On the problem of finding disjoint cycles and dicycles in a digraph

Jørgen Bang-Jensen²

University of Southern Denmark

Bordeaux, November 18, 2010

²Joint work with Matthias Kriesell and Anders Yeo () + () + () + () + () + ()

Theorem (Tutte 1961, Nash-Williams 1961)

A graph G contains k edge-disjoint spanning trees if and only if

$$|E_G(\mathcal{P})| \geq k \cdot (|\mathcal{P}| - 1)$$

holds for all partitions \mathcal{P} of V(G).

 $E_G(\mathcal{P})$: set of edges in *G* between distinct parts of \mathcal{P} .

Theorem (Edmonds 1973)

For a vertex r of a digraph D there exists k arc-disjoint branchings with root r if and only if

 $d^+(X) \ge k$

for every proper subset X of V(D) containing r.

 $d^+(X)$: number of arcs in D from some $x \in X$ to some $y \in V(D) - X$.

Problem (Thomassé, Egres Open Problems List 2008)

Find a good characterization of the digraphs D such that there exist edge-disjoint S, T, where S is a spanning tree of UG(D) and T is an out-branching of D.

UG(*D*): underlying undirected graph; technically: same vertices and edges, different incidence relation

Obv. necessary: two edge-disjoint spanning trees in UG(D). Obv. sufficient: two arc-disjoint out-branchings in D.

Let *D* be a digraph and $r \in V(D)$.

- If there are edge-disjoint S, T, where S is a spanning tree of UG(D) and T is an out-branching of D rooted at r
- then for each $s \in V(D)$ there exist edge-disjoint *P*, *Q* where *P* is an (r, s)-path in *UG*(*D*) and *Q* is an (r, s)-path in *D*.

Problem (MIXED-EDGE-DISJOINT-PATHS)

Given a digraph D and $r, s \in V(D)$, decide if there exist edge-disjoint P, Q, where P is an (r, s)-path in UG(D) and Q is an (r, s)-path in D.

Obv. necessary: two edge-disjoint (r, s)-paths in UG(D). Obv. sufficient: two arc-disjoint (r, s)-paths in D.

ヘロト 人間 ト イヨト イヨト

Theorem (Menger 1927)

Given two vertices $r \neq s$ of a graph or digraph D, there exist k edge-disjoint (r, s)-paths if and only if there no (r, s)-cut X with |X| < k in D.

X an (r, s)-cut: every (r, s)-path in D contains an arc from X.

The intermediate version is difficult

Theorem (Bang-Jensen & Kriesell 2009)

MIXED-EDGE-DISJOINT-PATHS is NP-complete.

Jørgen Bang-Jensen⁹ On the problem of finding disjoint cycles and dicycles in a digraph

Mixed homeomorphisms

Let H be a fixed mixed graph and D be any digraph.

A mixed homeomorphism f from H into D maps

- each vertex of *H* to a vertex of *D*,
- each directed edge xy to a nontrivial (f(x), f(y))-path in D, and
- each undirected edge xy to a nontrivial (f(x), f(y))-path in UG(D)

such that

- $f(x) \neq f(x')$ for $x \neq x'$ in V(H) and
- $Int(f(e)) \cap f(e') = \emptyset$ for $e \neq e'$ in E(H).

In this definition, a cycle through f(x) is considered as a nontrivial (f(x), f(x))-path with end vertex f(x) in D or UG(D). Int(f(e)) is the set of all vertices of f(e) except its end(s). Homeomorphisms from *graphs* into *graphs* are defined accordingly.

★ E ► ★ E ► E

Fix a mixed graph H.

Problem (MIXED-HOMEOMORPHISM-EXTENSION)

Given a digraph D and an injection $f : V(H) \rightarrow V(D)$, decide if f extends to a mixed homeomorphism from H into D.

Roughly, we look for a subdivision of H in D, where we fix the principal vertices and do not care about the direction of the edges of the subdivision paths or cycles corresponding to undirected edges of H.

ヘロト 人間 ト イヨト イヨト

Fix a graph *H*.

Problem (HOMEOMORPHISM-EXTENSION)

Given a graph G and an injection $f : V(H) \rightarrow V(G)$, decide if f extends to a homeomorphism from H into G.

To solve this, it is sufficient to solve polynomially many linkage problems. Each of these takes polynomial time by Graph Minors XIII (Robertson & Seymour 1995).

Fix a digraph H.

Problem (DIGRAPH-HOMEOMORPHISM-EXTENSION)

Given a digraph D and an injection $f : V(H) \rightarrow V(D)$, decide if f extends to a [mixed] homeomorphism from H to D.

