INDUCED DECOMPOSITIONS OF GRAPHS

Adrian Bondy
Lyon 1 and Paris 6
(with Jayme Szwarcfiter, UFRJ)

Bordeaux Graph Workshop
Université Bordeaux 1
November 2010

DECOMPOSITIONS

F, G : two graphs
F-decomposition of G :
set $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{p}\right\}$ of edge-disjoint subgraphs of G such that

$$
F_{i} \cong F, \quad 1 \leq i \leq p, \quad \text { and } \quad \cup_{i=1}^{p} F_{i}=G
$$

Example

Decomposition of K_{7} into triangles:

Example

Decomposition of K_{7} into triangles:

Example

Decomposition of K_{7} into triangles:

Example

Decomposition of K_{7} into triangles:

Example

Decomposition of K_{7} into triangles:

ExAMPLE

Decomposition of K_{7} into triangles:

Example

Decomposition of K_{7} into triangles:

Example

Decomposition of K_{7} into triangles:

Example

Decomposition of K_{7} into triangles:

DECOMPOSITIONS

Steiner triple system: decomposition of K_{n} into triangles
Necessary conditions:

$$
n-1 \equiv 0(\bmod 2), \quad\binom{n}{2} \equiv 0(\bmod 3)
$$

That is:

$$
n \equiv 1,3(\bmod 6)
$$

Kirkman 1847: A Steiner triple system on n elements exists if and only if $n \equiv 1,3(\bmod 6)$.

DECOMPOSITIONS

Other values of n ? How many edges of K_{n} can be decomposed into triangles?

Spencer 1968 answered this question.

Other graphs F?
Wilson 1976 gave necessary and sufficient conditions for the existence of an F decomposition of K_{n} for any graph F, provided that n is sufficiently large. In particular, there is a K_{r} decomposition of K_{n} if n is sufficiently large, and

$$
n-1 \equiv 0(\bmod r-1), \quad\binom{n}{2} \equiv 0\left(\bmod \binom{r}{2}\right)
$$

INDUCED DECOMPOSITIONS

induced F-decomposition of G :
set $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{p}\right\}$ of edge-disjoint induced subgraphs of G such that

$$
F_{i} \cong F, \quad 1 \leq i \leq p, \quad \text { and } \quad \cup_{i=1}^{p} F_{i}=G
$$

EXAMPLE

Induced decomposition of the octahedron into 4-cycles:

Example

Induced decomposition of the octahedron into 4-cycles:

Example

Induced decomposition of the octahedron into 4-cycles:

Example

Induced decomposition of the octahedron into 4-cycles:

Example

Induced decomposition of the octahedron into 4-cycles:

Example

Induced decomposition of the octahedron into 4-cycles:

No two of the 4-cycles share an edge.

Example

Induced decomposition of the octahedron into 4-cycles:

No two of the 4-cycles share an edge. But they do share nonedges.

Example

Induced decomposition of the octahedron into 4-cycles:

No two of the 4 -cycles share an edge. But they do share nonedges.

INDUCED DECOMPOSITIONS

$e x[n, F]$: maximum number of edges in a graph on n vertices which admits an induced F-decomposition.
extremal graph for F : graph G which has ex $[n, F]$ edges, where $n=v(G)$, and which admits an induced F-decomposition.

Examples

- ex $\left[7, K_{3}\right]=21 \quad K_{7}$ is an extremal graph for K_{3}
- $e x\left[6, C_{4}\right]=12 \quad$ the octahedron is an extremal graph for C_{4}

LEXICOGRAPHIC PRODUCTS

lexicographic product $G[H]$ of graphs G and H :

- a copy H_{v} of H for every vertex v of G
- the copies are pairwise disjoint
- the vertices of H_{u} are adjacent to the vertices of H_{v} whenever u and v are adjacent in G
If H is an empty graph on t vertices, $G[H]$ is denoted $G[t]$.

Example

$K_{r}[t]$ is the complete r-partite graph with t vertices in each part.

