On some Graph Colo(u)ring Problems

Guillaume Fertin

LINA, UMR 6241, Université de Nantes, France

Quick Overview - Acyclic Coloring

Definition

Acyclic coloring of a graph G :

- Proper vertex coloring of G (no two neighbors are assigned the same color)
- Any two classes of colors induce an acyclic graph (=a forest)
- Equivalently, no bicolored cycle in G
- $a(G)$: smallest number of colors necessary to acyclically color G

Acyclic Coloring

- (Asymptotically tight) bounds on $a(G)$ for $G=d$-dimensional grid, $d \geq 2$
- $a(G) \leq 9$ for any graph of max. degree 5 (recently improved to 8)

Quick Overview - Star Coloring

Definition

Star coloring of a graph G :

- Proper vertex coloring of G
- Any two classes of colors induce a forest of stars
- Equivalently, no bicolored path of length 3 in G
- $\chi_{s}(G)$: smallest number of colors necessary to star color G

Star Coloring

- Lovász Local Lemma \Rightarrow general upper bound on χ_{s} for graphs of max degree Δ
- $\chi_{s}(G)=O\left(\Delta^{\frac{3}{2}}\right)$
- Lower bound: $\chi_{s}(G)=\Omega\left(\frac{\Delta^{\frac{3}{2}}}{\log \Delta^{\frac{1}{2}}}\right)$

Quick Overview - Oriented Coloring

Definition

Oriented coloring of a graph G :

- Let \vec{G} be an orientation of G
- Proper vertex coloring of \vec{G}
- If $(u, v),(x, y) \in A(\vec{G})$, we cannot have $c(u)=c(y)$ and $c(v)=c(x)$
- $\chi_{o}(G)$: smallest number of colors necessary to color any orientation \vec{G}

Oriented Coloring

- Bounds for the oriented coloring of 2-D grids:

$$
7 \leq \chi_{0}\left(G\left(n_{1}, n_{2}\right)\right) \leq 11
$$

- Conjecture: $\chi_{o}\left(G\left(n_{1}, n_{2}\right)\right)=7$ by homomorphism to $T(7 ; 1,2,4)$

Quick Overview - Oriented Coloring

Definition

Oriented coloring of a graph G :

- Let \vec{G} be an orientation of G
- Proper vertex coloring of \vec{G}
- If $(u, v),(x, y) \in A(\vec{G})$, we cannot have $c(u)=c(y)$ and $c(v)=c(x)$
- $\chi_{o}(G)$: smallest number of colors necessary to color any orientation \vec{G}

Oriented Coloring

- Bounds for the oriented coloring of 2-D grids:

$$
7 \leq \chi_{0}\left(G\left(n_{1}, n_{2}\right)\right) \leq 11
$$

- Conjecture: $\chi_{o}\left(G\left(n_{1}, n_{2}\right)\right)=7$ by homomorphism to $T(7 ; 1,2,4)$

Quick Overview - $L(p, q)$-labeling

Definition

$L(p, q)$-labeling of a graph G :

- Vertex labeling of G, in the (integer) range $[0 ; M]$
- Neighbors in G must be assigned values that differ by at least p
- Vertices at distance 2 in G must be assigned values that differ by at least q
- $\lambda_{q}^{p}(G)$: smallest value of M necessary to $L(p, q)$-label G

