On the problem of finding disjoint cycles and dicycles in a digraph

Jørgen Bang-Jensen²

University of Southern Denmark
Bordeaux, November 18, 2010
${ }^{2}$ Joint work with Matthias Kriesell and Anders Yeo

Edge disjoint spanning trees in graphs

Theorem (Tutte 1961, Nash-Williams 1961)

A graph G contains k edge-disjoint spanning trees if and only if

$$
\left|E_{G}(\mathcal{P})\right| \geq k \cdot(|\mathcal{P}|-1)
$$

holds for all partitions \mathcal{P} of $V(G)$.
$E_{G}(\mathcal{P})$: set of edges in G between distinct parts of \mathcal{P}.

Arc disjoint branchings in digraphs

Theorem (Edmonds 1973)

For a vertex r of a digraph D there exists k arc-disjoint branchings with root r if and only if

$$
d^{+}(X) \geq k
$$

for every proper subset X of $V(D)$ containing r.
$d^{+}(X)$: number of arcs in D from some $x \in X$ to some $y \in V(D)-X$.

An intermediate problem

Problem (Thomassé, Egres Open Problems List 2008)

Find a good characterization of the digraphs D such that there exist edge-disjoint S, T, where S is a spanning tree of $U G(D)$ and T is an out-branching of D.
$U G(D)$: underlying undirected graph; technically: same vertices and edges, different incidence relation

Obv. necessary: two edge-disjoint spanning trees in $U G(D)$. Obv. sufficient: two arc-disjoint out-branchings in D.

A problem on mixed paths

Let D be a digraph and $r \in V(D)$.
If there are edge-disjoint S, T, where S is a spanning tree of $U G(D)$ and T is an out-branching of D rooted at r
then for each $s \in V(D)$ there exist edge-disjoint P, Q where P is an (r, s)-path in $U G(D)$ and Q is an (r, s)-path in D.

Problem (MixED-EDGE-DISJOINT-PATHS)

Given a digraph D and $r, s \in V(D)$, decide if there exist edge-disjoint P, Q, where P is an (r, s)-path in $U G(D)$ and Q is an (r, s)-path in D.
Obv. necessary: two edge-disjoint (r, s)-paths in $U G(D)$. Obv. sufficient: two arc-disjoint (r, s)-paths in D.

The unmixed versions

Theorem (Menger 1927)

Given two vertices $r \neq s$ of a graph or digraph D, there exist k edge-disjoint (r, s)-paths if and only if there no (r, s)-cut X with $|X|<k$ in D.
X an (r, s)-cut: every (r, s)-path in D contains an arc from X.

The intermediate version is difficult

Theorem (Bang-Jensen \& Kriesell 2009)
 MIXED-EDGE-DISJOINT-PATHS is $\mathcal{N} \mathcal{P}$-complete.

Mixed homeomorphisms

Let H be a fixed mixed graph and D be any digraph.
A mixed homeomorphism from H into D maps

- each vertex of H to a vertex of D,
- each directed edge $x y$ to a nontrivial $(f(x), f(y))$-path in D, and
- each undirected edge $x y$ to a nontrivial $(f(x), f(y))$-path in $U G(D)$
such that
- $f(x) \neq f\left(x^{\prime}\right)$ for $x \neq x^{\prime}$ in $V(H)$ and
- $\operatorname{Int}(f(e)) \cap f\left(e^{\prime}\right)=\emptyset$ for $e \neq e^{\prime}$ in $E(H)$.

In this definition, a cycle through $f(x)$ is considered as a nontrivial $(f(x), f(x))$-path with end vertex $f(x)$ in D or $U G(D)$. $\operatorname{lnt}(f(e))$ is the set of all vertices of $f(e)$ except its end(s).
Homeomorphisms from graphs into graphs are defined accordingly.

A class of homeomorphism extension problems.

Fix a mixed graph H.

Problem (MIXED-HOMEOMORPHISM-EXTENSION)

Given a digraph D and an injection $f: V(H) \rightarrow V(D)$, decide if f extends to a mixed homeomorphism from H into D.

Roughly, we look for a subdivision of H in D, where we fix the principal vertices and do not care about the direction of the edges of the subdivision paths or cycles corresponding to undirected edges of H.

The undirected case

Fix a graph H.

Problem (HOMEOMORPHISM-EXTENSION)

Given a graph G and an injection $f: V(H) \rightarrow V(G)$, decide if f extends to a homeomorphism from H into G.

To solve this, it is sufficient to solve polynomially many linkage problems. Each of these takes polynomial time by Graph Minors XIII (Robertson \& Seymour 1995).