COMPLETE r-PARTITE GRAPHS

Theorem If K_{k} admits a K_{r} decomposition, then:

- $K_{k}[t]$ admits an induced $K_{r}[t]$ decomposition
- $e x\left[t k, K_{r}[t]\right]=t^{2}\binom{k}{2}$
- the unique extremal graph is $K_{k}[t]$

Proof

- Since $K_{k}[t]$ admits an induced $K_{r}[t]$ decomposition, and $v\left(K_{k}[t]\right)=t k$

$$
e x\left[t k, K_{r}[t]\right] \geq e\left(K_{k}[t]\right)=t^{2}\binom{k}{2}
$$

- Let G be an extremal graph for $K_{r}[t]$, with $v(G)=t k$.
- Each vertex of G which lies in a copy of $K_{r}[t]$ is nonadjacent to $t-1$ vertices of this copy, so has degree at most $t(k-1)$ in G.
- Each vertex which lies in no copy of $K_{r}[t]$ has degree zero.
- Therefore

$$
e x\left[t k, K_{r}[t]\right]=e(G) \leq \frac{1}{2} t n \times t(k-1)=t^{2}\binom{k}{2}
$$

FOUR-CYCLES

K_{n} clearly admits a K_{2} decomposition.
Moreover the complete bipartite graph $K_{2}[2]$ is the four-cycle C_{4}. Setting $r=2$ in the theorem:

Corollary For all $k \geq 1$,

$$
e x\left[2 k, C_{4}\right]=2 k(k-1)
$$

and the unique extremal graph is $K_{k}[2]$.
Example When $k=3$, the extremal graph is $K_{3}[2]$, the octahedron.

This solves the extremal problem for four-cycles when $v(G)$ is even.

FOUR-CYCLES

What happens when $v(G)$ is odd?

Theorem For all $k \geq 1$,

$$
e x\left[2 k+1, C_{4}\right]=2 k(k-1)=e x\left[2 k, C_{4}\right]
$$

One extremal graph is $K_{1}+K_{k}[2]$. But there are others.

EXAMPLE: $k=3, n=7$

Induced Decomposition

What IS this graph?

Complement

Triangular Cactus
triangular cactus: connected graph all of whose blocks are triangles

Theorem For n odd, the extremal graphs for four-cycles are the complements of triangular cacti.

Triangular Cactus redrawn

Triangular Cactus redrawn

Complement

Complement

Induced Decomposition

STARS

Theorem

Let $n \equiv r(\bmod k)$, where $0 \leq r \leq k-1$. Then

$$
e x\left[n, K_{1, k}\right]=\frac{1}{2}(n-r)(n-k+r)
$$

and the unique extremal graph is the complete $\lceil n / k\rceil$-partite graph in which each part except possibly one has k vertices.

STARS

EXAMPLE: $n=7, k=3, r=1$

SMALL GRAPHS

SMALL GRAPHS

Stars, Cycles and Complete Graphs $\sqrt{ }$

SMALL GRAPHS

SMALL GRAPHS

SMALL GRAPHS

Extremal graphs for small graphs with isolated vertices:

- $K_{1}+K_{2}: \quad K_{1}+K_{n-1}$
- $K_{1}+K_{3}: \quad K_{1}+K_{n-1}, n \equiv 2,4(\bmod 6) \ldots$
- $2 K_{1}+K_{2}: \quad 2 K_{1}+K_{n-2}$
- $K_{1}+K_{1,2}: \quad K_{1}+K_{r}[2], n=2 r+1$, or $P_{5} \ldots$

SMALL GRAPHS

Remaining small graphs:

$2 K_{2}$

P_{4}

$K_{1,3}+e$

$K_{4} \backslash e$

This is where the fun starts!

SMALL GRAPHS: $2 K_{2}$

Theorem For $k \geq 3$,

$$
e x\left[3 k, 2 K_{2}\right] \geq 3 k(k-1)
$$

SMALL GRAPHS: $2 K_{2}$

Theorem For $k \geq 3$,

$$
e x\left[3 k, 2 K_{2}\right] \geq 3 k(k-1)
$$

Example: $C_{3 k}^{k-1}$

SMALL GRAPHS: $2 K_{2}$

Theorem For $k \geq 3$,

$$
e x\left[3 k, 2 K_{2}\right] \geq 3 k(k-1)
$$

SMALL GRAPHS: $2 K_{2}$

Theorem For $k \geq 3$,

$$
e x\left[3 k, 2 K_{2}\right] \geq 3 k(k-1)
$$

SMALL GRAPHS: $2 K_{2}$

Theorem For $k \geq 3$,

$$
e x\left[3 k, 2 K_{2}\right] \geq 3 k(k-1)
$$

Example: $C_{3 k}^{k-1}$

Similar constructions and bounds for $n=3 k+1$ and $n=3 k+2$.

SMALL GRAPHS: $2 K_{2}$

Theorem If G admits an induced $2 K_{2}$ decomposition, then

$$
\Delta \leq\binom{ n-\Delta-1}{2}
$$

Proof For any vertex v, and in particular a vertex of maximum degree, the edges incident to v must be paired with edges in the subgraph induced by the non-neighbours of v.

