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A (k , d)-decomposition of a graph G is a partition of its edges
into k forests and a graph with maximum degree at most d .

Zhu: If a graph G has a (1, d)-decomposition, then the game
chromatic number (and the game coloring number) of G is at
most 4 + d .

Let Dk (G) denote the minimum d such that G has a
(k , d)-decomposition.

Figure: D1(K2,n) ≥ (n − 1)/2.
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Theorem 2 (He, Hou, Lih, Shao, Wang,and Zhu): Let G be a
planar graph with girth g. Then
(i) D1(G) ≤ 4 if g ≥ 5;
(ii) D1(G) ≤ 2 if g ≥ 7;
(iii) D1(G) ≤ 1 if g ≥ 11;
(iv) D1(G) ≤ 7 if G does not contain C4.

Theorem 2 (Kleitman): Let G be a planar graph with girth 6.
Then D1(G) ≤ 2, and this is sharp.

Theorem 3 (Bassa, Burns, Campbell, Deshpande, Farley,
Halsey, Michalakis, Persson, Pylyavskyy, Rademacher, Riehl,
Rios, Samuel, Tenner, Vijayasaraty, Zhao, and Kleitman): Let G
be a planar graph with girth 10. Then D1(G) ≤ 1.
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Theorem 4 (Borodin, A. K., Sheikh, and Yu): Let G be a planar
graph with girth 9. Then D1(G) ≤ 1.

Theorem 5 (Borodin, Ivanova, A. K., and Sheikh): Let G be a
planar graph with no 4-cycles . Then D1(G) ≤ 5.

Theorem 6 (Wang and Zhang, and independently Montassier,
Ossona de Mendez, Raspaud, and Zhu): Let G be a planar
graph with girth 8. Then D1(G) ≤ 1 and this is sharp.
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Maximum average degree approach

Mad(G) := max
H⊆G

2|E(H)|
|V (H)|

.

Mad(G) <
2g

g − 2
for every planar G with girth g. (1)

Theorem 7 (Montassier, Pêcher, Raspaud, West, and Zhu): If
Mad(G) < 4(d+1)(d+3)

d2+6d+6 , then G has a (1, d)-decomposition.

Let F (d) denote the supremum over positive x such that each
graph G with Mad(G) < x has a (1, d)-decomposition.

Theorem 7 yields that F (d) ≥ 4− 8d+12
d2+6d+6 .
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Theorem 7 (Montassier, Pêcher, Raspaud, West, and Zhu): If
Mad(G) < 4(d+1)(d+3)

d2+6d+6 , then G has a (1, d)-decomposition.

Let F (d) denote the supremum over positive x such that each
graph G with Mad(G) < x has a (1, d)-decomposition.

Theorem 7 yields that F (d) ≥ 4− 8d+12
d2+6d+6 .



Maximum average degree approach

Mad(G) := max
H⊆G

2|E(H)|
|V (H)|

.

Mad(G) <
2g

g − 2
for every planar G with girth g. (1)
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There are graphs G with Mad(G) = 4− 4
d+2 that have no

(1, d)-decomposition.

For example, every (2d + 2)-regular graph with each edge
subdivided (once) is such a graph.

So, F (d) ≤ 4− 4
d+2 .

Theorem 8 (Montassier, Ossona de Mendez, Raspaud, and
Zhu): Let G be a graph with Mad(G) < 8

3 . Then D1(G) ≤ 1 and
this is sharp.

Theorem 9 (Montassier, Ossona de Mendez, Raspaud, and
Zhu): Let G be a graph with 2|E(H)| ≤ 3|V (H)| − 3 for every
H ⊆ G. Then G decomposes into a forest and a linear forest,
and this is sharp.
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Edge decomposition results

Theorem 10 (Kim, A.K., West, Wu, and Zhu):

F (d) = 4− 4
d+2 for every d ≥ 1.

Theorem 11 (KKWWZ): If 1 ≤ d ≤ 6, then every graph G with
Mad(G) < 4− 4

d+2 has a decomposition into a forest and a
forest with maximum degree ≤ d .

Theorem 12 (KKWWZ): Every graph G with
Mad(G) < 4− 4

2+2 = 3 has a decomposition into a forest and a
forest with at most two edges in each component.

Comment: Theorem 10 does not imply Theorem 5.
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Vertex decomposition

A graph G is (improperly) (d1, d2)-colorable, if V (G) can be
partitioned into V1 and V2 so that ∆(G(V1)) ≤ d1 and
∆(G(V2)) ≤ d2.

This is a partial case of defective coloring, namely a defective
coloring with two colors.

A (0, 0)-coloring is an ordinary 2-coloring.

Theorem 13 (Glevov and Zambalaeva): Every planar graph of
girth at least 16 is (0, 1)-colorable.
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MAD again

Let F (j , k) denote the supremum over positive x such that each
graph G with Mad(G) < x is (j , k)-colorable.

Exercise: F (0, 0) = 2.

Theorem 14 (Borodin and Ivanova): F (0, 1) ≥ 7
3 .

Corollary: Every planar graph of girth at least 14 is
(0, 1)-colorable.

Theorem 15 (Havet and Sereni): F (k , k) ≥ 4k+4
k+2 .

Proved even for list version.
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Andre again

Theorem 16 (Borodin, Ivanova, Montassier, Ochem, and
Raspaud): 3− 2

k+2 ≤ F (0, k) ≤ 3− 1
k+1 . Furthermore,

7
3
≤ F (0, 1) ≤ 17

7

and there exist planar non-(0, 1)-colorable graphs with girth 7.
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k=2

Theorem 17 (Borodin, Ivanova, Montassier, and Raspaud): If
k ≥ 2, then 10k+22

3k+9 ≤ F (1, k) ≤ 14k
4k+1 .

Theorem 18 (Borodin, Ivanova, Montassier, and Raspaud):
Bounds on F (j , k). (Hard to state).



k=2

Theorem 17 (Borodin, Ivanova, Montassier, and Raspaud): If
k ≥ 2, then 10k+22

3k+9 ≤ F (1, k) ≤ 14k
4k+1 .

Theorem 18 (Borodin, Ivanova, Montassier, and Raspaud):
Bounds on F (j , k). (Hard to state).



k=2

Theorem 17 (Borodin, Ivanova, Montassier, and Raspaud): If
k ≥ 2, then 10k+22

3k+9 ≤ F (1, k) ≤ 14k
4k+1 .

Theorem 18 (Borodin, Ivanova, Montassier, and Raspaud):
Bounds on F (j , k). (Hard to state).



Our results

Theorem 19 (Borodin and A. K.): F (0, 1) = 12
5 . Moreover, if

6|A| − 5|E(G(A))| ≥ −2 for every A ⊆ V (G),

then G is (0, 1)-colorable, and this is sharp. In particular, every
planar graph of girth ≥ 12 is (0, 1)-colorable.
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Our results-2

Theorem 20 (O. B. and A. K.): If k ≥ 2, then

F (0, k) = 3− 1
k + 1

=
3k + 2
k + 1

.

Moreover, if

3k + 2
2(k + 1)

|A| − |E(G(A))| > − 1
k + 1

for every A ⊆ V (G),

then G is (0, k)-colorable, and this is sharp.

Question: What is the minimum g such that each planar graph
of girth g is (0, 1)-colorable?
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