On some Graph Colo(u)ring Problems

Guillaume Fertin

LINA, UMR 6241, Université de Nantes, France

G. Fertin (LINA)

Quick Overview - Acyclic Coloring

Definition

Acyclic coloring of a graph *G*:

- Proper vertex coloring of G (no two neighbors are assigned the same color)
- Any two classes of colors induce an acyclic graph (=a forest)
- Equivalently, no bicolored cycle in G
- a(G): smallest number of colors necessary to acyclically color G

Acyclic Coloring

- (Asymptotically tight) bounds on a(G) for G=d-dimensional grid, d ≥ 2
- $a(G) \leq 9$ for any graph of max. degree 5 (recently improved to 8)

Quick Overview - Star Coloring

Definition

Star coloring of a graph G:

- Proper vertex coloring of G
- Any two classes of colors induce a forest of stars
- Equivalently, no bicolored path of length 3 in G
- $\chi_s(G)$: smallest number of colors necessary to star color G

Star Coloring

- Lovász Local Lemma \Rightarrow general upper bound on χ_s for graphs of max degree Δ
- $\chi_{s}(G) = O(\Delta^{\frac{3}{2}})$
- Lower bound: $\chi_s(G) = \Omega(\frac{\Delta^{\frac{3}{2}}}{\log \Delta^{\frac{1}{2}}})$

Quick Overview - Oriented Coloring

Definition

Oriented coloring of a graph G:

- Let \vec{G} be an orientation of G
- Proper vertex coloring of \vec{G}
- If $(u, v), (x, y) \in A(\vec{G})$, we cannot have c(u) = c(y) and c(v) = c(x)
- $\chi_o(G)$: smallest number of colors necessary to color any orientation \vec{G}

Oriented Coloring

- Bounds for the oriented coloring of 2-D grids: $7 \le \chi_o(G(n_1, n_2)) \le 11$
- Conjecture: $\chi_o(G(n_1, n_2)) = 7$ by homomorphism to T(7; 1, 2, 4)

Quick Overview - Oriented Coloring

Definition

Oriented coloring of a graph G:

- Let \vec{G} be an orientation of G
- Proper vertex coloring of \vec{G}
- If $(u, v), (x, y) \in A(\vec{G})$, we cannot have c(u) = c(y) and c(v) = c(x)
- $\chi_o(G)$: smallest number of colors necessary to color any orientation \vec{G}

Oriented Coloring

- Bounds for the oriented coloring of 2-D grids: $7 \le \chi_o(G(n_1, n_2)) \le 11$
- Conjecture: $\chi_o(G(n_1, n_2)) = 7$ by homomorphism to T(7; 1, 2, 4)

Quick Overview - L(p, q)-labeling

Definition

L(p,q)-labeling of a graph G:

- Vertex labeling of *G*, in the (integer) range [0; *M*]
- Neighbors in G must be assigned values that differ by at least p
- Vertices at distance 2 in G must be assigned values that differ by at least q
- $\lambda_q^p(G)$: smallest value of *M* necessary to L(p, q)-label *G*

L(p, q)-labeling

Resp. values of p and q	$\lambda_q^p(G_d) \ge$	$\lambda_q^p(G_d) \le$	Gap	No-hole Property
$p \neq 0 \ ; \ q = 0$	p		0	No (except for $p = 1$)
$p = 0 \ ; \ q \neq 0$	(2d-1)q		0	No (except for $q = 1$)
$p,q \ge 1 \ ; \ 2p < q$	2p + (2d - 2)q	2dq	2q-2p	No
$q = 1 ; 1 \le p \le 2d$	2p+2d-2		0	Yes (Prop 4)
$p,q \ge 1 \ ; \ q \le 2p \le 4dq$	2p + (2d - 2)q	2p + (2d - 1)q - 1	q-1	Yes (Prop 4)
$p,q \ge 1 \ ; \ p = \alpha q \ ; \ \alpha \le 2d$	2p +	(2d-2)q	0	No
$ \begin{array}{ c c } p,q \geq 1 \ ; \ p = \alpha q + \beta \\ 1 \leq \beta \leq q - 1 \ ; \ p \leq 2dq + \beta - q \end{array} \end{array} $	2p + (2d - 2)q	$2p + 2dq - 2\beta$	$2(q-\beta)$	No
$p,q \ge 1 \ ; \ p \ge 2dq + 1$	p+(4d-2)q		0	No

Table 1: L(p,q) labeling of G_d : Summary of the results

The S-labeling problem (joint work with S. Vialette)

Notations

- Let G be a graph having n vertices and m edges
- An *S*-labeling θ : $V(G) \rightarrow \{1, 2...n\}$ is a bijective mapping of the vertices of *G*
- Let $\Theta(G)$ be the set of all *S*-labelings of *G*
- For any graph *G* and any $\theta \in \Theta(G)$,

