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DECOMPOSITIONS

F , G: two graphs

F -decomposition of G:

set F = {F1, F2, . . . , Fp} of edge-disjoint subgraphs of G
such that

Fi
∼= F, 1 ≤ i ≤ p, and ∪p

i=1Fi = G



Example

Decomposition of K7 into triangles:
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DECOMPOSITIONS

Steiner triple system: decomposition of Kn into triangles

Necessary conditions:

n − 1 ≡ 0 (mod 2),

(

n

2

)

≡ 0 (mod 3)

That is:
n ≡ 1, 3 (mod 6)

Kirkman 1847: A Steiner triple system on n elements exists if

and only if n ≡ 1, 3 (mod 6).



DECOMPOSITIONS

Other values of n? How many edges of Kn can be decomposed
into triangles?

Spencer 1968 answered this question.

Other graphs F?

Wilson 1976 gave necessary and sufficient conditions for the exis-
tence of an F decomposition of Kn for any graph F , provided that
n is sufficiently large. In particular, there is a Kr decomposition of
Kn if n is sufficiently large, and

n − 1 ≡ 0 (mod r − 1),

(

n

2

)

≡ 0

(

mod

(

r

2

))



INDUCED DECOMPOSITIONS

induced F -decomposition of G:

set F = {F1, F2, . . . , Fp} of edge-disjoint induced subgraphs of G
such that

Fi
∼= F, 1 ≤ i ≤ p, and ∪p

i=1Fi = G



Example

Induced decomposition of the octahedron into 4-cycles:
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Induced decomposition of the octahedron into 4-cycles:

No two of the 4-cycles share an edge.
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Induced decomposition of the octahedron into 4-cycles:

No two of the 4-cycles share an edge. But they do share nonedges.



INDUCED DECOMPOSITIONS

ex[n, F ]: maximum number of edges in a graph on n vertices which
admits an induced F -decomposition.

extremal graph for F : graph G which has ex[n, F ] edges, where
n = v(G), and which admits an induced F -decomposition.

Examples

• ex[7,K3] = 21 K7 is an extremal graph for K3

• ex[6, C4] = 12 the octahedron is an extremal graph for C4



LEXICOGRAPHIC PRODUCTS

lexicographic product G[H ] of graphs G and H :

• a copy Hv of H for every vertex v of G

• the copies are pairwise disjoint

• the vertices of Hu are adjacent to the vertices of Hv whenever u
and v are adjacent in G

If H is an empty graph on t vertices, G[H ] is denoted G[t].

Example

Kr[t] is the complete r-partite graph with t vertices in each part.



COMPLETE r-PARTITE GRAPHS

Theorem If Kk admits a Kr decomposition, then:

• Kk[t] admits an induced Kr[t] decomposition

• ex[tk,Kr[t]] = t2
(k
2

)

• the unique extremal graph is Kk[t]



Proof

• Since Kk[t] admits an induced Kr[t] decomposition, and
v(Kk[t]) = tk

ex[tk,Kr[t]] ≥ e(Kk[t]) = t2
(

k

2

)

• Let G be an extremal graph for Kr[t], with v(G) = tk.

• Each vertex of G which lies in a copy of Kr[t] is nonadjacent to
t − 1 vertices of this copy, so has degree at most t(k − 1) in G.

• Each vertex which lies in no copy of Kr[t] has degree zero.

• Therefore

ex[tk,Kr[t]] = e(G) ≤ 1

2
tn × t(k − 1) = t2

(

k

2

)



FOUR-CYCLES

Kn clearly admits a K2 decomposition.
Moreover the complete bipartite graph K2[2] is the four-cycle C4.
Setting r = 2 in the theorem:

Corollary For all k ≥ 1,

ex[2k, C4] = 2k(k − 1)

and the unique extremal graph is Kk[2].

Example When k = 3, the extremal graph is K3[2], the octahe-
dron.

This solves the extremal problem for four-cycles when v(G) is even.



FOUR-CYCLES

What happens when v(G) is odd?

Theorem For all k ≥ 1,

ex[2k + 1, C4] = 2k(k − 1) = ex[2k,C4]

One extremal graph is K1 + Kk[2]. But there are others.



Example: k = 3, n = 7



Induced Decomposition



What is this graph?



Complement



Triangular Cactus



triangular cactus: connected graph all of whose blocks are triangles

Theorem For n odd, the extremal graphs for four-cycles are the
complements of triangular cacti.





Triangular Cactus redrawn



Triangular Cactus redrawn



Complement



Complement



Induced Decomposition



STARS

Theorem

Let n ≡ r (mod k), where 0 ≤ r ≤ k − 1. Then

ex[n,K1,k] =
1

2
(n − r)(n − k + r)

and the unique extremal graph is the complete ⌈n/k⌉-partite graph
in which each part except possibly one has k vertices.



STARS

Example: n = 7, k = 3, r = 1
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STARS

Example: n = 7, k = 3, r = 1



SMALL GRAPHS

Stars, Cycles and Complete Graphs



SMALL GRAPHS

Stars, Cycles and Complete Graphs
√



SMALL GRAPHS

K1 + K2 2K1 + K2 K1 + K1,2 K1 + K3

Graphs with Isolated Vertices
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K1 + K2 2K1 + K2 K1 + K1,2 K1 + K3

Graphs with Isolated Vertices
√



SMALL GRAPHS

Extremal graphs for small graphs with isolated vertices:

• K1 + K2: K1 + Kn−1

• K1 + K3: K1 + Kn−1, n ≡ 2, 4 (mod 6) . . .

