UPP-DAGs

J.-C. Bermond, M. Cosnard, S. Pérennes
MASCOTTE - I3S (CNRS \& UNS) and INRIA Sophia Antipolis
Bordeaux Graph Workshop'2010 - Bordeaux - France FOR ANDRE
ALL THE BEST

Introduction

- Routing, wavelength assignment and grooming in optical networks.
- Generic problem : satisfy a family of requests (or a traffic matrix) under capacity constraints
- request __ dipath + wavelength (color)
- Objectives :

Minimize the load of the routing (number of paths sharing an edge)
Minimize the number of wawelengths (two dipaths sharing an arc have to be assigned different wavelengths)

Introduction

- minimum wavelength number \geq minimum routing load
- Minimizing the load or the number of wavelengths is a difficult problem (NP-hard).
- min wave number $=\min$ routing load if
- General graph and multicast
- Symmetric tree and all to all
- Even in the case of a family of dipaths, min wave number is NP-hard (= chromatic number of the conflict graph).

Introduction

- For directed trees and any sets of requests (family of digraphs), it can be shown that \min wave numb $=\min$ routing load
- Can this result be generalized to arbitrary Directed Acyclic Graphs ?

A pathological example

- Requests: (S1,T1), (S2,T2), (S3,T3), (S4,T4)
- Minimum load ≥ 2 : each path will cross at least another one
- Minimum number of wavelengths ≥ 4 : each path will cross all the other paths.

A pathological example

- Requests : (S1,T1), (S2,T2), (S3,T3), (S4,T4)

A pathological example

- Requests : (S1,T1), (S2,T2), (S3,T3), (S4,T4)

A pathological example

- Requests : (S1,T1), (S2,T2), (S3,T3), (S4,T4)

A pathological example

- Requests: $(\mathrm{S} 1, \mathrm{~T} 1),(\mathrm{S} 2, \mathrm{~T} 2),(\mathrm{S} 3, \mathrm{~T} 3),(\mathrm{S} 4, \mathrm{~T} 4)$
- A solution with maximum load $=2$ and minimum number of wavelengths $=4$.
- Can be generalized to max load $=2$ and minimum number of wavelengths $=\mathrm{n}$.

Definitions

- A DAG (Directed Acyclic Graph) is a digraph with no directed cycle.
- An (oriented) cycle in a DAG consists therefore of an even sequence of dipaths $P_{1}, P_{2}, \ldots, P_{2 k}$ alternating in direction
- An internal cycle of a DAG G is an oriented cycle such that no vertex is a source or a sink.

Definitions

- Given a digraph G and a family of dipaths \mathcal{P}, the load of an arc e is the number of dipaths of the family containing e

$$
\operatorname{load}(G, P, e)=|\{P: P \in \mathcal{P} ; e \in P\}|
$$

- The load of G for $\mathcal{P}, \pi(G, \mathcal{P})$, is the maximum over all the arcs of G.
- Two dipaths are in conflict (or intersect) if they share an arc.
- $w(G, \mathcal{P})$ is the minimum number of colors needed to color the dipaths of \mathcal{P} in such a way that two dipaths in conflict have different colors.

$$
\pi(G, \mathcal{P}) \leq w(G, \mathcal{P})
$$

Definitions and properties

- The conflict graph of (G, \mathcal{P}) is a graph whose vertices are the dipaths of \mathcal{P}, two vertices being joined if their associated dipaths are in conflict.
- w is the chromatic number of the conflict graph
- π is upper bounded by the clique number of the conflict graph.

Problems

- Consider a simplified problem: unique routing. Can we solve the problem of finding the minimum number of wavelenths ?
- The answer is unknown (pathological example).
- Given a DAG G and a family of dipaths \mathcal{P}, what is the relation between the load of G for \mathcal{P} and the minimum number of wavelenths?
- Is it possible to characterize the DAGs for which load is equal to the min wave number?

Unique Path Property DAG

Proof.

