE) ≤ 2/3, 1/3 ≤ η(CEO) ≤ 1/2, and 1/3 ≤ η(COE) ≤ 2/3.

Theorem 5. Let TEE and TEO respectively be the classes of toroidal grid graphs with even width and
even height and with even width and odd height. Then 1/2 ≤ η(TEE) ≤ 3/4 and 1/3 ≤ η(TEO) ≤ 2/3.

For the case of even width and odd height, we obtain a lower bound of η(GEO) which approaches
1/2 as the height increases. Since a trivial upper bound for all grid graphs is 1/2, it follows that
η(GEO) tends to 1/2 for large grid graphs.

Theorem 6. Let η(GEO) be the class of rectangular grid graphs with even width and odd height.
Then, for G ∈ GEO of height h, we have η(G) ≥ 1

2
− 1

h+1
.

Finally, we prove that for all ∆ ≥ 2, the class B of ∆-regular bipartite graphs satisfies η(B) = 1
∆
.

Moreover, we present a nonhamiltonian bipartite cubic graph G in Figure .9 that satisfies η(G) ≤ 1/3,
improving a former result of [1] stating that 1/3 ≤ η(G) ≤ 1/2, where G is the class of nonhamiltonian
bipartite cubic graphs.

Theorem 7. Let B be the class of ∆-regular bipartite graphs. Then, η(B) = 1
∆
.

Theorem 8. Let G be the class of nonhamiltonian bipartite cubic graphs. Then η(G) = 1/3.

Figure .9: Nonhamiltonian bipartite cubic graph G with η(G) = 1/3.
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Extended Abstract

In this paper we consider the problem of extremal graphs of girth 5, that is, the problem of
determining the maximum number of edges in a graph where the length of the smallest cycle it
could contain is 5. Triangles and squares are called the forbidden subgraphs. Let n be the number
of vertices in a graph. The maximum number of edges in the graph containing no such forbidden
subgraphs is denoted by ex(n; 4). This problem was started by Erdős in 1975. The most recent
results in this problem are stated in the following theorems.

Theorem 1. [1] ex(31; 4) = 80.

Furthermore, Balbuena et al. constructed the graph of 32 vertices with 85 edges and proved that
it is the best possible.

Theorem 2. [1] ex(32; 4) = 85.

Therefore, there are only 33 exact values known at this moment. In all other cases, only the lower
bound and the upper bound are known (see Table .1 for the summary of known results). In this
paper, we improve the upper bounds for some values of n.

Theorem 3. ex(33; 4) 6= 90.

This result improves the upper bound for n = 34, 35 and 37. Besides, we also improve the upper
bound for infinitely many values of n in the form n = d2 + 1, given in Theorem 4.

Theorem 4. For d ≥ 4, d 6= 7, 57, ex(d2 + 1; 4) < d3+d
2

.

We conclude this paper with several open problems in this research area.
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Extended Abstract

A graph G is singular of nullity η(G) ≥ 1, if the nullspace of its 0–1–adjacency matrix G has
dimension η. Such a graph contains η cores corresponding to the vectors in a basis for the nullspace
of G (termed kernel eigenvectors). These cores are subgraphs induced in G by the non–zero entries
of the kernel eigenvectors of the chosen nullspace basis.

The weight of a vector u ∈ Rn is the number of non-zero entries of u. The sum
∑η
i=1 wt(ui) of

weights wt(ui) in a basis u1,u2, . . . ,uη, written in non-decreasing weight order, is said to be the
weight sum of the basis. We found it convenient to work with a nullspace basis of minimum weight
referred to as a minimal basis Bmin. A fundamental system of cores of G corresponds to a minimal
basis Bmin [8]. For a catalogue of all cores up to order six see [7].

We observe:
(i) Although various Bmin may be possible, the weight sequence {wt(u1),wt(u2), . . . ,wt(uη)} is

an invariant for ker(A) and therefore for G.
(ii) Moreover for any basis B = {w1,w2, . . . ,wη}, wt(ui) ≤ wt(wi) [8].
(iii) A basis B for the nullspace can be transformed into another basis B′ by linear combinations

of the vectors of B. However the union of the collections of the positions of the non-zero entries in
the basis vectors is the same for all bases. The vertices corresponding to a zero entry in all vectors
in a nullspace basis are said to be core-forbidden vertices and the remaining vertices are termed
core vertices. Thus the partition of the vertices into core vertices and core-forbidden vertices, for a
singular graph, is independent of the choice of basis used for the nullspace [5, 6].

(iv) Characterization of singular graphs can be reduced to the non-trivial solutions of a system of
linear homogeneous equations Gx = 0 for the 0-1 adjacency matrix G. The existence of non-trivial
solutions x 6= 0 corresponds to a linear transformation G that is not invertible corresponding to a
singular graph.

(v) There are several applications for singular graphs not only in other areas of mathematics
[11, 13, 14, 19] but also in related sciences including molecular chemistry [12], social networks [1],
bioinformatics [4] and computer science [3]. Once G is determined for a particular model, the
eigenvectors x satisfying Gx = 0 are easily calculated. A more challenging problem, and one which
is discussed in [10], is to determine the properties of the possible linear transformations A that
satisfy Ax = 0 for a feasible non-zero x.

The adjacency matrix G that yields a non–trivial solution of Gx = 0 is the key to discover why
a graph is singular. A feasible vector x determines a core (F,xF) which can be grown by adding
vertices (adjacent to the core–vertices) to a singular configuration SC(F,xF) of nullity one. Graphs
of nullity one are identified so that substructures corresponding to linearly independent kernel
eigenvectors do not mask one another [9].

A singular configuration SC(F,xF) is found as an induced substructure in a graph kernel
eigenvector x. A singular configuration that is also a core graph is called a nut graph. Nut graphs
with at least one edge exist on seven or more vertices. They are not bipartite and have no pendent
edges [2] .

Necessary and sufficient conditions for a graph to be singular in terms of admissible induced
subgraphs are determined [10]. There exists a set of η distinct vertices representing the singular con-
figurations. We ask the questions: How does the nullity control the size of the singular substructures
[18]? To what extent can vertices be added to a non–singular graph so that it reaches maximum
nullity, without allowing duplicate vertices? Do graphs of maximum nullity have characteristic
structures? There are indications that graphs of maximum nullity have a nut graph as one of its
induced singular configurations.
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Extended Abstract

A graph is series-parallel (or SP for short) if it does not contain the complete graph K4 as a
minor. Edge-maximal SP graphs are exactly the class of 2-trees and conversely every subgraph
of a 2-tree is SP. Subsequently, all graphs are considered to be labelled. By a random object of a
given family we mean an object chosen uniformly at random from all the elements of the same size
(i.e. same number of vertices).
It can be shown easily that the number of edges of a n-vertex 2-tree is precisely 2n − 6. In the
same context, Moon [6] showed that the number of 2-trees on n vertices is equal to

(
n
2

)
(2n− 3)n−4.

The enumeration of SP graphs is more involved: Bodirsky, Giménez, Kang, and Noy proved in [2]
that the number of connected SP graphs on n vertices is asymptotically of the form cn−5/2ρ−nn!,
where c ≈ 0.0067912 and ρ ≈ 0.11021 are computable constants. In the same paper they showed
that the number of edges in a random connected SP graph is asymptotically normally distributed
with mean asymptotically equal to κn and variance asymptotically equal to λn, where κ ≈ 1.61673
and λ ≈ 0.2112 are again computable constants.

In this work we study enumerative properties of spanning trees defined on SP graphs. The main
result of our paper is the precise asymptotic estimate for the expected number of spanning trees in a
random connected SP graph on n vertices.

Theorem 1. Let Xn denote the number of spanning trees in a random connected SP graph on n
vertices. Then, the expected value µn of Xn is asymptotically equal to s%−n, where s ≈ 0.09063 and
%−1 ≈ 2.08415 are computable constants.

The proof of Theorem 1 is based on singularity analysis of generating functions. The main idea
can be roughly described as follows. A network is defined as a simple graph with two distinguished
vertices, that are called poles, such that adding an edge between the two poles creates a 2-connected
multigraph. Using network terminology [7], a network of connectivity at most 2 is either trivial,
series, or parallel. For the purpose of counting spanning trees in networks, we need apart from the
class of networks with a distinguished spanning tree, the utility class of networks with a distinguished
spanning forest with two components, each of which contains one of the poles. Analogously, series and
parallel subclasses of these two classes are defined. Using the Symbolic Method [4] we get a system
of equations for these exponential generating functions. By the so-called Drmota–Lalley–Woods
Theorem [4], we know that these generating functions have the same unique singularity.

Now, by using the Dissymmetry Theorem for Trees [1] and its extension to tree-decomposable
classes [3], we can determine the singular expansion of the exponential generating function B of
all 2-connected SP graphs carrying a distinguished spanning tree. The relation between B and the
exponential generating function C of all connected SP graphs with a distinguished spanning tree is
given by xC′(x, y) = x exp

(
B′(xC′(x, y), y)

)
, where x and y mark vertices and edges, respectively.

Setting y = 1 in order to avoid analyzing the number of edges, we now determine the singularity R of C
by solving the equation τB′′(τ , 1) = 1 with respect to τ and computing ρ = τ/ exp(B′(τ)) ≈ 0.05288
(see [5] for similar technical arguments). The singular expansion of C(x, 1) at x equal to ρ is then of
the form

C(x, 1) = C0(1) + C2(1)X2 + C3(1)X3 +O(X4),

where we write X =
√

1− x/ρ. Finally, by Transfer Theorems for Singularity Analysis [4], the
number of connected SP graphs on n vertices carrying a distinguished spanning tree is asymptotically
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equal to C3(1)
Γ(−3/2)

n−5/2ρ−n. Dividing by the number of connected SP graphs finishes the proof.

Figure .10: The growth constant R(µ) (y in the plot) of the expected number of spanning trees in
random 2-connected SP graphs with edge density µ ∈ [1.08, 1.97] (x in the plot).

Instead of setting y = 1 in the last steps in the proof of Theorem 1, one can also set y at some
other value, thus fixing the edge density µ of the random (connected or 2-connected) SP graph,
where the relation (see e.g. [5]) between y and µ is given by −yR′(y)/R(y) = µ. Figure 1 shows the
growth constant R(µ) of the expected number of spanning trees in a random 2-connected SP graph
with edge density µ. When µ→ 1, then ρ(µ)→ 1 since SP graphs of edge density equal to 1 are
precisely the cycles. When we fix the edge density of SP graphs at its maximum, we get the class of
2-trees and R−1

= 2.55561.
The nice structure of 2-trees allows us to provide an alternative, shorter proof for the expected

number of spanning trees in random 2-trees. Here, the main ingredients for the proof are again the
Symbolic Method, the extension of the Dissymmetry Theorem to tree-decomposable classes, and the
singularity analysis of generating functions.
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Extended Abstract

M.A. Henning and A. Yeo conjectured in [2] that a digraph of minimum out-degree at least 4,
contains 2 vertex disjoint cycles of different lengths. In this paper we prove this conjecture. The
main tool, is a new result asserting that in a digraph D of minimum out-degree at least 4, there
exist two vertex-disjoint cycles C1 and C2, a path P1 from a vertex x of C1 to a vertex z not in
V (C1)∪V (C2), and a path P2 from a vertex y of C2 to z, such that V (P1)∩ (V (C1)∪V (C2)) = {x},
V (P2) ∩ (V (C1) ∪ V (C2)) = {y}, and V (P1) ∩ V (P2) = {z} (we say then that D has property (P)).

For proving that every digraph of minimum out-degree at least 4 has property (P), we begin by
proving it for non-oriented digraphs of minimum out-degree at least 4. Next for oriented graphs of
minimum out-degree at least 4, we proceed by induction on the order n ≥ 9 of such an oriented graph.
We prove first that the assertion is true when n = 9, that is when D is a 4-regular tournament. We
suppose that the assertion is true up to the row n− 1, n ≥ 10, and then we prove it for n (assertion
P (n)). For this we use induction on the size k, 4n ≤ k ≤ n(n−1)

2
of an oriented graph of minimum

out-degree at least 4 and of order n. We prove first that the assertion P (n) is true when k = 4n.
So, we consider an oriented graph D of minimum out-degree at least 4 and of size a(D) = 4n. We
observe that necessarily, D is 4−out-regular, and for the sake of a contradiction, we suppose that
D does not have property (P). We prove then that D is strongly connected and arc-dominated
(which means that for every arc (x, y) of D, there exists a vertex z such that (z, x) and (z, y) are
arcs of D). The fact that D is arc-dominated implies that for every vertex x of D, the induced
sub-digraph D[N−(x)] is of minimum out-degree at least 1, and then it contains a cycle. So for
every vertex x of D we may choose a cycle C(x) of D[N−(x)] of minimum order (so, C(x) is an
induced cycle). We point out that by a result of Thomassen (see [3], if m is the maximum number
of vertex-disjoint cycles of D, it holds m ≥ 2. We consider then a set C of m vertex-disjoint induced
cycles C1, C2, . . . , Cm. We consider the digraph D′ defined in the following way

- The vertex set of D′ is C.
- The arcs of D′ are the couples (C,C′) of distinct cycles of C, such that there exist at least one path
from C to C′, internal disjoint with every cycle of C.