The directed case

Fix a digraph H.

Problem (DIGRAPH-HOMEOMORPHISM-EXTENSION)

Given a digraph D and an injection $f: V(H) \rightarrow V(D)$, decide if f extends to a [mixed] homeomorphism from H to D.

There is a classic dichotomy stating that
DIGRAPH-HOMEOMORPHISM-EXTENSION is solvable in polynomial time if all edges of H have the same initial vertex or they all have the same terminal vertex, whereas, in all other cases, it is $\mathcal{N} \mathcal{P}$-complete (Fortune \& Hopcroft \& Wyllie 1980).

The general dichotomy

Theorem (Bang-Jensen \& Kriesell 2009)

MIXED-HOMEOMORPHISM-EXTENSION for H is in \mathcal{P} if

- all edges of H are undirected, or
- all edges of H are directed and all have the same initial vertex or all have the same terminal vertex, and it is $\mathcal{N P}$-complete in all other cases.

The special case of two cycles

The case that H consists of a directed and an undirected loop at distinct vertices can be rephrased:

Problem

Given a digraph D and vertices $x \neq y$, decide if there is a cycle B in D and a cycle C in $U G(D)$ such that $x \in V(B), y \in V(C)$, and $V(B) \cap V(C)=\emptyset$.

The problem is $\mathcal{N} \mathcal{P}$-complete - even if we do not prescribe y.
It is likely that this changes if we do neither prescribe y nor x.

Disjoint cycles in graphs and digraphs

Problem (DisJoINT-CYCLES)

Decide if a given (di)graph G has two disjoint cycles.
In \mathcal{P} for graphs by classic results (Lovász 1965, Dirac 1963).
In \mathcal{P} for directed graphs (McCuaig 1993); difficult.

The mixed disjoint cycles problem

Problem (MIXED-DISJOINT-CYCLES)

Decide if, for a given digraph, there exists cycles B in D and C in $U G(D)$ such that $V(B) \cap V(C)=\emptyset$.

Theorem. (Bang-Jensen \& Kriesell 2009)
MIXED-DISJOINT-CYCLES restricted to strongly connected digraphs D is in \mathcal{P}, and B, C as there can be found in polynomial time if they exist.

Conjecture (Bang-Jensen \& Kriesell 2009)

 MIXED-DISJOINT-CYCLES is in \mathcal{P}.
Intercyclic digraphs

When do there exist disjoint cycles B in D and C in $U G(D)$?
| Obv. necessary: two disjoint cycles in $U G(D)$. Obv. sufficient: two disjoint cycles in D.

Concentrate on digraphs without two disjoint cycles. $=$ =: intercyclic

Cycle transversal number

Suppose D is strongly connected.
Distinguish cases according to the cycle transversal number

$$
\tau(D):=\min \{|T|: T \subseteq V(D), D-T \text { acyclic }\} .
$$

$\tau(D)$ can be determined in polynomial time (McCuaig 1993).

$\tau(D)$	Method to answer
0	"No" (as D is acyclic)
1	Decision Algorithm
2	Characterization (partly topological argument)
3	"Yes" (using a result of McCuaig)
≥ 4	"Yes" (as D is not intercyclic (McCuaig 1993))

Cycle transversal number 1

Outline of our decision algorithm for a strongly connected input digraph D_{0} with $\tau\left(D_{0}\right)=1$.

- Find a cycle transversal $\{a\}$ in D_{0}.
- Split a, i.e. replace a by a^{+}, a^{-}; for each edge from x to y, replace x by a^{+}if $x=a$ and y by a^{-}if $y=a$.
- The result D is acyclic with source a^{+}and sink a^{-}.
- Find a largest system \mathcal{P} of openly disjoint $\left(a^{+}, a^{-}\right)$-paths.
- Study the $\bigcup \mathcal{P}$-bridges. Easy if $|\mathcal{P}| \neq 2$; reduce or decide.
- For $\mathcal{P}=\{P, Q\}$ reduce to the case that $V(D)=V(P) \cup V(Q)$; reduce further or decide.

Cycle transversal number 2 I

D_{0} strongly connected, cycle transversal number is 2.
First: D_{0} simple, minimal in- and out-degree at least 2 .