There is a classic dichotomy stating that DIGRAPH-HOMEOMORPHISM-EXTENSION is solvable in polynomial time if all edges of H have the same initial vertex or they all have the same terminal vertex, whereas, in all other cases, it is \mathcal{NP} -complete (Fortune & Hopcroft & Wyllie 1980).

Theorem (Bang-Jensen & Kriesell 2009)

MIXED-HOMEOMORPHISM-EXTENSION for H is in \mathcal{P} if

- all edges of H are undirected, or
- all edges of H are directed and all have the same initial vertex or all have the same terminal vertex,

and it is \mathcal{NP} -complete in all other cases.

The case that H consists of a directed and an undirected loop at distinct vertices can be rephrased:

Problem

Given a digraph D and vertices $x \neq y$, decide if there is a cycle B in D and a cycle C in UG(D) such that $x \in V(B)$, $y \in V(C)$, and $V(B) \cap V(C) = \emptyset$.

The problem is \mathcal{NP} -complete — even if we do not prescribe *y*.

It is likely that this changes if we do neither prescribe y nor x.

ヘロト 人間 ト イヨト イヨト

Problem (DISJOINT-CYCLES)

Decide if a given (di)graph G has two disjoint cycles.

In \mathcal{P} for graphs by classic results (Lovász 1965, Dirac 1963). In \mathcal{P} for directed graphs (McCuaig 1993); difficult.

< ロ > < 同 > < 回 > < 回 > .

Problem (MIXED-DISJOINT-CYCLES)

Decide if, for a given digraph, there exists cycles B in D and C in UG(D) such that $V(B) \cap V(C) = \emptyset$.

Theorem. (Bang-Jensen & Kriesell 2009)

MIXED-DISJOINT-CYCLES restricted to strongly connected digraphs D is in \mathcal{P} , and B, C as there can be found in polynomial time if they exist.

Conjecture (Bang-Jensen & Kriesell 2009)

MIXED-DISJOINT-CYCLES is in \mathcal{P} .

ヘロト 人間 ト イヨト イヨト

When do there exist disjoint cycles B in D and C in UG(D)?

Obv. necessary: two disjoint cycles in UG(D). Obv. sufficient: two disjoint cycles in D.

Concentrate on digraphs without two disjoint cycles.

=: intercyclic

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose *D* is strongly connected.

Distinguish cases according to the cycle transversal number

 $\tau(D) := \min\{|T|: T \subseteq V(D), D - T \text{ acyclic}\}.$

 τ (*D*) can be determined in polynomial time (McCuaig 1993).

au(D)	Method to answer
0	"No" (as <i>D</i> is acyclic)
1	"No" (as <i>D</i> is acyclic) Decision Algorithm
2	Characterization (partly topological argument)
3	"Yes" (using a result of McCuaid)
\ge 4	"Yes" (as D is not intercyclic (McCuaig 1993))

◆ロ▶★攝▶★注▶★注▶ 注: のなぐ

Outline of our decision algorithm

for a strongly connected input digraph D_0 with $\tau(D_0) = 1$.

- Find a cycle transversal $\{a\}$ in D_0 .
- Split a, i.e. replace a by a⁺, a⁻; for each edge from x to y, replace x by a⁺ if x = a and y by a⁻ if y = a.
- The result *D* is acyclic with source a^+ and sink a^- .
- Find a largest system \mathcal{P} of openly disjoint (a^+, a^-) -paths.
- Study the $\bigcup \mathcal{P}$ -bridges. Easy if $|\mathcal{P}| \neq 2$; reduce or decide.
- For P = {P, Q} reduce to the case that
 V(D) = V(P) ∪ V(Q); reduce further or decide.

 D_0 strongly connected, cycle transversal number is 2. First: D_0 simple, minimal in- and out-degree at least 2.

- If D₀ is 2-regular then the answer is "no" if and only if D₀ is not the square of an odd cycle (1-page argument).
- Find cycle transversal $\{x, y\}$, split into $x^+, x^- \& y^+, y^-$.
- The result *D* is acyclic; sources: x^+ , y^+ , sinks: x^- , y^- .
- If *D* is not intercyclic then the answer is "yes".
- Otherwise, find a plane embedding of *D* in the unit disc S where x⁺, y⁺, x⁻, y⁻ map to (−1,0), (0, −1), (1,0), (0, 1) and these are the only points on ∂S. (McCuaig 1993, Metzlar 1989, Thomassen 1983/1985)
- Find cycles *B*, *C* as required ("yes"), unless *D*₀ is a diwheel ("no").

Cycle transversal number 2 II

 D_1 strongly connected, cycle transversal number is 2.

- If vertex x has only one outneighbor y: Contract xy.
- If vertex *x* has only one in-neighbor *y*: Contract *yx*.
- Repeat the first two steps as long as possible. The underlying simple digraph D_0 of the result has minimum in- and out-degree ≥ 2 .
- Decide for D_0 .

