INDUCED DECOMPOSITIONS OF GRAPHS

Adrian Bondy

Lyon 1 and Paris 6

(WITH JAYME SZWARCFITER, UFRJ)

Bordeaux Graph Workshop Université Bordeaux 1 November 2010

DECOMPOSITIONS

F, G: two graphs

F-decomposition of G:

set $\mathcal{F} = \{F_1, F_2, \dots, F_p\}$ of edge-disjoint subgraphs of G such that

 $F_i \cong F, \quad 1 \le i \le p, \quad \text{and} \quad \cup_{i=1}^p F_i = G$

DECOMPOSITIONS

Steiner triple system: decomposition of K_n into triangles

Necessary conditions:

$$n-1 \equiv 0 \pmod{2}, \qquad \binom{n}{2} \equiv 0 \pmod{3}$$

That is:

 $n \equiv 1, 3 \pmod{6}$

Kirkman 1847: A Steiner triple system on n elements exists if and only if $n \equiv 1, 3 \pmod{6}$.

DECOMPOSITIONS

Other values of n? How many edges of K_n can be decomposed into triangles?

Spencer 1968 answered this question.

Other graphs F?

Wilson 1976 gave necessary and sufficient conditions for the existence of an F decomposition of K_n for any graph F, provided that n is sufficiently large. In particular, there is a K_r decomposition of K_n if n is sufficiently large, and

$$n-1 \equiv 0 \pmod{r-1}, \qquad \binom{n}{2} \equiv 0 \pmod{\binom{r}{2}}$$

INDUCED DECOMPOSITIONS

induced F-decomposition of G:

set $\mathcal{F} = \{F_1, F_2, \dots, F_p\}$ of edge-disjoint *induced* subgraphs of G such that

 $F_i \cong F, \quad 1 \le i \le p, \quad \text{and} \quad \cup_{i=1}^p F_i = G$

Induced decomposition of the octahedron into 4-cycles:

No two of the 4-cycles share an edge.

Induced decomposition of the octahedron into 4-cycles:

No two of the 4-cycles share an edge. But they *do* share nonedges.

Induced decomposition of the octahedron into 4-cycles:

No two of the 4-cycles share an edge. But they *do* share nonedges.

INDUCED DECOMPOSITIONS

ex[n, F]: maximum number of edges in a graph on n vertices which admits an induced F-decomposition.

extremal graph for F: graph G which has ex[n, F] edges, where n = v(G), and which admits an induced F-decomposition.

EXAMPLES

- $ex[7, K_3] = 21$ K_7 is an extremal graph for K_3
- $ex[6, C_4] = 12$ the octahedron is an extremal graph for C_4

LEXICOGRAPHIC PRODUCTS

lexicographic product G[H] of graphs G and H:

- a copy H_v of H for every vertex v of G
- the copies are pairwise disjoint
- the vertices of H_u are adjacent to the vertices of H_v whenever uand v are adjacent in G

If H is an empty graph on t vertices, G[H] is denoted G[t].

EXAMPLE

 $K_r[t]$ is the complete r-partite graph with t vertices in each part.

COMPLETE *r*-PARTITE GRAPHS

THEOREM If K_k admits a K_r decomposition, then:

- $K_k[t]$ admits an induced $K_r[t]$ decomposition
- $ex[tk, K_r[t]] = t^2 \binom{k}{2}$
- the unique extremal graph is $K_k[t]$

Proof

• Since $K_k[t]$ admits an induced $K_r[t]$ decomposition, and $v(K_k[t]) = tk$

$$ex[tk, K_r[t]] \ge e(K_k[t]) = t^2 \binom{k}{2}$$

- Let G be an extremal graph for $K_r[t]$, with v(G) = tk.
- Each vertex of G which lies in a copy of $K_r[t]$ is nonadjacent to t-1 vertices of this copy, so has degree at most t(k-1) in G.
- Each vertex which lies in no copy of $K_r[t]$ has degree zero.
- Therefore

$$ex[tk, K_r[t]] = e(G) \le \frac{1}{2}tn \times t(k-1) = t^2 \binom{k}{2}$$

FOUR-CYCLES

 K_n clearly admits a K_2 decomposition. Moreover the complete bipartite graph $K_2[2]$ is the four-cycle C_4 . Setting r = 2 in the theorem:

COROLLARY For all $k \ge 1$,

 $ex[2k, C_4] = 2k(k-1)$

and the unique extremal graph is $K_k[2]$.

EXAMPLE When k = 3, the extremal graph is $K_3[2]$, the octahedron.

