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The game

A cop chases a robber on an undirected reflexive graph
G = (V ,E ). The cop wins if she occupies the same vertex as the
robber. Otherwise the robber wins.

The rules
A series of rounds each consisting of the cop’s move followed by
the robber’s move.
A move takes the player from the vertex currently occupied to
some adjacent vertex, except at round 0.
Round zero: the cop chooses a vertex, then the robber chooses a
vertex.
The whole graph is visible to both players.

Assumption to begin with

All graphs are finite.
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Questions, problems

I When can the cop be sure to win?

I Characterize the graphs on which the cop always wins
(cop-win graphs).

I If one cop cannot catch a robber, how many are needed
(cop number)?

I Characterize the graphs on which k cops always catch one
robber but k − 1 of them do not (k-cop-win graphs).

I How many rounds does a cop need to win on a cop-win graph?

I Are there bounds on the cop number of some classes of
graphs?

I . . . . . .

Answers
Of the sample questions above, only two have answers, one of
them only partial.
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Examples

I A disconnected graph is NOT cop-win.

I A complete graph is cop-win.

I A graph with a universal vertex is cop-win.

I A path is cop-win.

I A tree is cop-win

I A cycle is NOT cop-win

Observation
A regular cop-win graph is complete.
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Gavenčiak
proved that the cop needs at most n − 3 rounds to catch the
robber on a cop-win graph with n vertices and characterized the
graphs that reach the bound.

Aigner and Fromme

defined cop number cn(G ) (also called search number sn(G )) of a
graph G , and showed that it is at most 3 for planar graphs.

Schroeder
showed that the cop number of a graph G is at most b3

2 g(G )c and
conjectures that it is at most g(G ) + 3, with g(G ) being the genus
of G .



Theorem (Nowakowski & Winkler, Quilliot)

A graph G = (V ,E ) is cop-win if and only if its vertices can be
ordered V = {v1, . . . , vn} so that for every 1 ≤ i < n there is a
i < j ≤ n such that Ni [vi ] ⊆ Ni [vj ].

Here Ni [x ] = N[x ] ∩ {vi , vi+1, . . . , vn} and N[u] is the closed
neighbourhood (but, of course, since G is reflexive, N[u] = N(u)).



Lemma
If G is a cop-win graph and H a retract of G then H is cop-win.

Proof.
The cop simply follows its strategy for G on H.

Lemma
If G is cop-win then it has a vertex u such that G − u is a retract
of G .

Proof.
Consider the robber’s move at the penultimate round of the game.
He is at u, the cop at v and at the next round he will be caught,
So wherever he goes, the cop can reach him. Translation:
N[u] ⊆ N[v ]. Thus clearly G − u is a retract of G .

These two lemmas prove the theorem.
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Let G be a graph and let C ebe a cycle in G .

1. A bridge of C is a shortest path in G between two vertices in
C whose distance in G is strictly smaller than their distance
on C . If a bridge is an edge, it is called a chord.

2. The graph G is chordal if each cycle of length at least four
has a chord.

3. The graph G is bridged if each cycle of length at least four
has a bridge.

4. A vertex of G is simplicial if its neighbourhood induces a
complete graph.

5. A vertex u of G is isometric if the distances between the
vertices of G \ {u} are the same as those between
corresponding vertices in G .



Theorem
A graph G is chordal if and only if its vertices can be ordered
v1, . . . , vn so that vi is simplicial in the graph induced by
{vi , . . . , vn}.

Theorem
A graph is bridged if and only if its vertices can be ordered
v1, . . . , vn so that vi is isometric in the graph induced by
{vi , . . . , vn}.

(clearly a chordal graph is bridged)

So. . .
Bridged graphs are cop-win.
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Theorem (Anstee, Farber)

A graph is bridged if and only if it is cop-win and has no induced
cycles of length 4 or 5.

Question [Anstee, Farber]

Are infinite bridged graphs cop-win?

Are countable bridged graphs cop-win?

Observation
A ray (one-way infinite path) is chordal, satisfies the dismantling
condition, but is not cop-win.

And it is worse. . .
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Theorem (GH, Laviolette, Sauer, Woodrow)

For every k ∈ N there is a finite diameter 2 chordal graph on which
the cop cannot win in fewer than k rounds.

Corollary

There is a countable diameter 2 chordal graph that is not cop-win.

Proof.
By compactness.

Corollary

For every infinite cardinal κ there is a diameter 2 chordal graph of
order κ on which the cop loses.

So which infinite graphs are cop-win?
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Trivial examples

I Complete graphs.

I Graphs with a universal vertex.

I ?????

But there is a characterization.
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Given a graph G = (V ,E ) (finite or infinite), define relations ≤α
on its vertex set inductively for all ordinals α as follows.

I u ≤0 u for all u ∈ V

I u ≤α v for α > 0 if for every z ∈ N[u] there is a w ∈ N[v ]
and β < α such that z ≤β w

Observe that ≤α ⊆ ≤β for α < β. As there are no more than
|V (G )| different such relations for infinite graphs and only a finite
number for finite ones, there is a least α such that ≤α=≤α+1.
Let � be this ≤α.

Theorem (Nowakowski, Winkler)

A graph G is cop-win if and only if the relation � is trivial, that is,
if and only if u � v for all u, v ∈ G .
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Since all this is not very helpful for infinite graphs, we turn to
other methods, the good old tried BFI.

(Brute Force and Ignorance)

Note, however, that this characterization leads to an algorithm to
decide if k cops can catch ` robbers on a finite graph that can be
directed or not, have loops at some but not all vertices, and where
the moves of the players can be constrained. The algorithm is
polynomial in the number of vertices of the graph, provided k and
` are fixed.
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In the rest of the talk we explain how to prove one theorem
(below) and state some open problems (at the end).