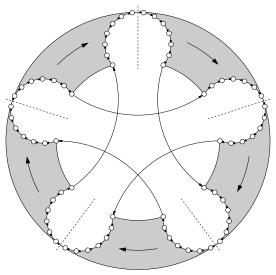
If the answer for D_0 is "yes" then the answer for D_1 is "yes".

- Otherwise analyze
 - the subdigraphs formed by the contracted edges, and
 - the edges connecting them.

(Reorganized representation of the input D_1 .) Difficult, many different "yes"- and "no"-instances.

ヘロト 人間 ト イヨト イヨト

A vault

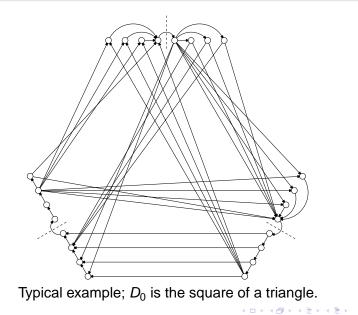


Typical example; D_0 is the square of a 5-cycle.

▲ 臣 ▶ ▲ 臣 ▶ □

æ

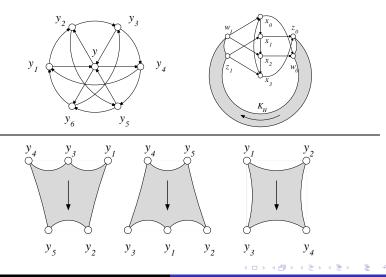
A trivault



æ

Cycle transversal number \geq 3

Structure theorem for intercyclic digraphs *D* (McCuaig 1993) implies "yes" for $\tau(D) \ge 3$.



Jørgen Bang-Jensen²⁵ On the problem of finding disjoint cycles and dicycles in a digraph

Conjecture (Bang-Jensen & Kriesell 2009)

MIXED-DISJOINT-CYCLES is in \mathcal{P}

*

Metaproblem.

Find more mixed problems in between their well-studied unmixed ancestors.

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

Theorem (Bang-Jensen and Yeo 2010)

The following problem is NP-complete: Given a directed graph D = (V, A) and a vertex $s \in V$; does D have an out-branching B_s^+ such that $UG(D - A(B_s^+)$ is connected?

く 何 と く ヨ と く ヨ と …

э

First step: reduce 3-SAT to (s, t)-path in a digraph which avoids certain vertices.

< ロ > < 同 > < 回 > < 回 > < □ > <

Let W[u, v, p, q] be the digraph (the variable gadget) with vertices $\{u, v, y_1, y_2, \dots, y_p, z_1, z_2, \dots, z_q\}$ and the arcs of the two (u, v)-paths $uy_1y_2 \dots y_pv, uz_1z_2 \dots z_qv$.

Let \mathcal{F} be an instance of 3-SAT with variables x_1, x_2, \ldots, x_n and clauses C_1, C_2, \ldots, C_m . The ordering of the clauses C_1, C_2, \ldots, C_m induces an ordering of the occurrences of a variable x and its negation \bar{x} in these.

With each variable x_i we associate a copy of $W[u_i, v_i, p_i, q_i]$ where x_i occurs p_i times and \bar{x}_i occurs q_i times in the clauses of \mathcal{F} . Identify end vertices of these digraphs by setting $v_i = u_{i+1}$ for i = 1, 2, ..., n - 1. Let $s = u_1$ and $t = v_n$. Denote the resulting digraph by D'.

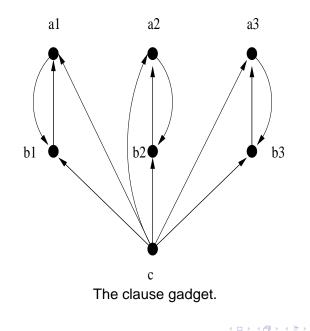
For each clause $C_j = \{a_{j,1} \lor a_{j,2} \lor a_{j,3}\}$ we identify $a_{j,i}$, i = 1, 2, 3 with the vertex corresponding to that litteral in D'.

Claim: D' contains an (s, t)-path P which avoids at least one vertex from $\{a_{j,1}, a_{j,2}, a_{j,3}\}$ for each $j \in [m]$ if and only if \mathcal{F} is satisfiable.

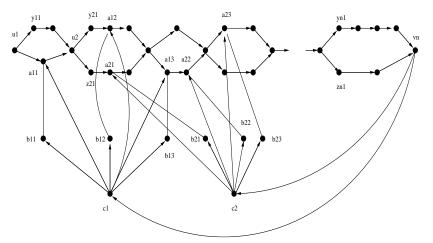
Suppose *P* is an (s, t)-path which avoids at least one vertex from $\{a_{j,1}, a_{j,2}, a_{j,3}\}$ for each $j \in [m]$. By construction, for each variable x_i , *P* traverses either the subpath $u_i y_{i,1} y_{i,2} \dots y_{i,p_i} v_i$ or the subpath $u_i z_{i,1} z_{i,2} \dots z_{i,q_i} v_i$.