We prove that D′ is a directed cycle of length m. Without loss of generality we suppose that
this directed cycle is D′ = (C1, . . . , Cm, C1). For i, 1 ≤ i ≤ m, we consider the set Ai of the
vertices of V (D) \ (V (C1) ∪ · · · ∪ V (Cm)) having an in-neighbor in Ci. We prove that the sets Ai
are vertex-disjoint and that for 1 ≤ i, j ≤ m with i 6= j, there are no arcs from a vertex of Ai to a
vertex of Aj (for otherwise D would have property P). We prove also that the union of the pairwise
disjoint sets V (Ci) ∪ Ai is V (D). We establish several properties relative to the sets V (Ci) ∪ Ai,
and next by considering the cases m ≥ 3 and m = 2, we get a contradiction. Then by pursuing
our induction on the size, we prove that the assertion P (n) is true, and then any oriented graph of
minimum out-degree at least 4 has property P. It follows that any digraph of minimum out-degree
at least 4 has property P . From this result we easily prove the conjecture of Henning and Yeo.

Thomassen proved in [3] the existence for every k ≥ 1, of a minimum integer f(k) such that any
digraph of minimum out-degree at least f(k) contains k vertex-disjoint cycles. Alon proved that
f(k) ≤ 64k (see [1]). Motivated by these results and by our proof of the conjecture of Henning and
Yeo, we conjecture that for every integer k ≥ 2, there exists a minimum integer g(k) such that any
digraph of minimum out-degree at least g(k) contains k vertex-disjoint cycles of different lengths.
We proved this conjecture for k = 2 (and since Henning and Yeo proved in [2] that there exists
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a digraph of minimum out-degree 3 which does not contain two vertex-disjoint cycles of different
lengths, we have g(2) = 4). We finish by proving that if g(k) exists, we have g(k] ≥ k2+5k−2

2
, which

means that a possible upper bound on g(k) is not linear.
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Extended Abstract

The minimum leaf number ml(G) of a connected graph G is defined as the minimum number
of leaves of the spanning trees of G if G is not Hamiltonian and 1 if G is Hamiltonian. We study
nonhamiltonian graphs, whose vertex-deleted subgraphs have the same minimum leaf number. The
deletion of a vertex obviously may increase the minimum leaf number of the graph, but there are
vertices (e.g. leaves of an optimum spanning tree) whose deletion does not increase or even decrease
ml(G). However, it is easy to see that by deleting a vertex of a connected graph G, ml(G) can be
decreased by at most one. Thus if G is nonhamiltonian and l = ml(G− v) does not depend on v,
then either ml(G − v) = ml(G) − 1 for each v ∈ V (G) or ml(G − v) = ml(G) for each v ∈ V (G).
Such graphs will be called (l + 1)-leaf-critic and l-leaf-stable, respectively.

At first sight it is not obvious whether leaf-critic and leaf-stable graphs exist. The 2-leaf-critic
graphs turn out to be the so-called hypohamiltonian graphs. A graph G is hypohamiltonian [3]
if G is not Hamiltonian, but every vertex-deleted subgraph of G is Hamiltonian. The smallest
hypohamiltonian graph is the Petersen graph [3] and it is known that hypohamiltonian graphs on n
vertices exist for every n ≥ 18 [3] and even planar hypohamiltonian graphs on n vertices exist for
a sufficiently large n [9] (the best known bound is n ≥ 42 [5]). Planarity of hypohamiltonian and
hypotraceable graphs is an important issue since 1973, when Chvátal asked whether such graphs
exist [1].

The 3-leaf-critic graphs are the so-called hypotraceable graphs. A graph is hypotraceable [3] if G
is not traceable, but every vertex-deleted subgraph of G is traceable. The existence of hypotraceable
graphs was an open problem till 1975, when Horton found such a graph on 40 vertices [7]. Actually,
even the existence of graphs without concurrent longest paths was an open question from 1966 to
1969 (raised by Gallai [2] and settled by Walther [8]). The smallest known hypotraceable graph
(having 34 vertices) is due to Thomassen [6], who also proved that hypotraceable graphs on n vertices
exist for every n ≥ 39 [7]. It is also known that planar hypotraceable graphs on n vertices exist for
a sufficiently large n [9] (the best known bound is n ≥ 156 [5]). First we show that l-leaf-stable
and l-leaf-critic graphs exist for every integer l ≥ 2. Using the construction it is also easy to prove
that for n sufficiently large, cubic planar l-leaf-stable and l-leaf-critic graphs exist on n vertices.
Then we prove some structural theorems concerning leaf-critic graphs of connectivity 2. These are
interesting because not much is known about the structure of hypohamiltonian and hypotraceable
graphs, i.e. all known hypotraceable graphs are constructed using hypohamiltonian graphs, and
it is not even known whether there exists a hypohamiltonian graph without a vertex of degree 3.
(All leaf-critic graphs are easily seen to be 3-edge-connected and Thomassen proved that all planar
hypohamiltonian graph contains a vertex of degree 3.)

For the construction we use the so-called J-cells [4]. A pair of vertices (a, b) of a graph G is said
to be good if there exists a Hamiltonian path of G between them. A pair of pairs ((a, b), (c, d)) is
good if there exists a spanning subgraph of G consisting of two vertex disjoint paths, one between
a and b and the other one between c and d. The quintuple (H, a, b, c, d) is a J-cell if H is a graph
and a, b, c, d ∈ V (H), such that the pairs (a, d), (b, c) are good in H, none of the pairs (a, b), (a, c),
(b, d), (c, d), ((a, b), (c, d)), ((a, c), (b, d)) are good in H, and for each v ∈ V (H) there is a good pair
in H − v among (a, b), (a, c), (b, d), (c, d), ((a, b), (c, d)), ((a, c), (b, d)). It is worth mentioning that
flip-flops used by Chvátal to obtain many hypohamiltonian graphs [1] are special J-cells. J-cells can
also be obtained by deleting two adjacent vertices of degree 3 from a hypohamiltonian graph, as
pointed out by Thomassen, who used them to construct 3-connected hypotraceable graphs [7]. Our
construction is basically a generalization of this construction.
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Let now Fi = (Hi, ai, bi, ci, di) be J-cells for i = 1, 2, . . . , k. We define the graphs Gk as follows.
Gk consists of vertex-disjoint copies of the graphs H1, H2, . . . , Hk, the edges (bi, ai+1), (ci, di+1) for
all i = 1, 2, . . . k − 1, and the edges (bk, a1), (ck, d1).

Theorem 1. G2l+1 is (l + 1)-leaf-critic, G2l is l-leaf-stable.

Let G be a non-complete graph with connectivity k and X = {x1, x2, . . . , xk} be a cut of G. Let
furthermore H be one of the components of G−X. Then G[H ∪X] is called a k-fragment of G, and
X is called the vertices of attachment of H. Now we characterize 2-fragments of leaf-critic graphs
generalizing a lemma of Thomassen [6].

Theorem 2. Let G be a graph, a, b ∈ V (G) and l = ml(G− a). G is a 2-fragment of a leaf-critic
graph with vertices of attachment a and b if and only if the following hold:

1. ml(G) ≥ l, moreover G has no spanning tree with at most l leaves where a or b is a leaf and G
has no spanning forest with at most l + 1 leaves consisting of two trees, such that a is a leaf of
one of the trees and b is a leaf of the other tree.

2. For any v ∈ V (G), G− v has a spanning tree with at most l− 1 leaves or a spanning tree with
at most l leaves, where a or b is a leaf or G− v has a spanning forest with at most l+ 1 leaves
consisting of two trees, such that a is a leaf of one of the trees and b is a leaf of the other tree.

Theorem 3. Let G be a graph of connectivity 2 and {a, b} a cut in G. If both 2-fragments G1 and
G2 of G with vertices of attachment a, b are leaf-critic 2-fragments, then G is l-leaf-critic, where
l = ml(G1 − a) + ml(G2 − a)− 1.

Corollary 4. If G is an l-leaf-critic graph of connectivity 2, then it contains an
⌊
l+3
2

⌋
-leaf-critic

2-fragment.
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Extended Abstract

A graph G is locally irregular if every two adjacent vertices of G have distinct degrees. We say
that an edge-colouring c of G is locally irregular if every colour class of c induces a locally irregular
subgraph. The least number of colours of a locally irregular edge-colouring of G (if any) is called the
irregular chromatic index of G, and is denoted χ′irr(G).

The notion of locally irregular edge-colouring was introduced by Baudon, Bensmail, Przybyło and
Woźniak in [1] as a tool to deal with the well-known 1-2-3 Conjecture posed by Karoński, Łuczak
and Thomason [4]. The point being that, in specific situations, a graph admitting a locally irregular
edge-colouring directly agrees with the 1-2-3 Conjecture. In [1], the authors first noted that not all
graphs admit locally irregular edge-colourings. Such graphs, called exceptions, are fortunately easy
to recognize since the family of exceptions is made up of odd length paths and cycles, and another
class of graphs obtained by connecting vertex-disjoint triangles in a specific way. Regarding graphs
which are not exceptions, the following conjecture was raised.

Conjecture 1 ([1]). For every graph G which is not an exception, we have χ′irr(G) ≤ 3.

Conjecture 1 was notably verified for trees, complete graphs, Cartesian products of graphs with
irregular chromatic index at most 3, and regular graphs with degree at least 107 (see [1]). The latter
result, which was proved by using probabilistic tools, is the most interesting as regular graphs are
in some sense the “least locally irregular” graphs. It is also worth mentioning that Conjecture 1,
if true, would be tight since e.g. χ′irr(C6) = 3. However, an easy classification of graphs with
irregular chromatic index at most 2 should not exist (unless P=NP) due to the NP-completeness of
the associated problem (this was proved in [2] by Baudon, Bensmail and Sopena).

Towards Conjecture 1, no good upper bound on the irregular chromatic index of non-exception
graphs is known in general. The only such upper bound given in [1] is the following.

Theorem 2 ([1]). For every graph G which is not an exception, we have χ′irr(G) ≤ b |E(G)|
2
c.

The upper bound given in Theorem 2 is clearly not satisfying as we are rather interested in upper
bounds involving no graph invariant, recall Conjecture 1. Actually b |E(G)|

2
c is the worst possible

upper bound on χ′irr(G) as the smallest non-trivial (i.e. with edges) locally irregular graph is P3,
which has size 2. However, the proof of Theorem 2 is, though not complicated, not trivial.

Improving Theorem 2 to better upper bounds (even involving graph parameters) does not seem to
be an easy task, mainly due to the fact that a locally irregular edge-colouring can clearly not induce
a component isomorphic to K2. This fact makes disputable the success of any “naive” colouring
procedure where one would basically construct the induced locally irregular subgraphs inductively
(i.e. by augmenting them in a locally irregular way as long as possible). This notably has implications
on bipartite graphs, for which we still do not know whether Conjecture 1 (or even a weaker constant
version of it) is true, since this problem makes improbable the success of any recursive colouring
scheme.

In the complete version of the current paper [3], we consider the consequences on this problem of
allowing components isomorphic to K2, or more generally regular components, in locally irregular
edge-colourings. We say that an edge-colouring c of G is regular-irregular if every colour class of c
induces a subgraph whose components are either regular or locally irregular. The regular-irregular
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chromatic index of G, denoted χ′reg−irr(G), is the least number of colours used by a regular-irregular
edge-colouring of G. Note that, in this context, there is no need for a notion of exception as notably
every proper edge-colouring is also regular-irregular. So χ′reg−irr(G) ≤ χ′(G) ≤ ∆(G) + 1, where χ′
and ∆ denote the standard chromatic index and maximum degree parameters. Since, by definition,
a locally irregular edge-colouring is also regular-irregular (but the contrary may obviously not hold),
we clearly also have χ′reg−irr(G) ≤ χ′irr(G). So, according to Conjecture 1, the regular-irregular
chromatic index of non-exception graphs should be upper-bounded by 3. Actually, investigations on
small graphs even suggest that the following stronger should be true.