SMALL GRAPHS: $2 K_{2}$

Theorem If G admits an induced $2 K_{2}$ decomposition, then

$$
\Delta \leq\binom{ n-\Delta-1}{2}
$$

EXTREMAL GRAPHS FOR $2 K_{2}$

- $n=4: 2 K_{2}$
- $n=5: K_{1}+2 K_{2}$
- $n=6: 2 K_{3}, C_{6}$
- $n=7: 2 K_{3}$ plus a vertex joined to one vertex in each K_{3}
- $n=8: 2 K_{4}, Q_{3}$, two copies of $K_{4} \backslash e$ joined by two edges

SMALL GRAPHS: $2 K_{2}$

Example 1: C_{9}^{2}

SMALL GRAPHS: $2 K_{2}$

Example 1: C_{9}^{2}

SMALL GRAPHS: $2 K_{2}$

Example 2: $K_{3} \square K_{3}$

SMALL GRAPHS: $2 K_{2}$

Example 2: $K_{3} \square K_{3}$

SMALL GRAPHS: $2 K_{2}$

Example 2: $K_{3} \square K_{3}$

SMALL GRAPHS: $2 K_{2}$

Example 2: $K_{3} \square K_{3}$

SMALL GRAPHS: $2 K_{2}$

Example 3: The Verre à Pied Graph

SMALL GRAPHS: $2 K_{2}$

Example 3: The Verre à Pied Graph

SMALL GRAPHS: $2 K_{2}$

Example 3: The Verre à Pied Graph

The Verre À Pied Graph

EXTREMAL GRAPHS FOR $2 K_{2}$

- $n=9: C_{9}^{2}, K_{3} \square K_{3}$
- $n=10:$ Verre à Pied Graph C_{8}^{2} plus two vertices joined to disjoint sets of four nonconsecutive vertices of C_{8}
- $n=11: C_{9}^{2}$ plus two vertices joined to disjoint sets of four nonconsecutive vertices of C_{9}
- $n=12: C_{12}^{3}$

SMALL GRAPHS: P_{4}

Proposition

If F is a spanning subgraph of G, then

$$
e x[n, F] \geq \frac{e(F)}{e(G)} e x[n, G]
$$

Corollary

$$
e x\left[n, P_{4}\right] \geq \frac{3}{4} e x\left[n, C_{4}\right]
$$

Therefore

$$
e x\left[2 k, P_{4}\right] \geq 3\binom{k}{2} \text { and } e x\left[2 k+1, P_{4}\right] \geq 3\binom{k}{2}
$$

SMALL GRAPHS: P_{4}

Bound

$$
e x\left[2 k+1, P_{4}\right] \geq 3\binom{k}{2}
$$

not sharp for $k=3$:

$$
e x\left[7, P_{4}\right] \geq 12
$$

SMALL GRAPHS: P_{4}

Bound

$$
e x\left[2 k+1, P_{4}\right] \geq 3\binom{k}{2}
$$

not sharp for $k=3$:

$$
e x\left[7, P_{4}\right] \geq 12
$$

SMALL GRAPHS: P_{4}

The best upper bound on $e x\left[n, P_{4}\right]$ that we are able to obtain, even when the problem is restricted to regular graphs, is

$$
e x\left[n, P_{4}\right] \leq\binom{ n}{2}-c n
$$

where c is a constant, $c<1$. The lower and upper bounds are thus very far apart.

A similar situation applies to the graph $K_{1,3}+e$. For $n \equiv 0(\bmod 5)$, we have:

$$
\frac{2 n^{2}}{5}-2 n<e x\left[n, K_{1,3}+e\right]<\binom{n}{2}-\frac{n}{4}
$$

SMALL GRAPHS: $K_{4} \backslash e$

Upper bound:

$$
e x\left[n, K_{4} \backslash e\right] \leq\binom{ n}{2}-\frac{n}{5}
$$

SMALL GRAPHS: $K_{4} \backslash e$

Lower bound

Ingredients:

- P_{3} decomposition of K_{5}
- Steiner triple system: K_{3} decomposition of $K_{r}, r \equiv 1,3(\bmod 6)$

SMALL GRAPHS: $K_{4} \backslash e$

P_{3} decomposition of K_{5} :

SMALL GRAPHS: $K_{4} \backslash e$

P_{3} decomposition of K_{5} :

SMALL GRAPHS: $K_{4} \backslash e$

P_{3} decomposition of K_{5} :

SMALL GRAPHS: $K_{4} \backslash e$

P_{3} decomposition of K_{5} :

SMALL GRAPHS: $K_{4} \backslash e$

P_{3} decomposition of K_{5} :

SMALL GRAPHS: $K_{4} \backslash e$

P_{3} decomposition of K_{5} :

SMALL GRAPHS: $K_{4} \backslash e$

- P_{3} decomposition of $K_{5} \sqrt{ }$

SMALL GRAPHS: $K_{4} \backslash e$

- P_{3} decomposition of $K_{5} \sqrt{ }$

This decomposition gives rise to an induced $K_{4} \backslash e$ decomposition of the complete tripartite graph $K_{3}[5]$.