• 2K1 + K2: 2K1 + Kn−2

• K1 + K1,2: K1 + Kr[2], n = 2r + 1, or P5 . . .



SMALL GRAPHS

Remaining small graphs:

2K2 P4 K1,3 + e K4 \ e

This is where the fun starts!



SMALL GRAPHS: 2K2

Theorem For k ≥ 3,

ex[3k, 2K2] ≥ 3k(k − 1)
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Theorem For k ≥ 3,

ex[3k, 2K2] ≥ 3k(k − 1)

Example: Ck−1
3k
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SMALL GRAPHS: 2K2

Theorem For k ≥ 3,

ex[3k, 2K2] ≥ 3k(k − 1)

Example: Ck−1
3k

Similar constructions and bounds for n = 3k + 1 and n = 3k + 2.



SMALL GRAPHS: 2K2

Theorem If G admits an induced 2K2 decomposition, then

∆ ≤
(

n − ∆ − 1

2

)

Proof For any vertex v, and in particular a vertex of maximum
degree, the edges incident to v must be paired with edges in the
subgraph induced by the non-neighbours of v.



SMALL GRAPHS: 2K2

Theorem If G admits an induced 2K2 decomposition, then

∆ ≤
(

n − ∆ − 1

2

)

v



EXTREMAL GRAPHS FOR 2K2

• n = 4: 2K2

• n = 5: K1 + 2K2

• n = 6: 2K3, C6

• n = 7: 2K3 plus a vertex joined to one vertex in each K3

• n = 8: 2K4, Q3, two copies of K4 \ e joined by two edges



SMALL GRAPHS: 2K2

Example 1: C2
9
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Example 1: C2
9



SMALL GRAPHS: 2K2

Example 2: K3�K3
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Example 2: K3�K3



SMALL GRAPHS: 2K2

Example 3: The Verre à Pied Graph
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Example 3: The Verre à Pied Graph



The Verre à Pied Graph



EXTREMAL GRAPHS FOR 2K2

• n = 9: C2
9 , K3 � K3

• n = 10: Verre à Pied Graph C2
8 plus two vertices joined to

disjoint sets of four nonconsecutive vertices of C8

• n = 11: C2
9 plus two vertices joined to disjoint sets of four

nonconsecutive vertices of C9

• n = 12: C3
12



SMALL GRAPHS: P4

Proposition

If F is a spanning subgraph of G, then

ex[n, F ] ≥ e(F )

e(G)
ex[n,G]

Corollary

ex[n, P4] ≥
3

4
ex[n,C4]

Therefore

ex[2k, P4] ≥ 3

(

k

2

)

and ex[2k + 1, P4] ≥ 3

(

k

2

)



SMALL GRAPHS: P4

Bound

ex[2k + 1, P4] ≥ 3

(

k

2

)

not sharp for k = 3:
ex[7, P4] ≥ 12
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Bound

ex[2k + 1, P4] ≥ 3

(

k

2

)

not sharp for k = 3:
ex[7, P4] ≥ 12



SMALL GRAPHS: P4

The best upper bound on ex[n, P4] that we are able to obtain, even
when the problem is restricted to regular graphs, is

ex[n, P4] ≤
(

n

2

)

− cn

where c is a constant, c < 1. The lower and upper bounds are thus

very far apart.

A similar situation applies to the graph K1,3+e. For n ≡ 0 (mod 5),
we have:

2n2

5
− 2n < ex[n,K1,3 + e] <

(

n

2

)

− n

4



SMALL GRAPHS: K4 \ e

Upper bound:

ex[n,K4 \ e] ≤
(

n

2

)

− n

5



SMALL GRAPHS: K4 \ e

Lower bound

Ingredients:

• P3 decomposition of K5

• Steiner triple system: K3 decomposition of Kr, r ≡ 1, 3 (mod 6)



SMALL GRAPHS: K4 \ e

P3 decomposition of K5:
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P3 decomposition of K5:



SMALL GRAPHS: K4 \ e

• P3 decomposition of K5
√



SMALL GRAPHS: K4 \ e

• P3 decomposition of K5
√

This decomposition gives rise to an induced K4 \ e decomposition
of the complete tripartite graph K3[5].



SMALL GRAPHS: K4 \ e

K3[5]



SMALL GRAPHS: K4 \ e

K5[K3]



SMALL GRAPHS: K4 \ e

K3[5] redrawn
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K3[5] redrawn
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SMALL GRAPHS: K4 \ e

Lower bound

An induced K4 \ e decomposition of the complete r-partite graph
Kr[5], for all r ≡ 1, 3 (mod 6), can be obtained by applying this
construction to all the triangles in a K3 decomposition of Kr.



SMALL GRAPHS: K4 \ e

Lower bound

An induced K4 \ e decomposition of the complete r-partite graph
Kr[5], for all r ≡ 1, 3 (mod 6), can be obtained by applying this
construction to all the triangles in a K3 decomposition of Kr.

Theorem

For n = 5r, where r ≡ 1, 3 (mod 6),

ex[n,K4 \ e] ≥
(

n

2

)

− 2n
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• Given a fixed graph F , how hard is it to decide whether an

input graph G admits an induced F -decomposition?

The corresponding decision problem for standard decompositions
was settled by K. Bryś and Z. Lonc 2009: the problem is

solvable in polynomial time if and only if every component

of F has at most two edges.

V. Chvátal observed that the induced problem is also solvable
in polynomial time in these cases.
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THANK YOU



WELCOME TO THE CLUB, ANDRÉ!