Conjecture 3. For every graph G, we have χ′reg−irr(G) ≤ 2.

Our first result concerning regular-irregular edge-colouring deals with bipartite graphs. For this
family, we prove the following constant upper bound on χ′reg−irr, which has no constant analogue
when only locally irregular components are allowed in an edge-colouring.

Theorem 4. For every bipartite graph G, we have χ′reg−irr(G) ≤ 6.

Theorem 4 is basically proved by showing that G can always be edge-partitioned into one forest
and one bipartite graph whose all components are Eulerian, which we show have regular-irregular
chromatic index at most 2 and 4, respectively. Theorem 4 in turns implies the following result, which
gives a general upper bound on χ′reg−irr which is better than every known upper bound on χ′irr (in
particular Theorem 2). In this result, χ denotes the standard chromatic number parameter.

Corollary 5. For every graph G, we have χ′reg−irr(G) ≤ 6 log2(χ(G)).

Corollary 5 is proved by showing that G can be edge-partitioned into log2(χ(G)) bipartite graphs.
Using at most 6 colours to obtain a regular-irregular edge-colouring of each of these resulting
subgraphs (such colourings exist according to Theorem 4), a regular-irregular (6 log2(χ(G)))-edge-
colouring of G is then obtained. Corollary 5 notably confirms that allowing regular components (in
particular K2) helps a lot when edge-partitioning graphs into locally irregular subgraphs (though
the two colouring notions are slightly different).
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Extended Abstract

A vertex-colouring c of a graph G is non-repetitive if for any path P = v1v2 . . . v2k in G the colour
sequence (c(v1), c(v2), . . . , c(vk)) 6= (c(vk+1), c(vk+2), . . . , c(v2k)). The Thue chromatic number of a
graph G, denoted by π(G), is the least integer k such that G has a non-repetitive colouring using
k colours. As two neighbouring vertices form a path of length 1, each non-repetitive colouring is
a proper colouring. The study of non-repetitive (edge) colourings was initiated by Alon et al. in
[1]. Since then non-repetitive colourings have intensively been studied and many variations were
introduced [4, 3].

Let G be a graph. A supergraph H of G is called non-repetitive supergraph of G if V (G) = V (H)
and for each odd path P = v1v2 . . . v2k of G at least one of the edges v1vk+1, v2vk+2, . . . vkv2k is an
edge of H. We prove the following result.

Theorem 1. Thue chromatic number of a graph G equals the minimum over all chromatic numbers
of non-repetitive supergraphs of G.

One of the natural modifications of the notion of a non-repetitive colouring is its fractional version.
A (p, q)-non-repetitive colouring c of a graph G is a colouring of vertices of G that uses p colours and
each vertex is coloured by exactly q colours such that for each odd path P = v1v2 . . . v2k of G and
for all c1 ∈ c(v1), c2 ∈ c(v2), . . . , c2k ∈ c(v2k) we have (c1, c2, . . . , ck) 6= (ck+1, ck+2, . . . , c2k). The
fractional Thue chromatic number is defined as

πf (G) = inf{p/q : there exists a (p, q)-non-repetitive colouring of G}.

Fractional non-repetitive colourings were introduced by Keszegh, Patkós, and Zhu [4] and studied
further by Zhong and Zhu [5]. Theorem 1 also extends to the fractional Thue chromatic number.

Theorem 2. Fractional Thue chromatic number of a graph G equals the minimum over all fractional
chromatic numbers of non-repetitive supergraphs of G.

As fractional chromatic number is attained and rational and the number of non-repetitive
supergraphs is finite, we have the following corollary.

Corollary 3. Fractional Thue chromatic number is attained and rational.

Theorem 2 provides an algorithm to determine the fractional Thue chromatic number.
We can reformulate Theorem 1 for list colourings and fractional list colourings. Thue choice

number and fractional Thue choice number (which can be defined analoguosly to Thue chromatic
number where the lists of available colours are prescribed for each vertex). Alon, Tuza, and Voigt [2]
showed that the fractional choice number equals the fractional chromatic number for every graph.
Together with our result this gives the following corollary:

Corollary 4. Fractional Thue choice number of a graph equals its fractional Thue chromatic number.

Similarly, as for fractional Thue colourings, we can define circular Thue colourings—we add a
constraint that colours at a vertex must be consecutive modulo p. A circular variant of Theorem 1
translates many known results about circular colourings to circular Thue colourings.

Corollary 5. Circular Thue chromatic number is attained and rational. The ceiling of circular
Thue chromatic number of a graph G is the Thue chromatic number of G.
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We use the developed methods to show that the fractional Thue chromatic number of Petersen
graph is 5. The fractional Thue chromatic number of all circuits, except for C10, C14, C17 was
determined by Zhong and Zhu [5]. We determined fractional Thue chromatic numbers of C10, C14,
C17. Our approach relies on computer search based on an idea from [5]. We describe our algorithms.
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Extended Abstract

An edge-colored connected graph G is called rainbow-connected if each pair of distinct vertices of
G is connected by a rainbow path, that is, by a path whose edges have pairwise distinct colors. Note
that the edge coloring need not be proper. The rainbow connection number of G, denoted by rc(G),
is the minimum number of colors such that G is rainbow-connected.

The concept of rainbow connection in graphs was introduced by Chartrand et al. in [2]. An easy
observation is that if G has n vertices then rc(G) ≤ n− 1, since one may color the edges of a given
spanning tree of G with different colors and color the remaining edges with one of the already used
colors. Chartrand et al. determined the precise value of the rainbow connection number for several
graph classes including complete multipartite graphs [2]. The rainbow connection number has been
studied for further graph classes and for graphs with fixed minimum degree, see [5] for a survey.

There are various applications for such edge colorings of graphs. One interesting example is the
secure transfer of classified information between agencies (see, e. g., [3]).

For the rainbow connection numbers of graphs the following results are known (and obvious).

Proposition 1. Let G be a connected graph of order n. Then

• 1 ≤ rc(G) ≤ n− 1,

• rc(G) ≥ diam(G),

• rc(G) = 1 if and only if G is complete,

• rc(G) = n− 1 if and only if G is a tree,

• if G is a cycle of length n ≥ 4, then rc(G) = dn
2
e.

Note that the difference rc(G) − diam(G) can be arbitrarily large. For G = K1,n−1 we have
rc(K1,n−1)− diam(K1,n−1) = (n− 1)− 2 = n− 3. Especially, each bridge requires a single color.

Let F be a family of connected graphs. We say that a graph G is F-free if G does not contain
an induced subgraph isomorphic to a graph from F . Specifically, for F = {X} we say that G is
X-free, and for F = {X,Y } we say that G is (X,Y )-free. The members of F will be referred to in
this context as forbidden induced subgraphs.

Graphs characterized in terms of forbidden induced subgraphs are known to have many interesting
properties. Although, in general, there is no upper bound on rc(G) in terms of diam(G), and, in
bridgeless graphs, rc(G) can be quadratic in terms of diam(G) (see [1]), it turns out that forbidden
subgraph conditions can remarkably lower the upper bound on rc(G).

Namely, we will consider the following question.

For which families F of connected graphs, there is a constant kF such that a connected graph G
being F-free implies rc(G) ≤ diam(G) + kF?

We give a complete answer for |F| = 1 in Theorem 2, and for |F| = 2 in Theorem 3.
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Theorem 2 (Holub, Ryjáček, Schiermeyer, Vrána [4]). Let X be a connected graph. Then there is
a constant kX such that every connected X-free graph G satisfies rc(G) ≤ diam(G) + kX, if and only
if X = P3.

Theorem 3 (Holub, Ryjáček, Schiermeyer, Vrána [4]). Let X,Y be connected graphs, X,Y 6= P3.
Then there is a constant kXY such that every connected (X,Y )-free graph G satisfies rc(G) ≤
diam(G) + kXY, if and only if (up to symmetry) either X = K1,r, r ≥ 4 and Y = P4, or X = K1,3

and Y is an induced subgraph of N .
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Extended Abstract

Let G be an edge-colored graph (the coloring need not be proper). A path in G is said to be rainbow
if its edges have pairwise distinct colors, and G is rainbow-connected if any two distinct vertices of
G are connected by a rainbow path. The rainbow connection number rc(G) of G is the minimum
number k of colors such that G is rainbow-connected for some edge coloring using k colors.

The concept of rainbow connection was introduced by Chartrand et al. [2]. For a survey of recent
results see e.g. [4], [5]. Specifically, it is easy to observe that, for a connected graph G of diameter
diam(G), rc(G) ≥ diam(G), and the difference rc(G)− diam(G) can be arbitrarily large (as can be
seen e.g. for G = K1,r, for which rc(G) = r while diam(G) = 2). However, in bridgeless graphs, it
is known [1] that rc(G) ≤ rad(G)(rad(G) + 2) ≤ diam(G)(diam(G) + 2) (where rad(G) denotes the
radius of G). Note that this upper bound on rc(G) is still quadratic in terms of diam(G).

Let F be a family of connected graphs. We say that a graph G is F-free if G does not contain an
induced subgraph isomorphic to a graph from F . Specifically, for F = {X} we say that G is X-free,
and for F = {X1, . . . , Xk} we say that G is (X1, . . . , Xk)-free. The members of F will be referred to
in this context as forbidden induced subgraphs.

If X1, X2 are graphs, we write X1

IND
⊂ X2 if X1 is an induced subgraph of X2 (not excluding the

possibility that X1 = X2). If F1, F2 are finite families of graphs, we write F1

IND
⊂ F2 if |F1| = |F2|

and there is a bijection ϕ : F1 → F2 such that F
IND
⊂ ϕ(F ) for every F ∈ F1. Obviously, if F1

IND
⊂ F2,

then every F1-free graph is also F2-free.

It turns out that forbidden subgraph conditions can remarkably lower the upper bound on rc(G).
Namely, we will consider the following question:

For which finite families F = {X1, X2, . . . , Xk} (k ≥ 3 an integer) of connected graphs, there is a
constant kF such that a connected graph G being F-free implies rc(G) ≤ diam(G) + kF?

In [3], a complete answer was given for 1 ≤ |F| ≤ 2 by the following two results (where N denotes
the net, i.e. the graph obtained by attaching a pendant edge to each vertex of a triangle).

Theorem 1 (Holub, Ryjáček, Schiermeyer, Vrána, 2014 [3]). Let X be a connected graph. Then
there is a constant kX such that every connected X-free graph G satisfies rc(G) ≤ diam(G) + kX , if
and only if X = P3.

Theorem 2 (Holub, Ryjáček, Schiermeyer, Vrána, 2014 [3]). Let X,Y be connected graphs, X,Y 6=
P3. Then there is a constant kXY such that every connected (X,Y )-free graph G satisfies rc(G) ≤
diam(G)+kXY , if and only if either {X,Y }

IND
⊂ {K1,r, P4} for some r ≥ 4, or {X,Y }

IND
⊂ {K1,3, N}.

We continue this study by giving a complete characterization for larger finite families of forbidden
subgraphs. For i, j, k ∈ N, let Si,j,k denote the graph obtained by identifying one endvertex of three
vertex disjoint paths of lengths i, j, k, Ni,j,k the graph obtained by identifying each vertex of a
triangle with an endvertex of one of three vertex disjoint paths of lengths i, j, k, and let Kh

t denote
the graph obtained by attaching a pendant edge to every vertex of a complete graph Kt.
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Theorem 3. Let X,Y, Z 6= P3 be connected graphs such that {K1,3, N} 6⊂ {X,Y, Z} and {K1,r, P4} 6⊂
{X,Y, Z} (r ≥ 4). Then there is a constant kXY Z such that every connected (X,Y, Z)-free graph G
satisfies rc(G) ≤ diam(G) + kXY Z , if and only if the triple {X,Y, Z} satisfies one of the following
conditions:

(i) {X,Y, Z}
IND
⊂ {K1,3,K

h
s , N1,p,q}, s > 3, p+ q > 2, 1 ≤ p ≤ q,

(ii) {X,Y, Z}
IND
⊂ {K1,r,K

h
s , P`}, r > 3, s > 3, ` > 4,

(iii) {X,Y, Z}
IND
⊂ {K1,r, S1,p,q, N}, r > 3, p+ q > 2, 1 ≤ p ≤ q.