SMALL GRAPHS: $K_{4} \backslash e$

$$
K_{3}[5]
$$

SMALL GRAPHS: $K_{4} \backslash e$

$$
K_{5}\left[K_{3}\right]
$$

SMALL GRAPHS: $K_{4} \backslash e$

$K_{3}[5]$ redrawn

SMALL GRAPHS: $K_{4} \backslash e$

$K_{3}[5]$ redrawn

SMALL GRAPHS: $K_{4} \backslash e$

$K_{3}[5]$ redrawn

SMALL GRAPHS: $K_{4} \backslash e$

SMALL GRAPHS: $K_{4} \backslash e$

Lower bound

An induced $K_{4} \backslash e$ decomposition of the complete r-partite graph $K_{r}[5]$, for all $r \equiv 1,3(\bmod 6)$, can be obtained by applying this construction to all the triangles in a K_{3} decomposition of K_{r}.

SMALL GRAPHS: $K_{4} \backslash e$

Lower bound

An induced $K_{4} \backslash e$ decomposition of the complete r-partite graph $K_{r}[5]$, for all $r \equiv 1,3(\bmod 6)$, can be obtained by applying this construction to all the triangles in a K_{3} decomposition of K_{r}.

Theorem

For $n=5 r$, where $r \equiv 1,3(\bmod 6)$,

$$
e x\left[n, K_{4} \backslash e\right] \geq\binom{ n}{2}-2 n
$$

OPEN PROBLEMS

- Reduce the gaps between the lower and upper bounds on ex $[n, F]$ when
- $F=2 K_{2}$
- $F=P_{4}$
- $F=K_{1,3}+e$

OPEN PROBLEMS

- Reduce the gaps between the lower and upper bounds on ex $[n, F]$ when
- $F=2 K_{2}$
- $F=P_{4}$
- $F=K_{1,3}+e$
- Determine or find bounds on ex $[n, F]$ when
$-F=C_{5}$
$-F=C_{6}$

OPEN PROBLEMS

- Reduce the gaps between the lower and upper bounds on ex $[n, F]$ when
- $F=2 K_{2}$
- $F=P_{4}$
- $F=K_{1,3}+e$
- Determine or find bounds on ex[$n, F]$ when
- $F=C_{5}$
- $F=C_{6}$
- Consider the restriction of the problem to regular graphs. Extremal graphs are often regular, so perhaps this will be easier.

OPEN PROBLEMS

- Reduce the gaps between the lower and upper bounds on ex $[n, F]$ when
- $F=2 K_{2}$
- $F=P_{4}$
- $F=K_{1,3}+e$
- Determine or find bounds on ex[$n, F]$ when
- $F=C_{5}$
- $F=C_{6}$
- Consider the restriction of the problem to regular graphs. Extremal graphs are often regular, so perhaps this will be easier.
- Given a fixed graph F, how hard is it to decide whether an input graph G admits an induced F-decomposition?

The corresponding decision problem for standard decompositions was settled by K. Bryś and Z. Lonc 2009: the problem is solvable in polynomial time if and only if every component of F has at most two edges.
V. Chvátal observed that the induced problem is also solvable in polynomial time in these cases.

REFERENCES

- J.A. Bondy and J. Szwarcfiter, Induced decompositions of graphs. Submitted for publication.
- A.E. Brouwer, Optimal packings of K_{4} 's into a K_{n}. J. Combin. Theory Ser. A 26 (1979), 278-297.
- K. Bryśs and Z. Lonc, Polynomial cases of graph decomposition: A complete solution of Holyer's problem. Discrete Math. 309 (2009), 1294-1326.
- J. Spencer, Maximal consistent families of triples. J. Combin. Theory 5 1968, 1-8.
- R.M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph. Proceedings of the Fifth British Combinatorial Conference, Congressus Numerantium XV, Utilitas Math., Winnipeg, Man., 1976, pp. 647-659.

THANK YOU

WELCOME TO THE CLUB, ANDRÉ!

