# Edge- and vertex-partitions of graphs with bounded maximum average degree 

Alexandr Kostochka

joint work with
O.V. Boroding, S.-J. Kim, D. B. West, H. Wu, and X. Zhu
dedicated to Andre Raspaud

Bordeaux, 11/19/10

A $(k, d)$-decomposition of a graph $G$ is a partition of its edges into $k$ forests and a graph with maximum degree at most $d$.

A $(k, d)$-decomposition of a graph $G$ is a partition of its edges into $k$ forests and a graph with maximum degree at most $d$.

Zhu: If a graph $G$ has a $(1, d)$-decomposition, then the game chromatic number (and the game coloring number) of $G$ is at most $4+d$.

A $(k, d)$-decomposition of a graph $G$ is a partition of its edges into $k$ forests and a graph with maximum degree at most $d$.

Zhu: If a graph $G$ has a $(1, d)$-decomposition, then the game chromatic number (and the game coloring number) of $G$ is at most $4+d$.

Let $D_{k}(G)$ denote the minimum $d$ such that $G$ has a ( $k, d$ )-decomposition.

A $(k, d)$-decomposition of a graph $G$ is a partition of its edges into $k$ forests and a graph with maximum degree at most $d$.

Zhu: If a graph $G$ has a $(1, d)$-decomposition, then the game chromatic number (and the game coloring number) of $G$ is at most $4+d$.

Let $D_{k}(G)$ denote the minimum $d$ such that $G$ has a ( $k, d$ )-decomposition.


Figure: $D_{1}\left(K_{2, n}\right) \geq(n-1) / 2$.

Theorem 2 (He, Hou, Lih, Shao, Wang, and Zhu): Let Ge a planar graph with girth $g$. Then
(i) $D_{1}(G) \leq 4 \quad$ if $\quad g \geq 5$;
(ii) $D_{1}(G) \leq 2 \quad$ if $\quad g \geq 7$;
(iii) $D_{1}(G) \leq 1 \quad$ if $\quad g \geq 11$;
(iv) $D_{1}(G) \leq 7 \quad$ if $G$ does not contain $C_{4}$.

Theorem 2 (He, Hou, Lih, Shao, Wang, and Zhu): Let Ge a planar graph with girth $g$. Then
(i) $D_{1}(G) \leq 4 \quad$ if $\quad g \geq 5$;
(ii) $D_{1}(G) \leq 2 \quad$ if $\quad g \geq 7$;
(iii) $D_{1}(G) \leq 1 \quad$ if $\quad g \geq 11$;
(iv) $D_{1}(G) \leq 7 \quad$ if $G$ does not contain $C_{4}$.

Theorem 2 (Kleitman): Let $G$ be a planar graph with girth 6 . Then $D_{1}(G) \leq 2$, and this is sharp.

Theorem 2 (He, Hou, Lih, Shao, Wang, and Zhu): Let Ge a planar graph with girth $g$. Then
(i) $D_{1}(G) \leq 4 \quad$ if $\quad g \geq 5$;
(ii) $D_{1}(G) \leq 2 \quad$ if $\quad g \geq 7$;
(iii) $D_{1}(G) \leq 1 \quad$ if $\quad g \geq 11$;
(iv) $D_{1}(G) \leq 7 \quad$ if $G$ does not contain $C_{4}$.

Theorem 2 (Kleitman): Let $G$ be a planar graph with girth 6 . Then $D_{1}(G) \leq 2$, and this is sharp.

Theorem 3 (Bassa, Burns, Campbell, Deshpande, Farley, Halsey, Michalakis, Persson, Pylyavskyy, Rademacher, Riehl, Rios, Samuel, Tenner, Vijayasaraty, Zhao, and Kleitman): Let G be a planar graph with girth 10 . Then $D_{1}(G) \leq 1$.

Theorem 4 (Borodin, A. K., Sheikh, and Yu): Let $G$ be a planar graph with girth 9 . Then $D_{1}(G) \leq 1$.

Theorem 4 (Borodin, A. K., Sheikh, and Yu): Let Ge a planar graph with girth 9 . Then $D_{1}(G) \leq 1$.

Theorem 5 (Borodin, Ivanova, A. K., and Sheikh): Let $G$ be a planar graph with no 4-cycles. Then $D_{1}(G) \leq 5$.

Theorem 4 (Borodin, A. K., Sheikh, and Yu): Let Ge a planar graph with girth 9 . Then $D_{1}(G) \leq 1$.