Theorem 4. Let X,Y, Z,W 6= P3 be connected graphs such that {K1,3, N} 6⊂ {X,Y, Z,W},
{K1,r, P4} 6⊂ {X,Y, Z,W} (r > 3), {K1,r,K

h
s , P`} 6⊂ {X,Y, Z,W} (r > 3, s > 3, ` > 4), {K1,3,K

h
s , N1,j,k} 6⊂

{X,Y, Z,W} (s > 3, j+k > 2, j ≤ k), and {K1,r, N, S1,j,k} 6⊂ {X,Y, Z,W} (r > 3, j+k > 2, j ≤ k).
Then there is a constant kXY ZW such that every connected (X,Y, Z,W )-free graph G satisfies
rc(G) ≤ diam(G) + kXY ZW , if and only if

{X,Y, Z,W}
IND
⊂ {K1,r,K

h
s , N1,j,k, S1,j̄,k̄}, r > 3, s > 3, j + k > 2, 1 ≤ j ≤ k,

j̄ + k̄ > 2, 1 ≤ j̄ ≤ k̄.

We summarize these observations in the following theorem, showing that there are no other finite
families than those listed in Theorems 1, 2, 3 and 4. For this, we first introduce some notation. We
set:
F1 = {P3},
F2 = {K1,3, N},
F3 = {K1,r, P4}, r ≥ 4,
F4 = {K1,3,K

h
s , N1,j,k}, s > 3, 1 ≤ j ≤ k, j + k > 2,

F5 = {K1,r,K
h
s , P`}, r > 3, s > 3, ` > 4,

F6 = {K1,r, S1,j,k, N}, r > 3, 1 ≤ j ≤ k, j + k > 2,
F7 = {K1,r,K

h
s , N1,j,k, S1,j̄,k̄}, r > 3, s > 3, 1 ≤ j ≤ k, j + k > 2, 1 ≤ j̄ ≤ k̄, j̄ + k̄ > 2.

Theorem 5. Let F be a finite family of connected graphs. Then there is a constant kF such that
every connected F-free graph satisfies rc(G) ≤ diam(G) + kF , if and only if F contains a subfamily

F ′ such that F ′
IND
⊂ Fi for some i, 1 ≤ i ≤ 7.

Bibliography

[1] M. Basavaraju, L.S. Chandran, D. Rajendraprasad, D. Ramaswamy. Rainbow connection number
and radius. In Graphs and Combinatorics 30 (2014), 275-285.

[2] G. Chartrand, G. L. Johns, K. A. McKeon, P. Zhang. Rainbow connection in graphs. In Math.
Bohemica 133 (2008), 85-98.

[3] P. Holub, Z. Ryjáček, I. Schiermeyer, P. Vrána. Rainbow connection and forbidden subgraphs.
Manuscript 2014, submitted.

[4] X. Li, Y. Shi, Y. Sun. Rainbow Connections of Graphs: A Survey. In Graphs and Combina-
torics 29 (2013), pp 1-38.

[5] X. Li, Y. Sun. Rainbow Connections of Graphs. Springer Briefs in Math., Springer, New York
(2012).



Nonrepetitive coloring of geometric graphs

Jarosław Grytczuk , Karol Kosiński , and Michał Zmarz
Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,

Jagiellonian University, 30-348 Kraków, Poland
grytczuk@tcs.uj.edu.pl, kosinski@tcs.uj.edu.pl, zmarz@tcs.uj.edu.pl

Extended Abstract

A sequence R = r1r2 . . . r2t is called a repetition if ri = ri+t for all i = 1, 2, . . . , t. A segment in
a sequence S is a subsequence consisting of consecutive terms of S. A sequence S is nonrepetitive
if none of its segments is a repetition. In 1906 Thue [10] proved that there exist arbitrarily long
nonrepetitive sequences over the set of three symbols. This result has lots of interesting applications
and generalizations (cf. [4], [6], [7]). In particular, one may consider nonrepetitive colorings of graphs
in which a color sequence of every simple path is nonrepetitive. The least number of colors in such
coloring of a graph G is denoted by π(G) and called the Thue chromatic number of G. It was proved
that π(G) is bounded for graphs of bounded degree [1] and for graphs of bounded treewidth [5], but
the following conjecture remains open.

Conjecture 1. There is a constant C such that every planar graph G satisfies π(G) ≤ C.

Here we study a geometric variant of nonrepetitive colorings inspired by this conjecture. Let L
be a line arrangement consisting of a finite set of lines in the plane. Let P = P (L) denote the set of
all intersection points of these lines. A nonrepetitive coloring of L is a coloring of the set P such
that a sequence of colors determined by consecutive points on every line in L is nonrepetitive. Our
main result reads as follows.

Theorem 2. Every line arrangement has a nonrepetitive coloring using at most 405 colors.

The proof is based on the following theorem of Alon and Marshall [2].

Theorem 3. (Alon and Marshall [2])Let k be a positive integer. There exists a graph Hk on at most
5k4 vertices with k-colored edges such that every planar graph G whose edges are colored arbitrarily
with k colors embeds homomorphically into Hk.

We naturally expect that the bound of 405 from Theorem 2 is not optimal. We propose the
following (risky) conjecture.

Conjecture 4. Every line arrangement has a nonrepetitive coloring with at most 4 colors.

The famous Hadwiger-Nelson problem asks for the chromatic number of the plane χ(R2), defined
as the least number of colors needed to color the plane such that every pair of points at distance
one apart is colored differently. We formulate a natural analog of this question in the spirit of
nonrepetitive colorings of line arrangements. A finite sequence of points P1, P2, . . . , Pn in the plane
is called nice if the points are collinear and the distance between each pair Pi and Pi+1 is one. A
coloring of the plane is straight-nonrepetitive if a sequence of colors determined by every nice sequence
of points is nonrepetitive. Let π(R2) denote the least number of colors needed for a nonrepetitive
coloring of the plane. We prove that this number is finite.

Theorem 5. π(R2) ≤ 36.

We also expect that this is not optimal, but this time we do not pose the conjecture that π(R2) ≤ 4
(or do we?).

The above discussion leads to the following general problem for geometric graphs. Recall that a
geometric graph is a graph drawn on the plane such that each vertex corresponds to a point and every
edge is a closed line segment connecting two vertices but not passing through a third. A straight
path in a geometric graph G is a path whose vertices are collinear. A straight-nonrepetitive coloring
of a geometric graph is a coloring of its vertices such that the sequence of colors on any straight
path is nonrepetitive. Let π(G) denote the least number of colors needed in such coloring of G.
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Conjecture 6. There is a function f : N→ N such that every geometric graph G satisfy π(G) ≤
f(χ(G)).
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In this talk we present our investigations on matchings and vertex covers in the class of balanced
hypergraphs. As usual, we define a hypergraph to be a pair H = (V,E), where V is a finite set and
E a multiset of subsets of V . A sequence v0e1v1e2 · · · elvl of vertices v0, . . . , vl ∈ V with v0 = vl,
and edges e1, . . . , el ∈ E is called a cycle if ei contains vi−1 and vi for all i and v0, . . . , vl−1 are
pairwise distinct. It is called strong if none of its edges ei contains three vertices from v0, . . . , vl−1.
Berge [1] defined a hypergraph H to be balanced, if H contains no strong cycles of odd length and
studied them as one possible generalization of bipartite graphs. Just like bipartite graphs, balanced
hypergraphs have a lot of interesting coloring properties which were also found by Berge in [2].

For a subset F = {f1, · · · , fk} ⊂ E we call the hypergraph H ′ := H(F ) =

(
k⋃
i=1

fi, F

)
the partial

hypergraph generated by the set F. We assume that two weight functions d : E → N and b : V → N
are given. Then, we define the weight of a partial hypergraph H ′ of H as

w(H ′) :=
∑

e∈E(H′)

d(e)−
∑

v∈V (H′)

(degH′(v)− 1)b(v).

Consider the optimization problem of maximizing w(H ′) over all partial hypergraphs H ′ ⊆ H.
Intuitively, we want to maximize the sum of the edge weights of H ′, but put a penalty on points
which are covered more than once. If the penalty is large, we are looking for maximum weight
matchings. Let x : V → N. Then x is called a d-vertex cover if the inequality

∑
v∈e

x(v) ≥ d(e) holds

for every edge e ∈ E. By means of the penalty function b, we define the set

X := X(H, d, b) := {x|x is a d− vertex cover and 0 ≤ x(v) ≤ b(v) for all v ∈ V }.

Berge and Las Vergnas [3] and Fulkerson et al. [5] proved what may be called Kőnig’s Theorem
for balanced hypergraphs, namely

Theorem 1 (Berge and Las Vergnas ’70 [3], Fulkerson et al. ’74 [5]). Let a balanced hypergraph
H = (V,E) with weight function d : E → N be given. Then

max
Mis a matching of H

w(M) = min
x∈X(H,d,∞)

∑
v∈V

x(v)

(the value of a maximum weighted matching equals the sum of weights of a minimum d-vertex cover).

In 1996, Conforti et al. [4] generalized Hall’s Theorem to balanced hypergraphs. By Linear
Programming methods, they proved

Theorem 2 (Conforti et al. ’96 [4]). Let a balanced hypergraph H = (V,E) be given. H has a
perfect matching , i.e., a matching covering all the vertices, if and only if H satisfies the following
condition: If some vertices of H are colored red and blue, and if there are more blue than red vertices
in total, then there is an edge containing more blue than red vertices.

Conforti et al. asked for a combinatorial proof which was given in [6]. We present the following
Min-Max Theorem which generalizes the Theorems 1 and 2.
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Theorem 3. Let H = (V,E) be a balanced hypergraph and d : E → N and b : V → N, such that for
all e ∈ E :

∑
v∈e

b(v) ≥ d(e). Then the following minimax-relation holds:

max
H′⊆H

w(H ′) = min
x∈X(H,d,b)

∑
v∈V

x(v).

In particular, we obtain a defect version of the generalized Hall Theorem. Our proof is purely
combinatorial and based on the coloring properties mentioned above. However, it is possible to
obtain the result by similar reasoning as in [4].
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Introduction. The field of parameterized complexity is concerned with relating the running
time of an algorithm not just with the size of the input, but also either with the solution size or some
structural property of the input. Specifically in the case of graphs, the parameterized perspective
has led to much research in structural parameters such as treewidth [1] or cliquewidth [2].

A new parameter called neighborhood diversity (n.d. for short in the following text) was introduced
by Lampis in 2009 [3]. The importance of this parameter is in that it is simple, incomparable with
treewidth (see Figure .11) and not restricted by some lower-bounds affecting treewidth [4] (i.e., the
time complexity of MSO1 model checking on graphs with bounded n.d. is only singly-exponential
in n.d.).

Since n.d. is incomparable to treewidth (i.e., there are graph classes with unbounded treewidth
and constant n.d. and vice versa), it is desirable to know which problems that are hard w.r.t. one
parameter become easy as we move to the other and vice versa. Here we look at two domination-style
problems: Capacitated Dominating Set and Vector Dominating Set (CDS and VDS for
short) that have been shown to be W[1]-hard w.r.t. treewidth (the latter quite recently) [5] [6]. Using
an old result from the 80s about the fixed-parameter tractability of integer linear programming with
respect to the dimension [7], we show both of these problems to be fixed-parameter tractable with
respect to n.d.

Neighborhood diversity. A graph with n.d. k can be viewed as a k-partite graph where first,
between any two partitions there is either a complete bipartite graph or no edges at all, and second,
where every partition is either a clique or an empty graph. We call the partites types.

Capacitated Dominating Set. In the CDS problem we are given a graph along with non-
negative integers cv called domination capacities of vertices. The goal is to find D ⊆ V as small as
possible along with an assignment ϕ : V \D → D which respects the capacities, i.e. |f−1(v)| ≤ cv
for every v ∈ D.

Key Ideas. There are three key ingredients to the proof showing that the CDS problem is FPT
w.r.t. n.d. We will present them here as informal proposition and two lemmas.

Proposition 1. For every optimal CDS solution there is a solution such that the vertices within
every n.d. type are present ordered by their capacities. We will call solutions of this form fundamental
solutions.

This proposition means that a solution can be described simply by saying how many vertices to
select from every type, instead of which vertices they are.

Lemma 2. Let G be a graph with n.d. k. Then there is an integer convex program using k + k2

variables such that every fundamental CDS solution corresponds to a feasible solution of the program
and vice versa.

5This research was partially supported by the project 14-10003S of GA ČR and GA UK 202-10/259611 and to
the grant SVV–2013–260103.
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The program we mention is not linear, but has constraints containing some convex functions fi
(one for every type). With a small trick, these can be turned into a O(n) linear constraints that
transcribe the same region (see Figure 2).

