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Introduction

Routing, wavelength assignment and grooming in optical
networks.

Generic problem : satisfy a family of requests (or a traffic
matrix) under capacity constraints

request —— dipath + wavelength (color)

Objectives :
Minimize the load of the routing (number of paths sharing an
edge)
Minimize the number of wawelengths (two dipaths sharing an
arc have to be assigned different wavelengths)
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Introduction

minimum wavelength number ≥ minimum routing load

Minimizing the load or the number of wavelengths is a
difficult problem (NP-hard).

min wave number = min routing load if

General graph and multicast
Symmetric tree and all to all

Even in the case of a family of dipaths, min wave number is
NP-hard (= chromatic number of the conflict graph).
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Introduction

For directed trees and any sets of requests (family of
digraphs), it can be shown that

min wave numb = min routing load

Can this result be generalized to arbitrary Directed Acyclic
Graphs ?

Bermond et al. MASCOTTE UPP-DAGs



A pathological example

Requests : (S1,T1), (S2,T2), (S3,T3), (S4,T4)

Minimum load ≥ 2 : each path will cross at least another one

Minimum number of wavelengths ≥ 4 : each path will cross
all the other paths.
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A pathological example

Requests : (S1,T1), (S2,T2), (S3,T3), (S4,T4)

A solution with maximum load = 2 and minimum number of
wavelengths = 4.
Can be generalized to max load = 2 and minimum number of
wavelengths = n.
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Definitions

A DAG (Directed Acyclic Graph) is a digraph with no directed
cycle.

An (oriented) cycle in a DAG consists therefore of an even
sequence of dipaths P1,P2, . . . ,P2k alternating in direction

An internal cycle of a DAG G is an oriented cycle such that
no vertex is a source or a sink.
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Definitions

Given a digraph G and a family of dipaths P, the load of an
arc e is the number of dipaths of the family containing e

load(G ,P, e) = |{P : P ∈ P; e ∈ P}|

The load of G for P, π(G ,P), is the maximum over all the
arcs of G .

Two dipaths are in conflict (or intersect) if they share an arc.

w(G ,P) is the minimum number of colors needed to color the
dipaths of P in such a way that two dipaths in conflict have
different colors.

π(G ,P) ≤ w(G ,P).
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Definitions and properties

The conflict graph of (G,P) is a graph whose vertices are the
dipaths of P, two vertices being joined if their associated
dipaths are in conflict.

w is the chromatic number of the conflict graph

π is upper bounded by the clique number of the conflict graph.
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Problems

Consider a simplified problem: unique routing. Can we solve
the problem of finding the minimum number of wavelenths ?

The answer is unknown (pathological example).

Given a DAG G and a family of dipaths P, what is the
relation between the load of G for P and the minimum
number of wavelenths?

Is it possible to characterize the DAGs for which load is equal
to the min wave number?
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Unique Path Property DAG

Proof.

w(G ,P) = d(4/3π(G ,P))e

Dipaths : (A1B1C1D1), (A1B1C2D2), (A2B2C2D2),
(A2B2C1D1), (A1B1C1D1), (A1B1C2D2), (A2B2C2D2),
(A2B2C1D1)
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Unique Path Property DAG

Proof.

conflict graph

If one copy of each dipath π(G ,P) = 2; w(G ,P) = 3 If k copies :
π(G ,P) = 2k ; w(G ,P) = d(8k/3)e
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Main Result

Theorem

Let G be a DAG. Then, for any family of dipaths P,
w(G ,P) = π(G ,P) if and only if G does not contain an internal
cycle.

Theorem

If a DAG G contains an internal cycle there exists a set P of
dipaths such that π(G ,P) = 2 and w(G ,P) = 3.
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Unique Path Property DAG

Definition

A DAG has the UP Property if between two vertices there is at
most one dipath. A digraph satisfying this property will be called
an UPP-DAG.

Property

If G is an UPP-DAG and if a set of dipaths are pairwise in conflict,
then their intersection is a dipath (Helly property). Hence the load
is the clique number of the conflict graph. (Proof) ( π = the
clique number of the conflict graph.)
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Unique Path Property DAG

Theorem

Let G be an UPP-DAG with only one internal cycle. Then, for any
family of dipaths P, w(G ,P) ≤ d(4/3π(G ,P))e If C is the
number of internal cycles of the UPP-graph, then
w(G ,P) ≤ d((4/3)Cπ(G ,P))e.

Bermond et al. MASCOTTE UPP-DAGs



Unique Path Property DAG

Theorem

There exists an UPP-DAG with only one internal cycle and an
infinite family of dipaths P such that:

w(G ,P) = d(4/3π(G ,P))e
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Good edge-labelling

edge-labelling: function φ : E (G )→ R.

A path is increasing if the sequence of its edges labels is
non-decreasing.

An edge-labelling of G is good if, for any two distinct vertices u, v ,
there is at most one increasing (u, v)-path.
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edge-labelling: function φ : E (G )→ R.

A path is increasing if the sequence of its edges labels is
non-decreasing.

An edge-labelling of G is good if, for any two distinct vertices u, v ,
there is at most one increasing (u, v)-path.
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UPP DAGs with load 2

Theorem

G UPP DAG with load 2. For any family of dipaths P the conflict
graph C (G ,P) has a good labeling

Theorem

H graph with a good labeling there exists an UPP DAG G with
load 2 and a family of dipaths P such that H = C (G ,P)
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The end

Theorem

There exist a family of graphs with a good labeling and a
chromatic number as large as we want

Corollary

There exist UPP digraphs with load 2 and w as large as we want

Proof.

H of degree ≤ k, girth > 2K + 2 and large Xi

Partition the edges in K + 1 matchings Vizing’s thm

give ege of each matching a different label

increasing path at most K+1 edges

girth imply no 2 increasing paths
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Open Problems

G undirected is it possible to orient G to obtain an UPP DAG

Bounds in terms of number of internal cycles

Characterisation of graphs with good labeling

(decision problem NP hard (Araujo, Cohen, Giroire,Havet)

Quid UPP DAGS load 3 or more ??

When w = π (case for ALL TO ALL for each xy a dipath
open question

true for DAGS ??
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