Theorem 5 (Borodin, Ivanova, A. K., and Sheikh): Let $G$ be a planar graph with no 4-cycles. Then $D_{1}(G) \leq 5$.

Theorem 6 (Wang and Zhang, and independently Montassier, Ossona de Mendez, Raspaud, and Zhu): Let $G$ be a planar graph with girth 8 . Then $D_{1}(G) \leq 1$ and this is sharp.

## Maximum average degree approach

$$
\operatorname{Mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|} .
$$

## Maximum average degree approach

$$
\begin{gather*}
\operatorname{Mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|} \\
\operatorname{Mad}(G)<\frac{2 g}{g-2} \text { for every planar } G \text { with girth } g . \tag{1}
\end{gather*}
$$

## Maximum average degree approach

$$
\begin{gather*}
\operatorname{Mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|} \\
\operatorname{Mad}(G)<\frac{2 g}{g-2} \text { for every planar } G \text { with girth } g . \tag{1}
\end{gather*}
$$

Theorem 7 (Montassier, Pêcher, Raspaud, West, and Zhu): If $\operatorname{Mad}(G)<\frac{4(d+1)(d+3)}{d^{2}+6 d+6}$, then $G$ has a $(1, d)$-decomposition.

## Maximum average degree approach

$$
\operatorname{Mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|}
$$

$\operatorname{Mad}(G)<\frac{2 g}{g-2} \quad$ for every planar $G$ with girth $g$.

Theorem 7 (Montassier, Pêcher, Raspaud, West, and Zhu): If $\operatorname{Mad}(G)<\frac{4(d+1)(d+3)}{d^{2}+6 d+6}$, then $G$ has a $(1, d)$-decomposition.

Let $F(d)$ denote the supremum over positive $x$ such that each graph $G$ with $\operatorname{Mad}(G)<x$ has a $(1, d)$-decomposition.

## Maximum average degree approach

$$
\operatorname{Mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|} .
$$

$\operatorname{Mad}(G)<\frac{2 g}{g-2}$ for every planar $G$ with girth $g$.

Theorem 7 (Montassier, Pêcher, Raspaud, West, and Zhu): If $\operatorname{Mad}(G)<\frac{4(d+1)(d+3)}{d^{2}+6 d+6}$, then $G$ has a $(1, d)$-decomposition.

Let $F(d)$ denote the supremum over positive $x$ such that each graph $G$ with $\operatorname{Mad}(G)<x$ has a $(1, d)$-decomposition.

Theorem 7 yields that $F(d) \geq 4-\frac{8 d+12}{d^{2}+6 d+6}$.

There are graphs $G$ with $\operatorname{Mad}(G)=4-\frac{4}{d+2}$ that have no (1,d)-decomposition.

There are graphs $G$ with $\operatorname{Mad}(G)=4-\frac{4}{d+2}$ that have no (1,d)-decomposition.
For example, every $(2 d+2)$-regular graph with each edge subdivided (once) is such a graph.

There are graphs $G$ with $\operatorname{Mad}(G)=4-\frac{4}{d+2}$ that have no (1,d)-decomposition.
For example, every $(2 d+2)$-regular graph with each edge subdivided (once) is such a graph.

So, $F(d) \leq 4-\frac{4}{d+2}$.

There are graphs $G$ with $\operatorname{Mad}(G)=4-\frac{4}{d+2}$ that have no (1,d)-decomposition.
For example, every $(2 d+2)$-regular graph with each edge subdivided (once) is such a graph.

So, $F(d) \leq 4-\frac{4}{d+2}$.
Theorem 8 (Montassier, Ossona de Mendez, Raspaud, and Zhu): Let $G$ be a graph with $\operatorname{Mad}(G)<\frac{8}{3}$. Then $D_{1}(G) \leq 1$ and this is sharp.

There are graphs $G$ with $\operatorname{Mad}(G)=4-\frac{4}{d+2}$ that have no (1,d)-decomposition.
For example, every $(2 d+2)$-regular graph with each edge subdivided (once) is such a graph.

So, $F(d) \leq 4-\frac{4}{d+2}$.
Theorem 8 (Montassier, Ossona de Mendez, Raspaud, and Zhu): Let $G$ be a graph with $\operatorname{Mad}(G)<\frac{8}{3}$. Then $D_{1}(G) \leq 1$ and this is sharp.

Theorem 9 (Montassier, Ossona de Mendez, Raspaud, and Zhu): Let $G$ be a graph with $2|E(H)| \leq 3|V(H)|-3$ for every $H \subseteq G$. Then $G$ decomposes into a forest and a linear forest, and this is sharp.