Lemma 3. There is an integer linear program describing the same convex space as the integer
convex program mentioned above.

Theorem 4. The CDS problem is fixed-parameter tractable with respect to n.d.

We also observe a corollary relating to the field of approximation algorithms:

Corollary 5. Solving the aformentioned linear program without the requirement of integrality, using
a very simple rounding procedure we get a CDS solution of size at most OPT + k.

Vector Dominating Set. The VDS problem is very similar to the CDS problem both in
description and in how we solve it. Instead of vertex capacities here we have vertex demands
determining how many neighboring vertices have to be in the dominating set for a given vertex to
be satisfied. The solution is similar because we can again create an integer convex program. This
was not obvious since proving hardness for the two problems w.r.t treewidth required two different
approaches. Luckily, when converting the convex program for CDS to the one for VDS, we only
have to change a sum function to a max function, which is again convex.

Figure .11: Hierarchy of graph parameters
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Figure .12: The functions fi
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Extended Abstract

A cycle is a graph that has all vertices of even degree. The length of a cycle is the number of
edges contained in the cycle. A cycle cover of a graph G is a collection of cycles in G such that each
edge from E(G) is contained in at least one of the cycles. The length of a cycle cover is a sum of all
lengths of cycles in the cover. We are interested in finding cycle covers such that their length is as
short as possible.

Conjecture 1 (Shortest Cycle Cover Conjecture). [1] Every bridgeless graph on m edges has cycle
cover of length at most 1.4m.

Conjecture 1 relates to several other well known conjectures, such as cycle double cover conjecture
[5]. Jamshy, Raspaud, and Tarsi [4] showed that graphs with nowhere-zero 5-flow have a cycle
cover of length at most 1.6m (their result extends to matroids with nowhere-zero 5-flow). Hence a
nowhere-zero 5-flow conjecture implies a cycle cover of length at most 1.6m. Máčajová, Raspaud,
Tarsi, and Zhu [7] showed that the existence of Fano-flow using at most 5 lines of Fano plane on
bridgeless cubic graphs implies a short cycle cover of length at most 1.6m (this is a consequence of
Fulkerson Conjecture).

The best known general result on short cycle covers is due to Alon and Tarsi [1] and Bermond,
Jackson, and Jaeger [2]: every bridgeless graph with m edges has a cycle cover of total length at
most 5m/3. There are numerous results on short cycle covers for special classes of graphs. We
refer the reader to the monograph of Zhang [8] where whole chapter is devoted to short cycle
covers. Significant attention has been devoted to cubic graphs. The best result for cubic graphs
up to date is by Kaiser et al. [6]: every bridgeless cubic graph has a cycle cover of length at most
34m/21 ≈ 1.619m.

The main obstacle in approach of Kaiser et al. [6] are the circuits of length 5 contained in the
graph. Hou and Zhang [3] proved that if G is a bridgeless cubic graph with no circuits of length 5,
then G has a cycle cover of length at most 1.6m. Moreover, if all circuits of length 5 are disjoint,
then the length of the cover is at most 351/225 ·m ≈ 1.6044m.

We slightly refine the approach of Kaiser et al. [6] and combine it with a technique for avoiding
certain number of 5-circuits in 2-factors of cubic graphs (There is a 2-factor such that at least half
of the vertices that are not in certain special subgraphs are not in 5-circuits of the 2-factor). We
improve the bound for cubic graphs as follows.

Theorem 2. Every bridgeless cubic graph on m edges has a cycle cover of length at most 1.6m.

We can restate our results in terms of the number of circuits of length 5 that are contained in the
graph.

Theorem 3. Every bridgeless cubic graph on m edges with at most k circuits of length 5 has a cycle
cover of length at most 14/9m+ 1/9k.

Theorem 3 improves the known results for cubic graphs with restrictions on circuits of length 5.

Corollary 4. Every bridgeless cubic graph on m edges without circuits of length 5 has a cycle cover
of length at most 14/9 ·m ≈ 1.556m.

Corollary 5. Every bridgeless cubic graph on m edges with all circuits of length 5 disjoint has a
cycle cover of length at most 212/135 ·m ≈ 1.570m.
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Extended Abstract

Let G = (V,E) be a simple graph. For an integer k ≥ 1, a function f : V → {0, 1, 2} is a Roman
k-tuple dominating function if for any vertex v with f(v) = 0, there exist at least k vertices w in its
neighborhood with f(w) = 2, and for any vertex v with f(v) 6= 0, there exist at least k − 1 vertices
w in its neighborhood with f(w) = 2. The weight of a Roman k-tuple dominating function f of G is
the value f(V ) =

∑
v∈V f(v). The minimum weight of a Roman k-tuple dominating function of G

is its Roman k-tuple domination number, denoted by γ×kR(G). In this talk, we state some of our
recent results on the Roman k-tuple domination number of a graph.

Theorem 1. Let G be a graph of order n with minimum degree at least k − 1 ≥ 1. Then 2k ≤
γ×kR(G) ≤ 2n, and γ×kR(G) = 2k if and only if G = Kk or G = H ◦k Kk for some graph H.

Note that if k ≥ 2 and G is (k − 1)-regular, then γ×kR(G) = 2n. We will show that its converse
holds only for k = 2. For k ≥ 3, for example, let G be a graph which is obtained from the complete
bipartite graph Kk,k minus a matching of cardinality k− 1. Then, obviously, γ×kR(G) = 4k while G
is not (k − 1)-regular.

Proposition 2. Let G be a graph of order n without isolated vertex. Then γ×2R(G) = 2n if and
only if G = `K2 for some ` ≥ 1.

Theorem 3. For any graph G with δ(G) ≥ k − 1 ≥ 1,

γ×k(G) + k ≤ γ×kR(G) ≤ 2γ×k(G),

and the lower bound is sharp.

Proposition 4. Let k ≥ 2 , and let G be a graph which is not isomorphic to Kk or H ◦k Kk, for
some graph H. Then γ×kR(G) = 2k + 1 if and only if G = Ak.

Proposition 5. Let f = (V0, V1, V2) be any γ×kR-function on G. Then the following statements
hold.

(a) V1 ∪ V2 is a k-tuple dominating set of G.
(b) V2 is a k-tuple dominating set of G[V0 ∪ V2].
(c) For k ≥ 2, V2 is a (k − 1)-tuple total dominating set of G.
(d) Every vertex of degree k − 1 belongs to V1 ∪ V2.
(e) G[V1] has maximum degree 1.
(f) Every vertex of V1 is adjacent to precisely k − 1 vertices of V2.
(g) Each vertex of V0 is adjacent to at most two vertices of V1.
(h) If G is a k-tuple Roman graph and V1 = ∅, then γ×k(G) = |V2|.
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Extended Abstract

The problem studied in this paper has been motivated by a series of developments which followed
a question raised by Erdős and Rothschild [3] regarding edge-colorings of graphs avoiding a given
monochromatic subgraph. As usual, a graph G is said to be F -free if it does not contain F as
a subgraph. Given a graph F , the well-known Turán problem [6] associated with F asks for the
maximum number ex(n, F ) of edges over all F -free n-vertex graphs and for the graphs that achieve
this maximum, which are called F -extremal. Instead of looking for F -free n-vertex graphs, Erdős
and Rothschild asked for n-vertex graphs that admit a large number of edge-colorings such that
every color class is F -free. (We observe that edge-colorings are not necessarily proper.) Formally, an
F -free r-coloring of a graph G is an r-edge-coloring of G such that the graphs induced by the edges
of each color are F -free. In particular, Erdős and Rothschild conjectured that the number of K`-free
2-colorings is maximized by the (`− 1)-partite Turán graph on n-vertices. Note that F -extremal
graphs are natural candidates, as any r-coloring is trivially F -free, which leads to rex(n,F ) such
colorings.

Yuster [7] provided an affirmative answer to this conjecture for K3 and any n ≥ 6, while Alon,
Balogh, Keevash and Sudakov [1] showed that, for r ∈ {2, 3} and n ≥ n0, where n0 is a constant
depending on r and `, the respective Turán graph is also optimal for the number of K`-free r-colorings.
However, this is not the case for any r ≥ 4, where extremal graphs are not yet known unless r = 4
and F ∈ {K3,K4} [6].

Balogh [2] added a twist to this problem by considering edge-colorings of a graph avoiding a
copy of F with a prescribed coloring. Naturally, given a number r of colors and a graph F , an
r-pattern P of F is a partition of its edge set into r (possibly empty) classes, and an edge-coloring
(not necessarily proper) of a graph G is said to be (F, P )-free if G does not contain a copy of F
in which the partition of the edge set induced by the coloring is isomorphic to P . Regarding this
problem, Balogh proved that, for r = 2 colors and any 2-color pattern of K`, the (` − 1)-partite
Turán graph on n ≥ n0 vertices once again yields the largest number of 2-colorings with no forbidden
pattern of K`. However, he also remarked that, if we consider r = 3 and a rainbow-colored triangle
(i.e., a triangle partitioned into three classes with one edge in each), the complete graph on n vertices
allows 3 · 2(n2) − 3 colorings, by just choosing two of the three colors and coloring the edges of Kn

arbitrarily with these two colors. This is more than 3n
2/4, which is an upper bound on the number

of 3-colorings of the bipartite Turán graph. It was recently proved that the complete graph is indeed
optimal in this case [3].

We also considered forbidden rainbow-triangles, and proved that the Turán graph is again optimal
if more colors are used, more precisely:

Theorem 1. There exists r0 such that, for any fixed number r ≥ r0 and n sufficiently large, the Turán
graph for F = K3 on n vertices yields the largest number of r-colorings avoiding rainbow-triangles
among all n-vertex graphs.

The current value of r0 that we have is r0 = 49, but we are convinced that this number may be
improved.

With the regularity lemma we can show the following.
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Theorem 2. Let r ≥ 4 be fixed. Let G be an n-vertex graph where n is sufficiently large. The
number of r-edge colorings of G avoiding rainbow-triangles is at most

r
n2

4
(1+o(1)).

Thus, the number of rainbow-triangle-free colorings of the balanced complete bipartite graph is
at least close to the optimum.

Moreover, for forbidden rainbow complete graphs K` (i.e., the edge set of K` is partitioned into(
`
2

)
classes each containing one edge) we have.

Theorem 3. For fixed ` ≥ 3 there is an r0(`) such that for any fixed r ≥ r0(`) and n sufficiently
large the following holds.

The number of r-edge colorings of any graph G on n vertices avoiding rainbow-K` is at most

r
`−2

2(`−1)
n2(1+o(1))

.

The calculations show that r0(`) can be chosen to be approximately
(
`
2

)`−1
. Also note that the

Turán graph for K` on n vertices allows r
`−2

2(`−1)
n2

distinct r-edge colorings with no rainbow-K`.
These results suggest that, for any forbidden rainbow-K`, where ` ≥ 3 and any fixed r ≥ r0(`), the

Turán graph for F = K` might yield the largest number of r-colorings without creating a rainbow-K`

as long as n is sufficiently large. This may even be the case for any fixed forbidden rainbow-F with
chromatic number χ(F ) ≥ 3.
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Extended Abstract

We consider edge-colorings of graphs that satisfy a certain property. Given a number r of colors
and a graph F , an r-pattern P of F is a partition of its edge set into r (possibly empty) classes. An
edge-coloring (not necessarily proper) of a graph H is said to be (F, P )-free if H does not contain a
copy of F in which the partition of the edge set induced by the coloring is isomorphic to P . If at
most r colors are used, we call it an (F, P )-free r-coloring of H. For example, if the pattern of F
consists of a single class, no monochromatic copy of F should arise in H. We ask for the n-vertex
host graphs H (among all n-vertex graphs) which allow the largest number of (F, P )-free r-colorings.

Questions of this type have been first considered by Erdős and Rothschild [3], who asked whether
considering edge-colorings avoiding a monochromatic copy of F would lead to extremal configurations
that are substantially different from those of the Turán problem. Indeed, F -free graphs on n-vertices
are natural candidates for admitting a large number of colorings, since any r-coloring of their edge
set obviously does not produce a monochromatic copy of F (or a copy of F with any given pattern,
for that matter), so that (Turán) F -extremal graphs admit rex(n,F ) such colorings, where, as usual,
ex(n, F ) is the maximum number of edges in an n-vertex F -free graph. We should also mention that
Balogh [2] was the first to consider colorings avoiding fixed patterns that are not monochromatic.