- If D_{0} is 2-regular then the answer is "no" if and only if D_{0} is not the square of an odd cycle (1-page argument).
- Find cycle transversal $\{x, y\}$, split into $x^{+}, x^{-} \& y^{+}, y^{-}$.
- The result D is acyclic; sources: x^{+}, y^{+}, sinks: x^{-}, y^{-}.
- If D is not intercyclic then the answer is "yes".
- Otherwise, find a plane embedding of D in the unit disc S where $x^{+}, y^{+}, x^{-}, y^{-}$map to $(-1,0),(0,-1),(1,0),(0,1)$ and these are the only points on ∂S.
(McCuaig 1993, Metzlar 1989, Thomassen 1983/1985)
- Find cycles B, C as required ("yes"), unless D_{0} is a diwheel ("no").

Cycle transversal number 2 II

D_{1} strongly connected, cycle transversal number is 2.

- If vertex x has only one outneighbor y : Contract $x y$.
- If vertex x has only one in-neighbor y : Contract $y x$.
- Repeat the first two steps as long as possible.

The underlying simple digraph D_{0} of the result has minimum in- and out-degree ≥ 2.

- Decide for D_{0}. If the answer for D_{0} is "yes" then the answer for D_{1} is "yes".
- Otherwise analyze
- the subdigraphs formed by the contracted edges, and
- the edges connecting them.
(Reorganized representation of the input D_{1}.) Difficult, many different "yes"- and "no"-instances.

A vault

Typical example; D_{0} is the square of a 5 -cycle.

A trivault

Typical example; D_{0} is the square of a triangle.

Cycle transversal number ≥ 3

Structure theorem for intercyclic digraphs D (McCuaig 1993) implies "yes" for $\tau(D) \geq 3$.

Open problems

Conjecture (Bang-Jensen \& Kriesell 2009)
 Mixed-Disjoint-Cycles is in \mathcal{P}

*

Metaproblem.

Find more mixed problems in between their well-studied unmixed ancestors.

Solution to Thomassé's problem

Theorem (Bang-Jensen and Yeo 2010)

The following problem is NP-complete: Given a directed graph
$D=(V, A)$ and a vertex $s \in V$; does D have an out-branching B_{s}^{+}such that $U G\left(D-A\left(B_{s}^{+}\right)\right.$is connected?

Sketch of proof:

First step: reduce 3-SAT to (s, t)-path in a digraph which avoids certain vertices.

Let $W[u, v, p, q]$ be the digraph (the variable gadget) with vertices $\left\{u, v, y_{1}, y_{2}, \ldots y_{p}, z_{1}, z_{2}, \ldots z_{q}\right\}$ and the arcs of the two (u, v)-paths $u y_{1} y_{2} \ldots y_{p} v, u z_{1} z_{2} \ldots z_{q} v$.

Let \mathcal{F} be an instance of 3-SAT with variables $x_{1}, x_{2}, \ldots, x_{n}$ and clauses $C_{1}, C_{2}, \ldots, C_{m}$. The ordering of the clauses $C_{1}, C_{2}, \ldots, C_{m}$ induces an ordering of the occurrences of a variable x and its negation \bar{x} in these.

With each variable x_{i} we associate a copy of $W\left[u_{i}, v_{i}, p_{i}, q_{i}\right]$ where x_{i} occurs p_{i} times and \bar{x}_{i} occurs q_{i} times in the clauses of \mathcal{F}. Identify end vertices of these digraphs by setting $v_{i}=u_{i+1}$ for $i=1,2, \ldots, n-1$. Let $s=u_{1}$ and $t=v_{n}$. Denote the resulting digraph by D^{\prime}.

For each clause $C_{j}=\left\{a_{j, 1} \vee a_{j, 2} \vee a_{j, 3}\right\}$ we identify $a_{j, i}$, $i=1,2,3$ with the vertex corresponding to that litteral in D^{\prime}.

Claim: D^{\prime} contains an (s, t)-path P which avoids at least one vertex from $\left\{a_{j, 1}, a_{j, 2}, a_{j, 3}\right\}$ for each $j \in[m]$ if and only if \mathcal{F} is satisfiable.

Suppose P is an (s, t)-path which avoids at least one vertex from $\left\{a_{j, 1}, a_{j, 2}, a_{j, 3}\right\}$ for each $j \in[m]$. By construction, for each variable x_{i}, P traverses either the subpath $u_{i} y_{i, 1} y_{i, 2} \ldots y_{i, p_{i}} v_{i}$ or the subpath $u_{i} z_{i, 1} z_{i, 2} \ldots z_{i, q_{i}} v_{i}$.

Now define a truth assignment by setting x_{i} false precisely when the first traversal occurs for i^{31} Conversely, given a truth assignment for \mathcal{F} we can form P by routing it through all the false literals in the chain of variable gadgets.

[^0]

The clause gadget.