Quick Overview - $L(p, q)$-labeling

$L(p, q)$-labeling

Resp. values of p and q	$\lambda_{q}^{p}\left(G_{d}\right) \geq$	$\lambda_{q}^{p}\left(G_{d}\right) \leq$	Gap	No-hole Property
	p		0	No (except for $p=1$)
$p=0 ; q \neq 0$	$(2 d-1) q$		0	No (except for $q=1$)
$p, q \geq 1 ; 2 p<q$	$2 p+(2 d-2) q$	$2 d q$	$2 q-2 p$	No
$q=1 ; 1 \leq p \leq 2 d$	$2 p+2 d-2$		0	Yes (Prop 4)
$p, q \geq 1 ; q \leq 2 p \leq 4 d q$	$2 p+(2 d-2) q$	$2 p+(2 d-1) q-1$	$q-1$	Yes (Prop 4)
$p, q \geq 1 ; p=\alpha q ; \alpha \leq 2 d$	$2 p+(2 d-2) q$		0	No
$\begin{aligned} & p, q \geq 1 ; p=\alpha q+\beta \\ & 1 \leq \beta \leq q-1 ; p \leq 2 d q+\beta-q \end{aligned}$	$2 p+(2 d-2) q$	$2 p+2 d q-2 \beta$	$2(q-\beta)$	No
p,q $\geq 1 ; p \geq 2 d q+1$	$p+(4 d-2) q$		0	No

Table 1: $L(p, q)$ labeling of G_{d} : Summary of the results

The S-labeling problem (joint work with S. Vialette)

Notations

- Let G be a graph having n vertices and m edges
- An S-labeling $\theta: V(G) \rightarrow\{1,2 \ldots n\}$ is a bijective mapping of the vertices of G
- Let $\Theta(G)$ be the set of all S-labelings of G
- For any graph G and any $\theta \in \Theta(G)$,

$$
\mathrm{SL}(G, \theta)=\sum_{e \in E(G)} \min \{\theta(u): u \in e\}
$$

The S-Labeling Problem

Given a graph G, find an S-labeling $\theta \in \Theta(G)$, such that $\operatorname{SL}(G, \theta)$ is minimized.

S-labeling of $K_{1,6}$

Example

$1+2+3+4+4+4=18$

$1+1+1+1+1+1=6$

Figure: 2 different S-labelings - One of them is optimal

Overview of the Results

Theorem

The S-labeling problem is:

- NP-complete for general graphs [Vialette 06]
- polynomial-time solvable for split graphs

Overview of the Results

Definition

- Split graph = chordal graph whose complement is also chordal
- Vertices of a split graph can be partitioned into:
- A clique K, and
- A stable set S

Example

Figure: A split graph G and a partition $V(G)=K \cup S$

Overview of the Results

Theorem

For any graph G of maximum degree Δ,

$$
\frac{m(m+\Delta)}{2 \Delta} \leq S L(G) \leq \frac{m(n+1)}{3}
$$

Theorem

Approximation ratios for the S-labeling problem:

- $r=\frac{4}{3}$ for general graphs
- $r=\frac{2 \Delta}{3}$ for trees of max degree Δ
- $r=\frac{4 \Delta}{3}$ for graphs of max degree Δ

Overview of the Results

Definition (Contribution Vector)

For any S-labeling θ of a graph G, and for any $1 \leq i \leq|V(G)|, C V_{\theta}[i]=$ number of times label i contributes to the sum in $\operatorname{SL}(G, \theta)$.

Example

Figure: $C V_{\theta}=[2,2,2,2]$ (left) ; $C V_{\theta}=[4,1,1,1,1]$ (right)

Overview of the Results

Theorem

For any graph G and any optimal S-labeling θ of G, its contribution vector CV_{θ} is monotone non-increasing

Theorem

For any graph G of maximum degree Δ, any optimal S-labeling θ of G satisfies $C V_{\theta}[1]=\Delta$

Conclusion on the S-labeling problem

Some open questions

- Let k be s.t.
- $C V_{\theta}[1]=C V_{\theta}[2]=\ldots=C V_{\theta}[k]=\Delta$, and
- $C V_{\theta}[k+1] \neq \Delta$
- Let G_{Δ} be the subgraph of G induced by the vertices of degree Δ
- Conjecture: there exists an optimal S-labeling θ s.t. the vertices associated to $C V_{\theta}[1 \ldots k]$ form a maximum independent set in G_{Δ}
- Question 1: complexity of the S-labeling problem for trees ?
- Question 2: does the problem admit a PTAS ? a constant approximation ratio ?

Conclusion

Summary

- Glad and honored to pay tribute to André
- He's the one who taught me research
- Helped me at the beginning of my career
- Relations evolved from PhD supervisor, to colleague and friend

Acknowledgments

Thank you, André