Yuster [7] proved that, for r = 2 colors and F = K3, the n-vertex Turán graph H for K3 does
indeed admit the largest number of 2-colorings with no monochromatic K3 for all n ≥ 6. Later, Alon,
Balogh, Keevash, and Sudakov [1] extended this result for r ∈ {2, 3} and any fixed monochromatic
complete graph K` by showing that the (` − 1)-partite Turán graph H on n ≥ n0 vertices yields
the largest number of r-colorings, where n0 is a constant for ` and r. However, for r ≥ 4 colors,
the Turán graph for K` is no longer optimal, and the situation becomes much more complicated;
in fact, extremal configurations are not known unless r = 4 and F ∈ {K3,K4} (see [6]). A similar
phenomenon, in which (Turán) extremal graphs admit the largest number of r-colorings if r ∈ {2, 3},
but do not for r ≥ 4, has been observed for a few other classes of graphs and hypergraphs, such as
the 3-uniform Fano plane [5].

As it turns out, monochromatic stars F = St with t ≥ 3 edges were the first instances for which
it was shown [4] that (Turán) F -extremal graphs (in this case, (t− 1)-regular graphs for n even) do
not admit the largest number of r-colorings with no monochromatic copy of F for any fixed r ≥ 2.
For example, for r = 2, vertex-disjoint copies of complete bipartite graphs with both vertex classes
of size a little less than 2t yield many more colorings than (t− 1)-regular graphs. However, extremal
n-vertex graphs are not yet known for all r ≥ 2 and t ≥ 3.

Here, we consider forbidden rainbow-colored stars St, that is, stars such that every edge is in
a different class of the pattern (in particular, r ≥ t). For t = 2 and any given number of colors
r ≥ 2, a matching of size n/2 (n even) yields the largest number of r-colorings with no rainbow
S2, as this restriction implies that any such coloring has monochromatic components. The same
extremal configuration had been observed for monochromatic S2 when r = 2, but not for larger
values of r. (Note that the set of r-colorings avoiding a monochromatic S2 is precisely the set of
proper r-edge-colorings of a graph, and hence this problem consists of finding n-vertex graphs with
the largest number of proper colorings.)

As in the monochromatic case, (Turán) extremal graphs are not optimal for any t ≥ 3 and r ≥ 2.
However, the situation in the case of rainbow-colored stars is rather different, since we prove that
the complete graph Kn, admits the largest number of colorings in all such cases. The following is
our main result.
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Theorem 1. Let r ≥ 2 and t ≥ 3. Then, for n sufficiently large, among all n-vertex graphs, the
complete graph Kn yields the largest number of r-colorings with no rainbow St.

A similar behavior may be observed in other cases. Indeed, given r ≥ 3, the complete graph Kn is
extremal for n ≥ n0 if we forbid stars S2t, t ≥ 3, where the 2t edges are grouped in t pairs, and every
pair of edges in a group is colored the same, but edges in different groups are colored differently.
The same holds for forbidden rainbow-matchings I`, ` ≥ 3. However, for ` = 2, the (Turán) extremal
graph (in the case of I2, the n-vertex star) is extremal for any number r ≥ 2 of colors, as was the
case for S2.

In general, applying the (colored version) of the Regularity Lemma shows that, for any r ≥ 3
and any given rainbow-F such that χ(F ) = 2, the complete graph Kn is close to being extremal.
However, the picture changes in the case χ(F ) ≥ 3, where, for r ≥ r0, the Turán graph for F on
n ≥ n0 vertices yields more rainbow-F free r-colorings than the complete graph Kn. Two interesting
open questions would be to characterize the bipartite instances of F such that the complete graph is
extremal, and the instances of non-bipartite graphs for which Turán graphs are extremal for large
(constant) r. It would be also nice to find other extremal configurations for particular choices of F
and r.
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Extended Abstract

Abstract. The packing chromatic number χρ(G) of a graph G is the smallest integer k such that
its set of vertices V (G) can be partitioned into k disjoint subsets V1, . . . , Vk, in such a way that
every two vertices in Vi are at distance greater than i in G for every i, 1 ≤ i ≤ k. We determine
the packing chromatic number of coronas of paths and cycles and give sufficient and/or necessary
conditions for a caterpillar to have packing chromatic number at most 4, 5 and 6.
Keywords: packing chromatic number, cross product, corona, caterpillar.

1 Introduction

All the graphs we considered are undirected, finite and connected. We denote by V (G) the set of
vertices of a graph G and by E(G) its set of edges. The distance dG(u, v), or simply d(u, v), between
vertices u and v in G is the length of a shortest path joining u and v. The diameter diam(G) of G is
the maximum distance between two vertices of G. We denote by Pn the path of order n and by Cn,
n ≥ 3, the cycle of order n.

A packing k-coloring of G is a mapping π : V (G)→ {1, . . . , k} such that π(u) 6= π(v) whenever
d(u, v) ≤ π(u). The packing chromatic number χρ(G) of G is then the smallest k such that G
admits a packing k-coloring. In other words, χρ(G) is the smallest integer k such that V (G) can
be partitioned into k disjoint subsets V1, . . . , Vk, in such a way that every two vertices in Vi are at
distance greater than i in G for every i, 1 ≤ i ≤ k.

Packing coloring has been introduced by Goddard, Hedetniemi, Hedetniemi, Harris and Rall [2, 3]
under the name broadcast coloring and has been studied by several authors in recent years.

Fiala and Golovach [1] proved that determining the packing chromatic number is an NP-hard
problem for trees. Determining the packing chromatic number of special subclasses of trees is thus
an interesting problem. The exact value of the packing chromatic number of trees with diameter at
most 4 was given in [3]. In the same paper, it was proved that χρ(Tn) ≤ (n+ 7)/4 for every tree Tn
or order n 6= 4, 8, and this bound is tight, while χρ(Tn) ≤ 3 if n = 4 and χρ(Tn) ≤ 4 if n = 8, these
two bounds being also tight.

The corona G�K1 of a graph G is the graph obtained from G by adding a degree-one neighbor
to every vertex of G. We call such a degree-one neighbor a pendant vertex or a pendant neighbor.

A caterpillar of length ` is a tree whose set of internal vertices (vertices with degree at least 2)
induces a path of length `, called the central path.

2 Coronas of paths and cycles

The packing chromatic numbers of paths and cycles have been determined by Goddard, Hedetniemi,
Hedetniemi, Harris and Rall [3]: (i) χρ(Pn) = 2 if n ∈ {2, 3}, (ii) χρ(Pn) = 3 if n ≥ 3, (iii) χρ(Cn) = 3
if n = 3 or n ≡ 0 (mod 4), and (iv) χρ(Cn) = 4 if n ≥ 5 and n ≡ 1, 2, 3 (mod 4).

Our first result determines the packing chromatic number of coronas of paths. Note that any
corona Pn �K1 is also a caterpillar of length n.
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Theorem 1. The packing chromatic number of the corona graph Pn �K1 is given by:

χρ(Pn �K1) =


2 if n = 1,
3 if n ∈ {2, 3},
4 if 4 ≤ n ≤ 9,
5 if n ≥ 10.

Recently, William, Roy and Rajasingh proved that χρ(Cn �K1) ≤ 5 for every even n ≥ 6 [5].
We complete their result as follows:

Theorem 2. The packing chromatic number of the corona graph Cn �K1 is given by:

χρ(Cn �K1) =

{
4 if n ∈ {3, 4},
5 if n ≥ 5.

3 Caterpillars

With each caterpillar CT` with central path x1 . . . x` we associate the word w(CT`) = a1 . . . a` on
the alphabet N, where ai is the number of pendant neighbors of xi for every i, 1 ≤ i ≤ `. In order
to describe families of caterpillars, we will use the symbol x to mean any integer, as well as the
standard operators from Formal Language Theory. For instance, each path Pn, n ≥ 4, is described
by the expression 10n−21, the family {Pn �K1, n ≥ 1} is described by the expression 1+ and the
family of all caterpillars having a central path with end-vertices of degree 2 by the expression 1x∗1.

The packing chromatic number of caterpillars was first studied by Sloper [4] who proved the
following: If CT` is a caterpillar of length ` then (i) χρ(CT`) ≤ 6 if ` ≤ 34, and (ii) χρ(CT`) ≤ 7 if
` ≥ 35.

Our goal is to refine this result by characterizing caterpillars with small packing chromatic number.
Clearly, caterpillars with packing chromatic number 2 are all stars K1,n with n ≥ 1. Goddard,
Hedetniemi, Hedetniemi, Harris and Rall [3] characterized caterpillars with packing chromatic number
at most 3: a caterpillar CT has packing chromatic number at most 3 if and only if w(CT ) = x(0x)∗.

In this work, we give preliminary results in order to characterize caterpillars with packing
chromatic number at most 4, 5 and 6.
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Extended Abstract

Let H = (V, E) be a hypergraph, and let c : V → {1, 2, . . . , r} be a strong coloring of the vertices
of H, which means that no two vertices of the same edge have the same color.

For every edge X ∈ E , let p(X) denote a color pattern of X, that is, the set of colors appearing
on X. A coloring c is called harmonious if p(X) 6= p(Y ) for every pair of distinct edges X,Y ∈ E .

We denote by h(H) the least number of colors needed for a harmonious coloring of H, and
call it occasionally the harmonious number of H. This notion arose as a natural generalization of
harmonious coloring of graphs introduced in [6].

The case of multisets is a natural generalization of legitimate coloring of projective planes studied
by Alon and Furedi [1].

Actually there are other graph coloring problems related to this topic. Indeed, if H is a hypergraph
dual to a simple graph G, then the notion of harmonious coloring of H corresponds to the vertex-
distinguishing edge coloring of G, introduced by Burris and Schelp in [4]. Thus, h(H) = χ′s(G),
where χ′s(G) is the related chromatic parameter.

Let us concentrate on connected graphs with at least two edges (we will call them nice). Burris
and Schelp made two conjectures concerning χ′s(G):

Conjecture 1. Every nice graph satisfies χ′s(G) ≤ |V (G)|+ 1.

This conjecture has been proved by Bazgan et al. in [5]. For the second conjecture we need some
notations. Let nd be the number of vertices of degree d in G. Let r = r(G) be the least integer
satisfying

(
r
d

)
≥ nd for every d = 1, 2, . . . ,∆(G).

Conjecture 2. Every nice graph satisfies χ′s(G) ≤ r(G) + 1.

That one is widely open. Curiously, it is not trivial even in the case ∆ = 2 (cf. [2]). It is not
known if the weaker version (with any additive constant) is true even for cubic regular graphs.

The following theorem is proved in [3].

Theorem 3. Every graph G on n vertices with ∆(G) ≥
√

2n+ 4 and δ(G) ≥ 5 satisfies Conjecture
2.

The simplest unknown case not covered by the above result is that of cubic graphs. In the
following result we apply the entropy compression argument to get improved estimates for regular
graphs with a perfect matching.

Theorem 4. Let G be a d-regular graph on n vertices. Assume that G has a perfect matching. Then
there is a vertex-distinguishing edge coloring of G using at most K d

√
n colors, where K is a constant

depending only on d given by the following formula:

K = (22d−1(d− 1)!(d− 1))
1
d +

(
22d−1(d− 1)!

(d− 1)d−1

) 1
d

.
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For cubic graphs the above theorem gives 6 3
√

2n which is currently best bound.

An analog of Conjecture 2 for hypergraphs is not possible, that is, there is no hope for a general
bound of the form h(H) ≤ r(H) + c, where r(H) is defined analogously to r(G), as the least integer
r satisfying

(
r
d

)
≥ md, where md is the number of edges of size d in H. Indeed, a simple star S with

m edges (considered as a 2-uniform hypergraph) satisfies h(S) = m+ 1 while r(H) is of order m1/2.
But perhaps an analog of Conjecture1 for hypergraphs could be true.

Conjecture 5. Every k-uniform hypergraph H with m edges satisfies h(H) ≤ m+ k − 1.

The following result is obtained using entropy compression argument.

Theorem 6. Let k and ∆ be fixed positive integers. Then there exists m0 = m0(k,∆) such that
every k-uniform hypergraph H of maximum degree ∆ with m edges satisfies h(H) ≤ k

k−1

k
√
k · k!∆m,

provided m ≥ m0.