Theorem (Bonato, GH, Tardif)

For every infinite cardinal κ there are 2κ non-isomorphic vertex
transitive cop-win graphs of cardinality κ.

In contrast, we have seen that the only finite regular complete
graphs are complete.



In the rest of the talk we explain how to prove one theorem
(below) and state some open problems (at the end).

Theorem (Bonato, GH, Tardif)

For every infinite cardinal κ there are 2κ non-isomorphic vertex
transitive cop-win graphs of cardinality κ.

In contrast, we have seen that the only finite regular complete
graphs are complete.



In the rest of the talk we explain how to prove one theorem
(below) and state some open problems (at the end).

Theorem (Bonato, GH, Tardif)

For every infinite cardinal κ there are 2κ non-isomorphic vertex
transitive cop-win graphs of cardinality κ.

In contrast, we have seen that the only finite regular complete
graphs are complete.



What we shall do is explain how to construct a vertex transitive
graph of cardinality κ from any graph of cardinality κ and use the
knowldge of the existence of 2κ non-isomorphic trees of cardinality
κ to get the required graphs.

The existence of the trees is well known in logic and, in fact, they
are not difficult to construct. To make them into cop-win graphs,
just add a universal vertex to each (this makes it into a pointed
tree. Thus the only real work we need to do is that involved in
proving

1. The construction that turns graphs into vertex transitive
graphs preserves the non-isomorphisms.

2. There is a way to turn a graph into a vertex transitive graph
of the same cardinality.



The first proof we will not talk about; it relies on some particular
properties of pointed trees and is only marginally interesting here.

The second one is based on an idea of Tardif and is the important
part as we hope it can be used elsewhere.

Reminder
Let Gi = (Vi ,Ei ), i = 0, 1 be two graphs. The strong product of
G0 and G1 is the graph G0 � G1 = (V0 × V1,E ) with
E = {(u, x), (v , y)] : either u = v , [x , y ] ∈ E1, or
[u, v ] ∈ E0, x = y , or [u, v ] ∈ E0 and [x , y ] ∈ E1}.

This generalizes.
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Let I be an index set. The strong product of a set {Gi : i ∈ I} of
graphs is the graph �i∈I Gi defined by

V (�i∈I Gi ) = {f : I →
⋃
i∈I

V (Gi ) : f (i) ∈ V (Gi ) for all i ∈ I},

E (�i∈I Gi ) = {fg : for all i ∈ I , f (i) = g(i) or f (i)g(i) ∈ E (Gi )}.

This, however, is not what we need – a strong product of an
infinite number of connected graphs could be disconnected, even if
all the component graphs are finite. For an example, take I = N
and Gi a path x i

1 . . . x
i
i+1. The vertex f such that f (i) = x i

i+1 is
not reachable by a finite path from the vertex g with g(i) = x i

1 in
the product.

So we modify. . .



Fix a vertex f ∈ �i∈I Gi . Define the weak strong product of
{Gi : i ∈ I} with base f as the subgraph �f

i∈I Gi of �i∈I Gi induced
by the set of all g ∈ V (�i∈I Gi ) such that {i ∈ I : g(i) 6= f (i)} is
finite.

Observe that �f
i∈I Gi is connected, and if |I | ≤ κ and |V (Gi )| ≤ κ

for each i ∈ I , then |V (�f
i∈I Gi )| ≤ κ.

One particular power of a graph is of special interest to us and will
be used several times. It allows us to construct vertex transitive
graphs out of non-transitive ones.

Let κ be a cardinal, and let H be a graph of order κ. Let
I = κ×V (H) and define f : I → V (H) by f (β, v) = v . The power
H I

f of H with base f will be called the canonical power of H and
will be denoted by HH .
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be used several times. It allows us to construct vertex transitive
graphs out of non-transitive ones.
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Lemma
The canonical power of an infinite graph is vertex transitive.

Proof (outline)

The key realization is that the sets f −1(v) partition the set κ× V
and all have the same cardinality κ, and that the same is true for
any g ∈ V (HH). For a fixed g ∈ V (HH), this allows us to define a
bijections φv : g−1(v) −→ f −1(v) and use these to define a
bijection φ : I −→ I by

φ(β, v) = φg(β,v)(β, v).

Thus g(β, v) = f (φ(β, v)).
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This in turn leads to the definition of a function
ψg : V (HH) −→ V (HH) which maps our fixed g ∈ V (HH) to f
and turns out to be an automorphism of HH :

ψg (h) = ĥ such that ĥ(β, v) = h(φ(β, v)).

Checking that ψg is an automorphism mapping g to f is a
question of digesting the definitions.

Since any g ∈ V (HH) can be mapped to the base vertex
(function) f by an automorphism of HH , the graph is transitive. 2
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As a corollary, we have.

Corollary

For each k ≥ 1 and each infinite cardinal κ there are 2κ

non-isomorphic vertex transitive k-cop-win graphs of cardinality κ.



Open problems

I Prove Schroeder’s conjecture that sn(G ) ≤ g(G ) + 3.

I Find a toroidal graph on which 3 cops cannot win.

I For what connected infinite graphs G other than pointed trees
do we have that GG is cop-win?

I Give interesting examples of connected infinite graphs G such
that GG is not cop-win.

I Can anything intelligent be said about the structure of infinite
cop-win graphs?

I Find a bound on the length of the game on a given cop-win
graph in terms of other parameters, if possible.
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