## Edge decomposition results

Theorem 10 (Kim, A.K., West, Wu, and Zhu):

$$
F(d)=4-\frac{4}{d+2} \text { for every } d \geq 1
$$

## Edge decomposition results

## Theorem 10 (Kim, A.K., West, Wu, and Zhu):

$$
F(d)=4-\frac{4}{d+2} \text { for every } d \geq 1
$$

Theorem 11 (KKWWZ): If $1 \leq d \leq 6$, then every graph $G$ with $\operatorname{Mad}(G)<4-\frac{4}{d+2}$ has a decomposition into a forest and a forest with maximum degree $\leq d$.

## Edge decomposition results

Theorem 10 (Kim, A.K., West, Wu, and Zhu):

$$
F(d)=4-\frac{4}{d+2} \text { for every } d \geq 1
$$

Theorem 11 (KKWWZ): If $1 \leq d \leq 6$, then every graph $G$ with $\operatorname{Mad}(G)<4-\frac{4}{d+2}$ has a decomposition into a forest and a forest with maximum degree $\leq d$.

Theorem 12 (KKWWZ): Every graph G with $\operatorname{Mad}(G)<4-\frac{4}{2+2}=3$ has a decomposition into a forest and a forest with at most two edges in each component.

## Edge decomposition results

Theorem 10 (Kim, A.K., West, Wu, and Zhu):

$$
F(d)=4-\frac{4}{d+2} \text { for every } d \geq 1
$$

Theorem 11 (KKWWZ): If $1 \leq d \leq 6$, then every graph $G$ with $\operatorname{Mad}(G)<4-\frac{4}{d+2}$ has a decomposition into a forest and a forest with maximum degree $\leq d$.

Theorem 12 (KKWWZ): Every graph G with $\operatorname{Mad}(G)<4-\frac{4}{2+2}=3$ has a decomposition into a forest and a forest with at most two edges in each component.

Comment: Theorem 10 does not imply Theorem 5.

## Vertex decomposition

A graph $G$ is (improperly) $\left(d_{1}, d_{2}\right)$-colorable, if $V(G)$ can be partitioned into $V_{1}$ and $V_{2}$ so that $\Delta\left(G\left(V_{1}\right)\right) \leq d_{1}$ and $\Delta\left(G\left(V_{2}\right)\right) \leq d_{2}$.

## Vertex decomposition

A graph $G$ is (improperly) $\left(d_{1}, d_{2}\right)$-colorable, if $V(G)$ can be partitioned into $V_{1}$ and $V_{2}$ so that $\Delta\left(G\left(V_{1}\right)\right) \leq d_{1}$ and $\Delta\left(G\left(V_{2}\right)\right) \leq d_{2}$.

This is a partial case of defective coloring, namely a defective coloring with two colors.

## Vertex decomposition

A graph $G$ is (improperly) $\left(d_{1}, d_{2}\right)$-colorable, if $V(G)$ can be partitioned into $V_{1}$ and $V_{2}$ so that $\Delta\left(G\left(V_{1}\right)\right) \leq d_{1}$ and $\Delta\left(G\left(V_{2}\right)\right) \leq d_{2}$.

This is a partial case of defective coloring, namely a defective coloring with two colors.

A $(0,0)$-coloring is an ordinary 2 -coloring.

## Vertex decomposition

A graph $G$ is (improperly) $\left(d_{1}, d_{2}\right)$-colorable, if $V(G)$ can be partitioned into $V_{1}$ and $V_{2}$ so that $\Delta\left(G\left(V_{1}\right)\right) \leq d_{1}$ and $\Delta\left(G\left(V_{2}\right)\right) \leq d_{2}$.

This is a partial case of defective coloring, namely a defective coloring with two colors.

A $(0,0)$-coloring is an ordinary 2-coloring.

Theorem 13 (Glevov and Zambalaeva): Every planar graph of girth at least 16 is $(0,1)$-colorable.

## MAD again

Let $F(j, k)$ denote the supremum over positive $x$ such that each graph $G$ with $\operatorname{Mad}(G)<x$ is $(j, k)$-colorable.

## MAD again

Let $F(j, k)$ denote the supremum over positive $x$ such that each graph $G$ with $\operatorname{Mad}(G)<x$ is $(j, k)$-colorable.

Exercise: $F(0,0)=2$.

## MAD again

Let $F(j, k)$ denote the supremum over positive $x$ such that each graph $G$ with $\operatorname{Mad}(G)<x$ is $(j, k)$-colorable.