It confirms Conjecture 5 for many cases of uniform hypergraphs.
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Extended Abstract

For a vertex v of a connected graph G(V,E) and a subset S of V , the distance between v and S is
defined by d(v, S) = min{d(v, x) : x ∈ S}. For an ordered k -partition Π = {S1, S2 . . . Sk} of V , the
representation of v with respect to Π is the k-vector r(v|Π) = (d(v, S1), d(v, S2) . . . d(v, Sk)). The
k-partition Π is a resolving partition if the k-vectors r(v|Π), v ∈ V are distinct. The minimum k for
which there is a resolving k-partition of V is the partition dimension of G. In this paper we obtain
the partition dimension of circulant graphs G = C(n,±{1, 2 . . . j}), 1 ≤ j < bn

2
c, n ≥ (j + k)(j + 1),

n ≡ k mod (2j) and k and 2j are co-primes as,

pd(G) = j + 1 when j is even and all k = 2m− 1, 1 ≤ m ≤ j
pd(G) = j + 1 when j is odd and all k = 2m, 1 ≤ m ≤ j.

Salman et al.[2] claimed that partition dimension of a class of circulant graph C(n,±{1, 2}), for
all even n ≥ 6 is four and it is 3 when n is odd. While this is correct in most cases, in the case of
n ≡ 2 mod(4) we proved that the partition dimension is three [1].

In this paper we prove a lower bound for C(n;±{1, 2 . . . j}) and show that this bound is sharp.
Theorem 1. Let G = C(n;±{1, 2 . . . j}), 1 < j < bn/2c where j is odd, be a circulant graph of

order n. If G is such that, n ≥ (j + k)(j + 1), n ≡ k mod (2j) and k and 2j are co-primes. Then for
all k = 2m− 1, 1 ≤ m ≤ j − 1; pd(G) = j + 1.

A rigorous attempt is made to solve the partition dimension problem of C(n;±{1, 2 . . . j}),
1 < j < bn/2c.
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Extended Abstract

Introduction. Let G be a k−connected graph with k ≥ 2. A hinge is a subset of k vertices
whose deletion from G yields a disconnected graph. We consider the algebraic connectivity and
Fiedler vectors of such graphs, paying special attention to the signs of the entries in Fielder vectors
corresponding to vertices in a hinge, and to vertices in the connected components at a hinge. The
results extend those in [1], [2] and [3].

Labeling the vertices of G by v1, v2, . . . , vn and denoting a Fiedler vector by y = [yi], the
coordinates of y can be assigned naturally to the vertices of G: the coordinate yi labels the vertex
vi. This assignment has been called a characteristic valuation and Fiedler noticed that it induces
partitions of the vertices of G that are naturally connected clusters, important for applications
and for characterizing the graph structure. As an example, Pothen, Simon and Liu [4] suggested a
spectral graph partitioning algorithm based on the entries of a Fiedler vector.

Structural Results. Our main result is an extension of that in [2] to graphs without cut vertices,
describing the structure of the partition arising from a characteristic valuation. In particular, we
show how a set of k > 1 vertices that disconnect G may induce connected subgraphs having vertex
valuation of the same sign, introducing a natural partition of vertices in G. Before stating our main
Theorem, we need some definitions.

Let Ĥ be a hinge in G and consider a connected component C of the graph G \ Ĥ. We say that
the hinge Ĥ or the component C is null, positive, nonnegative, or mixed if the valuation of each of
its vertices is zero, positive, nonnegative, or mixed, respectively.

Theorem 1. Let G be connected graph and y = [yi] a characteristic valuation of G. Let Ĥ be a
hinge of G and let C0, C1, . . . , Cr be the connected components of G \ Ĥ. Label the vertices of Ĥ as
l1, . . . , lk, where yl1 ≤ yl2 ≤ · · · ≤ ylk . If Ĥ is null and there exists a mixed component Ci, then it is
the only mixed component and all the other components are null. If Ĥ is null and there is no mixed
component, then each component is either null, positive or negative. If Ĥ is non-negative, then only
one component has vertices with negative valuation. All the remaining vertices vs satisfies yl1 < ys.

Characterizing the Algebraic Connectivity. Also, in this study we use our structure
theorem to compute the algebraic connectivity for graphs with special hinges. The results are natural
extensions of those in [3], where graphs with cut vertices were considered.

Let G be a graph and L its Laplacian matrix. For a hinge Ĥ of G, denote the connected
components of G \ Ĥ by C0, C1, . . . , Cr. For each component, let L(Ci) be the principal submatrix
of L, corresponding to the vertices of Ci. The Perron value of Ci is the Perron value of the positive
matrix L−1(Ci) and we say Cj is a Perron component at Ĥ if its Perron values is the largest among
all components C0, C1, . . . , Cr.

Some of our characterizations for the algebraic connectivity are stated bellow.

Theorem 2. Let G be a connected graph and y = [yi] a characteristic valuation of G. If there
exists a null hinge Ĥ, such that G \ Ĥ has no mixed component, then there are two or more Perron
components at Ĥ. In this case, a(G) = 1

ρ(L(C)−1)
for each Perron component C at Ĥ.

Theorem 3. Let G be a graph and y = [yi] a characteristic valuation of G. Let Ĥ be a nonnegative
(nonpositive) or null hinge of G. For each positive (or negative) component C at Ĥ, there is a
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nonnegative matrix M of rank at most 1, and a scalar γ > 0, such that ρ(L(C)−1 + γM) = 1
a(G)

.

Furthermore, M = 0 if and only if Ĥ is null.

One question we want to address is whether or not the set of Fiedler vectors identifies the same
null hinge. More precisely, the following result constructs the set of all Fiedler vectors that identifies
Ĥ as a null hinge.

Theorem 4. Let G be a graph and y = [yi] a characteristic valuation of G. Suppose there exists
a null hinge Ĥ, such that G \ Ĥ has no mixed component, and for t ≥ 2, let C1, C2, . . . , Ct be
the set of Perron components of G \ Ĥ. Assume the Laplacian matrix is in the form (??). Let
y(1), y(2), . . . , y(t) be the set of Perron vectors for the set of matrices L(C1)−1, L(C2)−1, . . . , L(Ct)

−1

such that 1T y(i) = 1. Define, for i = 2, .., t, the vector

fi =


y(1)(v) v ∈ C1,

−y(i)(v) v ∈ Ci,
0 otherwise.

(1)

Then f2, f3, . . . , ft is a set of linearly independent eigenvectors associated with a(G) and each Fiedler
vector that identifies Ĥ as a null hinge is a linear combination of fi, therefore it has no mixed
component.

Bounding the algebraic connectivity. We introduce some concepts which will help us to
better understand how the algebraic connectivity is bounded. More specifically, want to relate the
algebraic connectivity as a function of the number of edges between a hinge and its components, as
an attempt to generalize the well known fact (see [1]) that, for a k-connected graph, a(G) ≤ k.

Let Ĥ be a hinge of the graph G and let C be a component at Ĥ. Let v1, v2, . . . , vt be the vertices
in the component C. We shall denote by dĤ(vi) the number of edges connecting vi to the vertices
of Ĥ. Similarly, for each vertex u of Ĥ, we let dC(u) denote the number of vertices in C that are
adjacent to u.

Further, we define the quantity SC = maxvi∈C
{
dĤ(vi)

}
which shall be named strength of the

component C. Denoting the set of components at Ĥ byH, we define the quantity SĤ = maxC∈H {SC}
which shall be named strength of the hinge Ĥ.

Theorem 5. Let G be a graph and let Ĥ be a hinge of G. For each j = 0, . . . , r, let the component
Cj have pj vertices. Then we have the following conclusions.
a) a(G) ≤ SĤ .
b) If a(G) = SĤ , then each vertex of G \ Ĥ is adjacent to SĤ vertices in the hinge Ĥ and for each
i, j = 0, . . . , r and each u ∈ Ĥ we have pidCj (u) = pjdCi(u).

c) If each vertex of G \ Ĥ is adjacent to SĤ vertices in the hinge Ĥ and for each i, j = 0, . . . , r and
each u ∈ Ĥ we have pidCj (u) = pjdCi(u), then SĤ is a Laplacian eigenvalue of G. In this case, the
multiplicity of SĤ as an eigenvalue is at least r.
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Extended Abstract

The identifying codes were first introduced by Karpovsky, Chakrabarty, and Levitin in [4].
Furthermore, they have formed a fundamental basis for a wide variety of theoretical work and
practical applications. If we settle that every vertex v of a graph G only exhibits the messages from
some neighbors of v in G, then we can get a code with size ≤M(G) where M(G) is the minimum
cardinality of an identifying code in a graph G. We call such code an identifying set of a graph G. If
two graphs have the same neighborhood sequence, then they have the same minimum cardinality of
an identifying code [4] and the choice identification number [1].

Here we introduce some definitions used in the paper. Let G be a graph, u be a vertex of G,
and B(u)(or BG(u)) be the set of u with all its neighbors in G. And N(u)(or NG(u)) is the set
of all neighbors of u in G. Then B(u) = N(u) ∪ {u}. A sequence (B1, B2, ..., Bn) of subsets of an
n-set S is a neighborhood sequence if there exist a graph G with a vertex set S and a permutation
(v1, v2, ..., vn) of S such that B(vi) = Bi for i = 1, 2, ..., n.

An automorphism f of a graph G is a permutation of vertex set V (G) such that xy ∈ E(G)
if and only if f(x)f(y) ∈ E(G). The collection Aut(G) of all automorphisms of G is a group by
a composition operator. Define Aut(B1, B2, ..., Bn) as the set {f : f is a permutation of V (G)
and (f(B1), f(B2), ..., f(Bn)) is a permutation of B1, B2, ..., Bn} where f(S) = {f(x) : x ∈ S}
for S ⊆ V (G). Such permutation is called a (B1, B2, ..., Bn)-automorphism. It is immediate that
every automorphism f of G is also an element of Aut(B1, B2, ..., Bn) where (B1, B2, ..., Bn) is the
neighborhood sequence of a graph G.

In this paper, we first prove that, for every finite group Γ, there exists a neighborhood sequence
(B1, B2, ..., Bn) such that Γ is isomorphic to Aut(B1, B2, ..., Bn). We also get that, for each finite
group Γ, there exists a neighborhood sequence (B1, B2, ..., Bn) such that, for each subgroup H
of Γ, H is group isomorphic to Aut(E1, E2, .., Et) for some neighborhood sequence (E1, E2, .., Et)
where Ei ⊆ Bji and j1 < j2 < ... < jt. In the last section, we give some classes of graphs G with
neighborhood sequence (B1, B2, ..., Bn) satisfying Aut(G) and Aut(B1, B2, ..., Bn) are different, and
construct non-isomorphic graphs with the same neighborhood sequence having different automorphism
groups. The main results are in the following.

Let [n] be the set {1, 2, ..., n} and B1, B2, ..., Bn be subsets of an n-set S. Then we say
(B1, B2, ..., Bn) has an adjacent SDR if there exist vi ∈ Bi for i = 1, 2, ..., n such that v1, v2, ..., vn
are distinct and vj ∈ Bi if and only if vi ∈ Bj .

Theorem 1. Let B1, B2, ..., Bn be subsets of an n-set S. Then (B1, B2, ..., Bn) is a neighborhood
sequence if and only if (B1, B2, ..., Bn) has an adjacent SDR.

Theorem 2. For each finite group Γ, there exists a 2-connected graph with its neighborhood sequence
(B1, B2, ..., Bn) such that Γ is group isomorphic Aut(B1, B2, ..., Bn).

Theorem 3. Let Γ be a finite group. Then there exists a neighborhood sequence (B1, B2, ..., Bn) such
that, for each subgroup H of Γ, H is group isomorphic to Aut(E1, E2, .., Et) for some neighborhood
sequence (E1, E2, .., Et) where Ei ⊆ Bji and j1 < j2 < ... < jt.
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Extended Abstract

The study of symmetries of geometrical objects is an ancient topic in mathematics and its precise
formulation led to group theory. The symmetries of a graph X are described by its automorphism
group Aut(X). Every automorphism of X is a permutation of its vertices which preserves adjacencies
and non-adjacencies. The famous result of Frucht [5] says that every finite group is isomorphic to
the automorphism group of some graph X.

Most graphs are asymmetric, i.e., have only the identity automorphism. However, many results
in combinatorics and graph theory rely on highly symmetrical graphs. Automorphism groups are
important for studying large objects, since these symmetries allow one to simplify and understand
the objects. This algebraic approach is together with recursion and counting arguments the only
technique known for working with big objects.

For a class C of graphs, let Aut(C) denote its automorphism groups, i.e.,

Aut(C) = {Aut(X) : X ∈ C}.