This solves the extremal problem for four-cycles when v(G) is even.

FOUR-CYCLES

What happens when v(G) is odd?

THEOREM For all $k \ge 1$, $ex[2k+1, C_4] = 2k(k-1) = ex[2k, C_4]$

One extremal graph is $K_1 + K_k[2]$. But there are others.

EXAMPLE:
$$k = 3, n = 7$$

INDUCED DECOMPOSITION

WHAT IS THIS GRAPH?

Complement

TRIANGULAR CACTUS

triangular cactus: connected graph all of whose blocks are triangles

THEOREM For n odd, the extremal graphs for four-cycles are the complements of triangular cacti.

TRIANGULAR CACTUS REDRAWN

TRIANGULAR CACTUS REDRAWN

Complement

Complement

INDUCED DECOMPOSITION

THEOREM

Let $n \equiv r \pmod{k}$, where $0 \leq r \leq k - 1$. Then

$$ex[n, K_{1,k}] = \frac{1}{2}(n-r)(n-k+r)$$

and the unique extremal graph is the complete $\lceil n/k \rceil$ -partite graph in which each part except possibly one has k vertices.

SMALL GRAPHS

STARS, CYCLES AND COMPLETE GRAPHS

SMALL GRAPHS

Stars, Cycles and Complete Graphs \checkmark

GRAPHS WITH ISOLATED VERTICES

Graphs with Isolated Vertices \checkmark

SMALL GRAPHS

Extremal graphs for small graphs with isolated vertices:

- $K_1 + K_2$: $K_1 + K_{n-1}$
- $K_1 + K_3$: $K_1 + K_{n-1}, n \equiv 2, 4 \pmod{6} \dots$
- $2K_1 + K_2$: $2K_1 + K_{n-2}$
- $K_1 + K_{1,2}$: $K_1 + K_r[2]$, n = 2r + 1, or $P_5 \dots$

SMALL GRAPHS

Remaining small graphs:

This is where the fun starts!

THEOREM For $k \geq 3$,

THEOREM For $k \geq 3$,

EXAMPLE:
$$C_{3k}^{k-1}$$

THEOREM For $k \geq 3$,

THEOREM For $k \geq 3$,

THEOREM For $k \geq 3$,

 $ex[3k, 2K_2] \ge 3k(k-1)$

EXAMPLE: C_{3k}^{k-1}

Similar constructions and bounds for n = 3k + 1 and n = 3k + 2.

THEOREM If G admits an induced $2K_2$ decomposition, then

$$\Delta \le \binom{n-\Delta-1}{2}$$

Proof For any vertex v, and in particular a vertex of maximum degree, the edges incident to v must be paired with edges in the subgraph induced by the non-neighbours of v.

THEOREM If G admits an induced $2K_2$ decomposition, then

$$\Delta \le \binom{n-\Delta-1}{2}$$

EXTREMAL GRAPHS FOR $2K_2$

- $n = 4: 2K_2$
- n = 5: $K_1 + 2K_2$
- $n = 6: 2K_3, C_6$
- n = 7: $2K_3$ plus a vertex joined to one vertex in each K_3
- n = 8: $2K_4$, Q_3 , two copies of $K_4 \setminus e$ joined by two edges

EXAMPLE 1: C_9^2

EXAMPLE 1: C_9^2

EXAMPLE 3: The Verre à Pied Graph

EXAMPLE 3: The Verre à Pied Graph

EXAMPLE 3: The Verre à Pied Graph

The Verre à Pied Graph

EXTREMAL GRAPHS FOR $2K_2$

•
$$n = 9: C_9^2, K_3 \square K_3$$

- n = 10: Verre à Pied Graph C_8^2 plus two vertices joined to disjoint sets of four nonconsecutive vertices of C_8
- n = 11: C_9^2 plus two vertices joined to disjoint sets of four nonconsecutive vertices of C_9

•
$$n = 12$$
: C_{12}^3
PROPOSITION

If F is a spanning subgraph of G, then

$$ex[n,F] \geq \frac{e(F)}{e(G)}ex[n,G]$$

COROLLARY

$$ex[n, P_4] \ge \frac{3}{4} ex[n, C_4]$$

Therefore

$$ex[2k, P_4] \ge 3\binom{k}{2}$$
 and $ex[2k+1, P_4] \ge 3\binom{k}{2}$

Bound

$$ex[2k+1, P_4] \ge 3\binom{k}{2}$$

not sharp for k = 3:

 $ex[7, P_4] \ge 12$

Bound

$$ex[2k+1, P_4] \ge 3\binom{k}{2}$$

not sharp for k = 3:

 $ex[7, P_4] \ge 12$

The best upper bound on $ex[n, P_4]$ that we are able to obtain, even when the problem is restricted to regular graphs, is

$$ex[n, P_4] \le \binom{n}{2} - cn$$

where c is a constant, c < 1. The lower and upper bounds are thus very far apart.