Now define a truth assignment by setting x_i false precisely when the first traversal occurs for i^{31} Conversely, given a truth assignment for \mathcal{F} we can form P by routing it through all the false literals in the chain of variable gadgets.

³¹This is a satisfying truth assignment for \mathcal{F} since for any clause C_j at least one literal is avoided by P and hence becomes true by the assignment (the literals traversed become false and those not traversed become true).



æ



A schematic picture of $D_{\mathcal{F}}$. Only the chain of variable gadgets and the clause gadgets corresponding to $C_1 = (\bar{x}_1 \lor x_2 \lor \bar{x}_3)$ and $C_2 = (\bar{x}_2 \lor \bar{x}_3 \lor x_4)$ are shown

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

э

Claim: $D_{\mathcal{F}}$ has an out-branching B_s^+ such that $D_{\mathcal{F}} - A(B_s^+)$ is connected if and only if D' contains an (s, t)-path P which avoids at least one vertex from $\{a_{j,1}, a_{j,2}, a_{j,3}\}$ for each $j \in [m]$.

Suppose first that there exists B_s^+ such that $D - A(B_s^+)$ is connected. It follows from the structure of D_F that the (s, t)-path P in B_s^+ lies entirely inside D' and since tc_i is the only arc entering c_i , all arcs of the form tc_i , $i \in [m]$ are in B_s^+ .

P cannot contain all of $\{a_{j,1}, a_{j,2}, a_{j,3}\}$ for some clause C_j because that would disconnect the vertices of $H_j - \{a_{j,1}, a_{j,2}, a_{j,3}\}$ from the remaining vertices.

Conversely, suppose that D' contains an (s, t)-path P which avoids at least one vertex from $\{a_{j,1}, a_{j,2}, a_{j,3}\}$ for each $j \in [m]$. Then we form an out-branching B_s^- by adding the following arcs:

all arcs of the form tc_i , $i \in [m]$ and for each clause C_j , $j \in [m]$ and $i \in [3]$ if *P* contains the vertex $a_{j,i}$ we add the arc $a_{j,i}b_{j,i}$ and otherwise we add the arcs $c_jb_{j,i}$, $b_{j,i}a_{j,i}$. This clearly gives an out-branching B_s^+ of D_F .

It remains to show that $D^* = D_F - A(B_s^+)$ is connected. First observe that $D^* \langle V(D') \rangle$ contains either all arcs of the path $u_i y_{i,1} y_{i,2} \dots y_{i,p_i} v_i$ or all arcs of the subpath $u_i z_{i,1} z_{i,2} \dots z_{i,q_i} v_i$ for each $i \in [n]$ and hence it contains an (s, t)-path which passes through all the vertices u_1, u_2, \dots, u_n, t .

By the description of *P* above, for each clause C_j , $j \in [m]$ and $i \in [3]$, if *P* contains the vertex $a_{j,i}$ then D^* contains the arcs $c_j b_{j,i}$, $c_j a_{j,i}$ and if *P* does not contain the vertex $a_{j,i}$ then D^* contains the arcs $c_j a_{j,i}$, $a_{j,i} b_{j,i}$. Now it is easy to see that D^* is connected and spanning.

Theorem

It is NP-complete to decide whether a given digraph has an (s, t)-path P such that D - A(P) is connected for specified vertices s, t.

Theorem

It is \mathcal{NP} -complete to decide for a given digraph D and distinct vertices vertex s, $t \in V(D)$ whether the underlying graph of D has an (s, t)-path Q such that D - A(Q) has an out-branching B_s^+ rooted at s.

< 日 > < 同 > < 回 > < 回 > < □ > <

Theorem

It is \mathcal{NP} -complete to decide for a given strongly connected digraph D whether D contains a directed cycle C such that UG(D - A(C)) is connected.

Theorem

It is \mathcal{NP} -complete to decide for a given strongly connected digraph D whether UG(D) contains a cycle C such that D - A(C) is strongly connected.

Theorem

It is \mathcal{NP} -complete to decide whether a 2-regular digraph D contains a spanning strong subdigraph D' such that UG(D - A(D'')) is connected.

<□> <■> <■> < ■> < ■> < ■> = ● < ●

Thank you very much for your attention!

*

Jørgen Bang-Jensen · University of Southern Denmark, Odense

jbj@imada.sdu.dk

Preprints at http://bib.mathematics.dk/imada/

Jørgen Bang-Jensen⁴¹ On the problem of finding disjoint cycles and dicycles in a digraph

э