$$SL(G, \theta) = \sum_{e \in E(G)} \min\{\theta(u) : u \in e\}$$

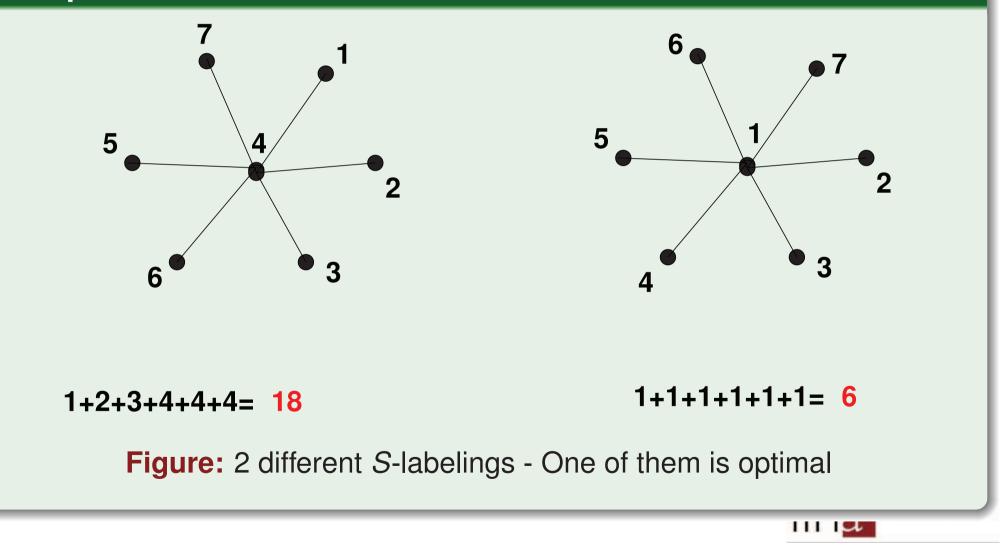
The *S***-Labeling Problem**

Given a graph *G*, find an *S*-labeling $\theta \in \Theta(G)$, such that $SL(G, \theta)$ is minimized.

G. Fertin (LINA)

S-labeling of $K_{1,6}$

Example



Theorem

The S-labeling problem is:

- NP-complete for general graphs [Vialette 06]
- polynomial-time solvable for split graphs

Definition

- Split graph = chordal graph whose complement is also chordal
- Vertices of a split graph can be partitioned into:
 - A clique K, and
 - A stable set S

Example

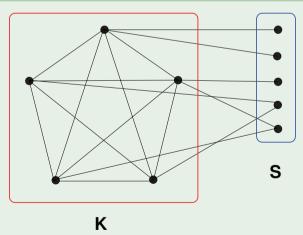


Figure: A split graph *G* and a partition $V(G) = K \cup S$

G. Fertin (LINA)

Theorem

For any graph G of maximum degree Δ ,

$$\frac{m(m+\Delta)}{2\Delta} \leq SL(G) \leq \frac{m(n+1)}{3}$$

Theorem

Approximation ratios for the S-labeling problem:

- $r = \frac{4}{3}$ for general graphs
- $r = \frac{2\Delta}{3}$ for trees of max degree Δ
- $r = \frac{4\Delta}{3}$ for graphs of max degree Δ

Definition (Contribution Vector)

For any *S*-labeling θ of a graph *G*, and for any $1 \le i \le |V(G)|$, $CV_{\theta}[i] =$ number of times label *i* contributes to the sum in $SL(G, \theta)$.

Example

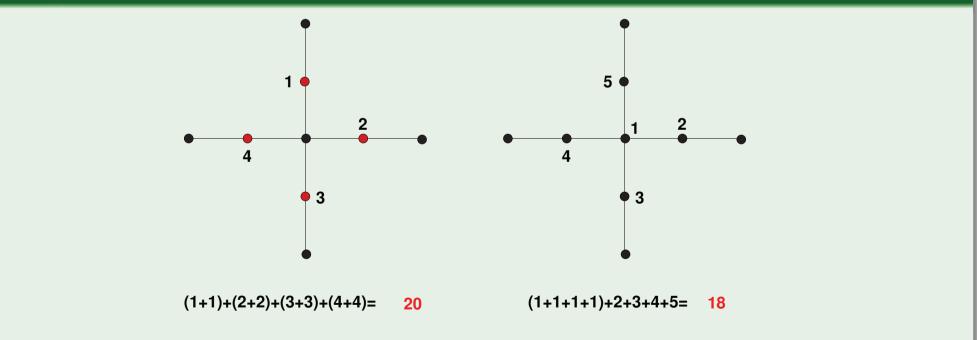


Figure: $CV_{\theta} = [2, 2, 2, 2]$ (left) ; $CV_{\theta} = [4, 1, 1, 1, 1]$ (right)

Theorem

For any graph G and any optimal S-labeling θ of G, its contribution vector CV_{θ} is monotone non-increasing

Theorem

For any graph G of maximum degree Δ , any optimal S-labeling θ of G satisfies $CV_{\theta}[1] = \Delta$

Conclusion on the *S***-labeling problem**

Some open questions

- Let *k* be s.t.
 - $CV_{\theta}[1] = CV_{\theta}[2] = \ldots = CV_{\theta}[k] = \Delta$, and
 - $CV_{\theta}[k+1] \neq \Delta$
 - Let G_{Δ} be the subgraph of G induced by the vertices of degree Δ
- Conjecture: there exists an optimal *S*-labeling θ s.t. the vertices associated to $CV_{\theta}[1 \dots k]$ form a maximum independent set in G_{Δ}
- Question 1: complexity of the S-labeling problem for trees ?
- Question 2: does the problem admit a PTAS ? a constant approximation ratio ?

Summary

- Glad and honored to pay tribute to André
- He's the one who taught me research
- Helped me at the beginning of my career
- Relations evolved from PhD supervisor, to colleague and friend

Thank you, André

G. Fertin (LINA)