Exercise: $F(0,0)=2$.
Theorem 14 (Borodin and Ivanova): $F(0,1) \geq \frac{7}{3}$.
Corollary: Every planar graph of girth at least 14 is ( 0,1 )-colorable.

## MAD again

Let $F(j, k)$ denote the supremum over positive $x$ such that each graph $G$ with $\operatorname{Mad}(G)<x$ is $(j, k)$-colorable.

Exercise: $F(0,0)=2$.
Theorem 14 (Borodin and Ivanova): $F(0,1) \geq \frac{7}{3}$.
Corollary: Every planar graph of girth at least 14 is (0, 1)-colorable.

Theorem 15 (Havet and Sereni): $F(k, k) \geq \frac{4 k+4}{k+2}$.

## MAD again

Let $F(j, k)$ denote the supremum over positive $x$ such that each graph $G$ with $\operatorname{Mad}(G)<x$ is $(j, k)$-colorable.

Exercise: $F(0,0)=2$.
Theorem 14 (Borodin and Ivanova): $F(0,1) \geq \frac{7}{3}$.
Corollary: Every planar graph of girth at least 14 is (0, 1)-colorable.

Theorem 15 (Havet and Sereni): $F(k, k) \geq \frac{4 k+4}{k+2}$.
Proved even for list version.

## Andre again

Theorem 16 (Borodin, Ivanova, Montassier, Ochem, and Raspaud): $3-\frac{2}{k+2} \leq F(0, k) \leq 3-\frac{1}{k+1}$. Furthermore,

$$
\frac{7}{3} \leq F(0,1) \leq \frac{17}{7}
$$

and there exist planar non-( 0,1 )-colorable graphs with girth 7 .

## Andre again

Theorem 16 (Borodin, Ivanova, Montassier, Ochem, and Raspaud): $3-\frac{2}{k+2} \leq F(0, k) \leq 3-\frac{1}{k+1}$. Furthermore,

$$
\frac{7}{3} \leq F(0,1) \leq \frac{17}{7}
$$

and there exist planar non-( 0,1 )-colorable graphs with girth 7 .




$$
k=2
$$

Theorem 17 (Borodin, Ivanova, Montassier, and Raspaud): If $k \geq 2$, then $\frac{10 k+22}{3 k+9} \leq F(1, k) \leq \frac{14 k}{4 k+1}$.


$$
k=2
$$

Theorem 17 (Borodin, Ivanova, Montassier, and Raspaud): If $k \geq 2$, then $\frac{10 k+22}{3 k+9} \leq F(1, k) \leq \frac{14 k}{4 k+1}$.

Theorem 18 (Borodin, Ivanova, Montassier, and Raspaud): Bounds on $F(j, k)$. (Hard to state).

## Our results

Theorem 19 (Borodin and A. K.): $F(0,1)=\frac{12}{5}$. Moreover, if

$$
6|A|-5|E(G(A))| \geq-2 \quad \text { for every } A \subseteq V(G)
$$

then $G$ is $(0,1)$-colorable, and this is sharp. In particular, every planar graph of girth $\geq 12$ is $(0,1)$-colorable.

## Our results

Theorem 19 (Borodin and A. K.): $F(0,1)=\frac{12}{5}$. Moreover, if

$$
6|A|-5|E(G(A))| \geq-2 \quad \text { for every } A \subseteq V(G)
$$

then $G$ is $(0,1)$-colorable, and this is sharp. In particular, every planar graph of girth $\geq 12$ is $(0,1)$-colorable.


## Our results-2

Theorem 20 (O. B. and A. K.): If $k \geq 2$, then

$$
F(0, k)=3-\frac{1}{k+1}=\frac{3 k+2}{k+1}
$$

Moreover, if

$$
\frac{3 k+2}{2(k+1)}|A|-|E(G(A))|>-\frac{1}{k+1} \quad \text { for every } A \subseteq V(G)
$$

then $G$ is $(0, k)$-colorable, and this is sharp.

## Our results-2

Theorem 20 (O. B. and A. K.): If $k \geq 2$, then

$$
F(0, k)=3-\frac{1}{k+1}=\frac{3 k+2}{k+1}
$$

Moreover, if

$$
\frac{3 k+2}{2(k+1)}|A|-|E(G(A))|>-\frac{1}{k+1} \quad \text { for every } A \subseteq V(G)
$$

then $G$ is $(0, k)$-colorable, and this is sharp.
Question: What is the minimum $g$ such that each planar graph of girth $g$ is $(0,1)$-colorable?