$w(G, \mathcal{P})=\lceil(4 / 3 \pi(G, \mathcal{P}))\rceil$

Dipaths: (A1B1C1D1), (A1B1C2D2), (A2B2C2D2), (A2B2C1D1), (A1B1C1D1), (A1B1C2D2), (A2B2C2D2), (A2B2C1D1)

Unique Path Property DAG

Proof.

conflict graph

If one copy of each dipath $\pi(G, \mathcal{P})=2 ; w(G, \mathcal{P})=3$ If k copies : $\pi(G, \mathcal{P})=2 k ; w(G, \mathcal{P})=\lceil(8 k / 3)\rceil$

Main Result

Theorem

Let G be a DAG. Then, for any family of dipaths \mathcal{P}, $w(G, \mathcal{P})=\pi(G, \mathcal{P})$ if and only if G does not contain an internal cycle.

Theorem

If a DAG G contains an internal cycle there exists a set \mathcal{P} of dipaths such that $\pi(G, \mathcal{P})=2$ and $w(G, \mathcal{P})=3$.

Unique Path Property DAG

Definition

A DAG has the UP Property if between two vertices there is at most one dipath. A digraph satisfying this property will be called an UPP-DAG.

Property

If G is an UPP-DAG and if a set of dipaths are pairwise in conflict, then their intersection is a dipath (Helly property). Hence the load is the clique number of the conflict graph. (Proof) $(\pi=$ the clique number of the conflict graph.)

Unique Path Property DAG

Theorem

Let G be an UPP-DAG with only one internal cycle. Then, for any family of dipaths $\mathcal{P}, w(G, \mathcal{P}) \leq\lceil(4 / 3 \pi(G, \mathcal{P}))\rceil$ If C is the number of internal cycles of the UPP-graph, then $w(G, \mathcal{P}) \leq\lceil((4 / 3) C \pi(G, \mathcal{P}))\rceil$.

Unique Path Property DAG

Theorem

There exists an UPP-DAG with only one internal cycle and an infinite family of dipaths \mathcal{P} such that:

$$
w(G, \mathcal{P})=\lceil(4 / 3 \pi(G, \mathcal{P}))\rceil
$$

Good edge-labelling

edge-labelling: function $\phi: E(G) \rightarrow \mathbb{R}$.

A path is increasing if the sequence of its edges labels is non-decreasing.

An edge-labelling of G is good if, for any two distinct vertices u, v, there is at most one increasing (u, v)-path.

Good edge-labelling

edge-labelling: function $\phi: E(G) \rightarrow \mathbb{R}$.
A path is increasing if the sequence of its edges labels is non-decreasing.

An edge-labelling of G is good if, for any two distinct vertices u, v, there is at most one increasing (u, v)-path.

Example

UPP DAGs with load 2

Theorem

G UPP DAG with load 2. For any family of dipaths \mathcal{P} the conflict graph $C(G, \mathcal{P})$ has a good labeling

Theorem

H graph with a good labeling there exists an UPP DAG G with load 2 and a family of dipaths \mathcal{P} such that $H=C(G, \mathcal{P})$

The end

Theorem

There exist a family of graphs with a good labeling and a chromatic number as large as we want

Corollary

There exist UPP digraphs with load 2 and w as large as we want

Proof.

- H of degree $\leq k$, girth $>2 K+2$ and large X_{i}
- Partition the edges in $K+1$ matchings Vizing's thm
- give ege of each matching a different label
- increasing path at most $\mathrm{K}+1$ edges
- girth imply no 2 increasing paths

Open Problems

- G undirected is it possible to orient G to obtain an UPP DAG
- Bounds in terms of number of internal cycles
- Characterisation of graphs with good labeling
- (decision problem NP hard (Araujo, Cohen, Giroire,Havet)
- Quid UPP DAGS load 3 or more ??
- When $w=\pi$ (case for ALL TO ALL for each $x y$ a dipath open question
- true for DAGS ??

MERCI