A similar situation applies to the graph $K_{1,3}+e$. For $n \equiv 0 \pmod{5}$, we have:

$$\frac{2n^2}{5} - 2n < ex[n, K_{1,3} + e] < \binom{n}{2} - \frac{n}{4}$$

UPPER BOUND:

$$ex[n, K_4 \setminus e] \le \binom{n}{2} - \frac{n}{5}$$

LOWER BOUND

Ingredients:

- P_3 decomposition of K_5
- Steiner triple system: K_3 decomposition of K_r , $r \equiv 1, 3 \pmod{6}$

• P_3 decomposition of $K_5 \checkmark$

• P_3 decomposition of $K_5 \checkmark$

This decomposition gives rise to an induced $K_4 \setminus e$ decomposition of the complete tripartite graph $K_3[5]$.

 $K_5[K_3]$

 $K_3[5]$ redrawn

 $K_3[5]$ redrawn

 $K_3[5]$ redrawn

LOWER BOUND

An induced $K_4 \setminus e$ decomposition of the complete *r*-partite graph $K_r[5]$, for all $r \equiv 1, 3 \pmod{6}$, can be obtained by applying this construction to all the triangles in a K_3 decomposition of K_r .

LOWER BOUND

An induced $K_4 \setminus e$ decomposition of the complete *r*-partite graph $K_r[5]$, for all $r \equiv 1, 3 \pmod{6}$, can be obtained by applying this construction to all the triangles in a K_3 decomposition of K_r .

THEOREM

For
$$n = 5r$$
, where $r \equiv 1, 3 \pmod{6}$,
$$ex[n, K_4 \setminus e] \ge \binom{n}{2} - 2n$$

- Reduce the gaps between the lower and upper bounds on ex[n, F] when
 - $F = 2K_2$
 - $F = P_4$
 - $F = K_{1,3} + e$

- \bullet Reduce the gaps between the lower and upper bounds on ex[n,F] when
 - $F = 2K_2$
 - $F = P_4$
 - $F = K_{1,3} + e$
- Determine or find bounds on ex[n, F] when
 - $F = C_5$
 - $F = C_6$

- \bullet Reduce the gaps between the lower and upper bounds on ex[n,F] when
 - $F = 2K_2$
 - $F = P_4$
 - $F = K_{1,3} + e$
- Determine or find bounds on ex[n, F] when
 - $F = C_5$
 - $F = C_6$
- Consider the restriction of the problem to regular graphs. Extremal graphs are often regular, so perhaps this will be easier.

- \bullet Reduce the gaps between the lower and upper bounds on ex[n,F] when
 - $F = 2K_2$
 - $F = P_4$
 - $F = K_{1,3} + e$
- Determine or find bounds on ex[n, F] when
 - $F = C_5$
 - $F = C_6$
- Consider the restriction of the problem to regular graphs. Extremal graphs are often regular, so perhaps this will be easier.

• Given a fixed graph F, how hard is it to decide whether an input graph G admits an induced F-decomposition?

The corresponding decision problem for standard decompositions was settled by K. BRYS AND Z. LONC 2009: the problem is solvable in polynomial time if and only if every component of F has at most two edges.

V. CHVÁTAL observed that the induced problem is also solvable in polynomial time in these cases.

REFERENCES

- J.A. Bondy and J. Szwarcfiter, Induced decompositions of graphs. Submitted for publication.
- A.E. Brouwer, Optimal packings of K_4 's into a K_n . J. Combin. Theory Ser. A **26** (1979), 278–297.
- K. Bryś and Z. Lonc, Polynomial cases of graph decomposition: A complete solution of Holyer's problem. *Discrete Math.* **309** (2009), 1294–1326.
- J. Spencer, Maximal consistent families of triples. J. Combin. Theory 5 1968, 1–8.
- R.M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph. Proceedings of the Fifth British Combinatorial Conference, *Congressus Numerantium* XV, Utilitas Math., Winnipeg, Man., 1976, pp. 647–659.

THANK YOU
WELCOME TO THE CLUB, ANDRÉ!