A schematic picture of $D_{\mathcal{F}}$. Only the chain of variable gadgets and the clause gadgets corresponding to $C_{1}=\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right)$ and $C_{2}=\left(\bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}\right)$ are shown

Claim: $D_{\mathcal{F}}$ has an out-branching B_{s}^{+}such that $D_{\mathcal{F}}-A\left(B_{s}^{+}\right)$is connected if and only if D^{\prime} contains an (s, t)-path P which avoids at least one vertex from $\left\{a_{j, 1}, a_{j, 2}, a_{j, 3}\right\}$ for each $j \in[m]$.

Suppose first that there exists B_{s}^{+}such that $D-A\left(B_{s}^{+}\right)$is connected. It follows from the structure of $D_{\mathcal{F}}$ that the (s, t)-path P in B_{s}^{+}lies entirely inside D^{\prime} and since $t c_{j}$ is the only arc entering c_{i}, all arcs of the form $t c_{i}, i \in[m]$ are in B_{s}^{+}.
P cannot contain all of $\left\{a_{j, 1}, a_{j, 2}, a_{j, 3}\right\}$ for some clause C_{j} because that would disconnect the vertices of $H_{j}-\left\{a_{j, 1}, a_{j, 2}, a_{j, 3}\right\}$ from the remaining vertices.

Conversely, suppose that D^{\prime} contains an (s, t)-path P which avoids at least one vertex from $\left\{a_{j, 1}, a_{j, 2}, a_{j, 3}\right\}$ for each $j \in[m]$. Then we form an out-branching B_{s}^{-}by adding the following arcs:
all arcs of the form $t c_{i}, i \in[m]$ and for each clause $C_{j}, j \in[m]$ and $i \in[3]$ if P contains the vertex $a_{j, i}$ we add the arc $a_{j, i} b_{j, i}$ and otherwise we add the $\operatorname{arcs} c_{j} b_{j, i}, b_{j, i} a_{j, i}$. This clearly gives an out-branching B_{s}^{+}of $D_{\mathcal{F}}$.

It remains to show that $D^{*}=D_{\mathcal{F}}-A\left(B_{s}^{+}\right)$is connected. First observe that $D^{*}\left\langle V\left(D^{\prime}\right)\right\rangle$ contains either all arcs of the path $u_{i} y_{i, 1} y_{i, 2} \ldots y_{i, p_{i}} v_{i}$ or all arcs of the subpath $u_{i} z_{i, 1} z_{i, 2} \ldots z_{i, q_{i}} v_{i}$ for each $i \in[n]$ and hence it contains an ($s, t)$-path which passes through all the vertices $u_{1}, u_{2}, \ldots, u_{n}, t$.

By the description of P above, for each clause $C_{j}, j \in[m]$ and $i \in[3]$, if P contains the vertex $a_{j, i}$ then D^{*} contains the arcs $c_{j} b_{j, i}, c_{j} a_{j, i}$ and if P does not contain the vertex $a_{j, i}$ then D^{*} contains the $\operatorname{arcs} c_{j} a_{j, i}, a_{j, i} b_{j, i}$. Now it is easy to see that D^{*} is connected and spanning.

Further hardness results

Theorem

It is $\mathcal{N} \mathcal{P}$-complete to decide whether a given digraph has an (s, t)-path P such that $D-A(P)$ is connected for specified vertices s, t.

Theorem

It is $\mathcal{N} \mathcal{P}$-complete to decide for a given digraph D and distinct vertices vertex $s, t \in V(D)$ whether the underlying graph of D has an (s, t)-path Q such that $D-A(Q)$ has an out-branching B_{s}^{+}rooted at s.

Theorem

It is $\mathcal{N P}$-complete to decide for a given strongly connected digraph D whether D contains a directed cycle C such that $U G(D-A(C))$ is connected.

Theorem

It is $\mathcal{N P}$-complete to decide for a given strongly connected digraph D whether $U G(D)$ contains a cycle C such that $D-A(C)$ is strongly connected.

Theorem

It is $\mathcal{N P}$-complete to decide whether a 2-regular digraph D contains a spanning strong subdigraph D^{\prime} such that $U G\left(D-A\left(D^{\prime \prime}\right)\right)$ is connected.

Thank you very much for your attention!

Jørgen Bang-Jensen . University of Southern Denmark, Odense
jbj@imada.sdu.dk

Preprints at http://bib.mathematics.dk/imada/

[^0]: ${ }^{31}$ This is a satisfying truth assignment for \mathcal{F} since for any clause C_{j} at least one literal is avoided by P and hence becomes true by the assignment (the literals traversed become false and those not traversed become true).