The oldest non-trivial result concerning automorphism groups of restricted graph classes is for trees
(TREE) by Jordan [7] from 1869. He proved that Aut(TREE) contains precisely the groups obtained
from the trivial group by a sequence of two operations: the direct product and the wreath product
with a symmetric group. The direct product constructs the automorphisms that act independently
on non-isomorphic subtrees and the wreath product constructs the automorphisms that permute
isomorphic subtrees.
Geometric Representations. In our paper [8] we study automorphism groups of geometrically
represented graphs. The main question is how the geometry influences their automorphism groups.
For instance, the geometry of the sphere translates to 3-connected planar graphs which have
unique embeddings [9]. Thus, their automorphism groups are so called spherical groups which are
automorphism groups of tilings of the sphere. For general planar graphs, the automorphism groups
are more complex and they were described by Babai [1] using semidirect products of spherical and
symmetric groups.

We focus on intersection representations. An intersection representation R of a graph X is a
collection {Rv : v ∈ V (X)} such that uv ∈ E(X) if and only if Ru ∩Rv 6= ∅; the intersections encode
the edges. To obtain nice graph classes, one typically restricts the sets Rv to a specific type of
geometrical objects. We show that a well-understood structure of all intersection representations
allows one to determine the automorphism group. In particular, we study interval graphs and circle
graphs, and our technique can be applied to other similar graph classes.
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Figure .13: On the left, an interval graph and one of its interval representations. On the right, a
circle graph and one of its circle representations.
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When every set Rv is a closed interval of the real line, then we get an interval representation. In
a circle representation, the sets Rv are chords of a circle. A graph is an interval (resp. circle) graph
if it has an interval (resp. circle) representation; see Fig. .13 for examples. We denote these classes
by INT and CIRCLE, respectively.
Our Results. A pseudotree is a connected graph with at most one cycle. Their automorphism
groups can be constructed from the automorphism groups of trees by semidirect products with cyclic
and dihedral groups, which constructs the automorphisms rotating/reflecting the unique cycles.
Pseudoforests (PSEUDOFOREST) are graphs for which every connected component is a pseudotree.

We prove the following main result [8]:

Theorem 1. The classes INT and CIRCLE have the automorphism groups

(i) Aut(INT) = Aut(TREE),
(ii) Aut(CIRCLE) = Aut(PSEUDOFOREST).

Concerning (i), this equality is not well known. It was stated by Hanlon [6] without a proof in
the conclusion of his paper from 1982 on enumeration of interval graphs. Our structural analysis
is based on PQ-trees [2] which combinatorially describe all interval representations of an interval
graph. It explains this equality and further solves an open problem of Hanlon: for a given interval
graph, to construct a tree with the same automorphism group. Without PQ-trees, this equality is
very surprising since these classes are very different.

Using PQ-trees, Colbourn and Booth [3] give a linear-time algorithm to compute permutation
generators of the automorphism group of an interval graph. In comparison, our description allows
to construct an algorithm which outputs the automorphism group in form of group products what
reveals the structure of the group.

Concerning (ii), we are not aware of any results on automorphism groups of circle graphs. One
inclusion is trivial since PSEUDOFOREST ( CIRCLE. The other one is based on split-trees which
describe all representations of circle graphs. The semidirect product with a cyclic or dihedral
group corresponds to the rotations/reflections of the central vertex of a split-tree. Geometrically, it
corresponds to the rotations/reflections of the entire circle representation.

Our results are constructive and lead to polynomial-time algorithms computing automorphism
groups of interval and circle graphs. They output these groups in terms of group products, thus
revealing their structure. With a careful implementation, the best running times for these classes
can be likely matched.
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Extended Abstract

The ‘bipartite Moore bound’, that is, the maximum number B∆,D of vertices in a bipartite graph
of maximum degree ∆ and diameter D, was given by Biggs [5] as

B2,D = 2D and B∆,D =
2(∆− 1)D − 1

∆− 2
if ∆ > 2.

It is interesting to note that the bipartite Moore bound represents not only an upper bound on
the number of vertices of a bipartite graph of maximum degree at most ∆ and diameter at most D
but it is also a lower bound on the number of vertices of a regular graph G of degree ∆ and girth
g = 2D [5]. A (∆, g)-cage of order B∆,D is therefore a bipartite Moore graph if g = 2D.

Bipartite graphs satisfying the equality are called bipartite Moore graphs. For degrees 1 or 2,
bipartite Moore graphs are K2 and the 2D-cycles, respectively. When ∆ ≥ 3 the possibility of the
existence of bipartite Moore graphs was settled by Feit and Higman [?] in 1964 and independently
by Singleton [?] in 1966. They proved that bipartite Moore graphs exist only if the diameter is 2, 3,
4 or 6.

For D = 2 and each ∆ ≥ 3 bipartite Moore graphs of degree ∆ are the complete bipartite graphs
of degree ∆. For D = 3, 4, 6 bipartite Moore graphs of degree ∆ have been constructed only when
∆− 1 is a prime power [?]. Furthermore, Singleton [?] proved that the existence of a bipartite Moore
graph of diameter 3 is equivalent to the existence of a projective plane of order ∆− 1.

On the other hand, for D = 3, there are values of ∆ with no corresponding bipartite Moore
graphs. The question of whether or not bipartite Moore graphs of diameter 3, 4 or 6 exist for other
values of ∆ is open, and represents one of the most famous and difficult problems in combinatorics.

In view of the scarcity of bipartite Moore graphs, we next turn our attention to bipartite graphs
which are in some sense ‘close’ to being bipartite Moore graphs. The first such approximations have
been done by considering the degree/diameter problem for bipartite graphs, which means relaxing
the number of vertices by allowing a (hopefully small) defect, while keeping the degree and diameter
as given.

In this paper we consider a new approach which is motivated by the idea of radial Moore graphs
and digraphs, due to Knor [6]. We define a radial Moore bipartite graph to be a graph of maximum
degree ∆, radius k, diameter at most D = k + 1 and the number of vertices equal to B∆,D. As our
main result we prove

Theorem 1. For every radius k > 1 there exists a positive integer ∆m such that for all ∆ ≥ ∆m

there exists a radial Moore bipartite graph of radius k and degree ∆.
To prove our main theorem we gie a (fairly technical) construction and we will make use of the

result by Baker et al. [4] concerning the gaps between primes, namely, that for any sufficiently large
x there is a prime p such that x− x0.525 ≤ p ≤ x.

The paper concludes with several new open problems.
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Extended Abstract

Consider a set X of n elements. We wish to identify a particular subset Y containing at most d
unknown (defective) elements. To this end, we perform a series of experiments with the following
property: when testing a subset A ⊆ X, we receive a positive result if and only if A contains at least
one of these d unknown elements. In practice, we often have the additional constraint that |A| ≤ k,
and we desire to minimize the total number of queries while yet determining Y exactly, i.e. we
consider a test function τ : X(k) → [0, 1], where X(k) denotes the k-sized subsets of X, such that

τ(A) =

{
0 Y ∩A = ∅
1 Y ∩A 6= ∅.

We call a sequence of (k-)sets A = {A1, A2, . . . , Aq} a search algorithm (of query size k), if there
exists an evaluation function φ : [0, 1]q → [n](d) such that for all test functions τ

φ(τ(A1), . . . , τ(Aq)) = Y.

A search algorithm is adaptive if Ai ∈ X(k) may depend on τ(Aj) for j < i. The minimum
number of tests required to exactly determine Y is denoted by t(n, d, k). If all queries are specified
in advance, we call the algorithm non-adaptive. Its minimum is denoted by q(n, d, k). In this case, a
successful family A of such queries is often also referred to as a (d-)separating family.

This question was first posed by A. Rényi in 1961 [6]. In 1966, G. O. H. Katona solved the
adaptive case for d = 1, where there is a single defective element [5].

Theorem 1 (Katona ’66 [5]). Let n, k be integers, such that n < k, then

t(n, 1, k) =
⌈n
k

⌉
− 2 +

⌈
log
(
n− k

⌈n
k

⌉
+ 2k

)⌉
.

Additionally, he also provided upper and lower estimates for the non-adaptive case. In 2013,
É. Hosszu, J. Tapolcai and G. Wiener simplified the proof and strengthened the theorem [4].

Theorem 2 (Hosszu, Tapolcai, Wiener ’13 [4]). For k < n/2, q(n, 1, k) is the least number q for
which there exist positive integer j ≤ q − 1 and a <

(
q
j+1

)
such that

j∑
i=0

i ·

(
q

i

)
+ a(j + 1) ≤ kq,

j∑
i=0

(
q

i

)
+ a = n.

As a corollary, they obtain bounds for the minimal size of a separating family for small values of
k.
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Corollary 3 (Katona ’66 [5], Hosszu, Tapolcai, Wiener ’13 [4]). If n ≥
(
k
2

)
+ 1, then

q(n, 1, k) =

⌈
2
n− 1

k − 1

⌉
.

Using some of their ideas, we obtain similar results for general d. First, we generalise the rather
easy adaptive case where we obtain a result which is in fully consistent with the case of where Y is a
singleton.

Theorem 4. Let k, n, d be positive integers with k < n/2, then

t(n, d, k) =
⌈n
k

⌉
− 2 + d

⌈
log
(
n− k

⌈n
k

⌉
+ 2k

)⌉
.

More importantly, we also provide new (and to our knowledge the first non-trivial) upper and
lower bounds in the non-adaptive case, which require more insight into the problem.

Theorem 5. Let k, n, d be positive integers with k small enough, then

q(n, d, k) ≤
⌈
nd

k

⌉
.

In particular,
q(n, 2, k) =

⌈
2
n

k

⌉
and ⌈

3n+ 1

k + 3

⌉
≤ q(n, 3, k) ≤

⌈
3
n

k

⌉
.

Following Hosszu, Tapolcai and Wiener, we consider the related problem of constructing the binary
matrix M = M(A) whose rows are the characteristic vectors of our queries A ∈ A. Interpreting M
as the incidence matrix of a (hyper-)graph, we derive a forbidden-subgraph condition which suffices
to ensure separability.

Lemma 6. If a d-uniform k-regular linear hypergraph of order q has girth at least 5, then its
associated set system is d-separating.

Previous work on girth conditions for graphs by Erdős and Sachs [3] and very recently for
hypergraphs by Ellis and Linial [2] shows that such graphs exist for sufficiently larger order and we
rely on these results to show that our constructions are possible.
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Extended Abstract

Let F , G and H be non-empty graphs. The notation F → (G,H) means that if all edges of F
are arbitrarily colored by red or blue then either the red subgraph of F contains a graph G or the
blue subgraph of F contains a graph H. A graph F satisfying F → (G,H) and (F − e) 9 (G,H) for
every e ∈ E(F ) is called a Ramsey (G,H)−minimal graph. The set of all Ramsey (G,H)−minimal
graphs is denoted by R(G,H).

Burr et al. [7] have described a graph Gr in R(2K2,Kn), for n ≥ 4, constructed from the
complete graph Kn+1, as follow. Let V (Kn+1) = R ∪ S be a partition of the vertices of Kn+1, and
denote the cardinality of R by r. To each edge e = xy with {x, y} ⊆ R or {x, y} ⊆ S, associate
a vertex ve not in Kn+1 and let ve be adjacent to each vertex of Kn+1 except for x and y. For

1 ≤ r ≤ [(n+ 1)/2], denote this graph by Gr, with |V (Gr)| = n+ 1 +

(
r
2

)
+

(
n+ 1− r

2

)
and

|E(Gr)| =

(
n+ 1

2

)
+ (n− 1)

((
r
2

)
+

(
n+ 1− r

2

))
. For examples, Graphs G1 and G2 as

depicted in Figure .14 are the graphs in R(2K2,K4). Recently, Wijaya and Baskoro [16] gave some
necessary and sufficient conditions for graphs in R(2K2, H), for any graph H.

Theorem 1 (Wijaya and Baskoro ’2013 [16]). Let H be any graph. F ∈ R(2K2, H) if and only if
the following conditions are satisfied:

(i) for every v ∈ V (F ), F − v ⊇ H,

(ii) for every K3 in F, F − E(K3) ⊇ H,

(iii) for every e ∈ E(F ), there exists v ∈ V (F ) or K3 in F such that (F − e) − v + H or
(F − e)− E(K3) + H.

They gave all connected graphs of order at most 8 and a graph of order 9 in R(2K2,K4), namely
2K4,K6, F1, F2, where the graphs F1 and F2 as depicted in Figure .14.

Figure .14: The graphs G1, G2, F1, F2 ∈ R(2K2,K4).

In this paper, we determine all non-isomorphic connected graphs of order at least 9 in R(2K2,K4).
These results will complete the previous results ([7] and [16]) on the characterization of all graphs in
R(2K2,K4). Additionally, we also give a class of graphs in R(2K2,Kn), for any n ≥ 4.
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