Perfect Matchings in Cubic Graphs

L. Esperet ${ }^{1}$ - F. Kardoš ${ }^{2}$ - A. King ${ }^{3}$
D. Král' ${ }^{4}$ - S. Norin ${ }^{5}$
${ }^{1}$ CNRS, Laboratoire G-SCOP, Grenoble, France
${ }^{2}$ Pavol Jozef Šafárik University, Košice, Slovakia
${ }^{3}$ Columbia University, New-York, NY, USA
${ }^{4}$ Charles University, Prague, Czech Republic
${ }^{5}$ Princeton University, Princeton, NJ, USA

Graph Workshop in Bordeaux
November 20, 2010

Definitions

Definitions

Definitions

Definitions

The conjecture

The conjecture

The conjecture

The conjecture

Theorem (Petersen 1891)

Every cubic bridgeless graph contains a perfect matching.

The conjecture

Conjecture (Lovász \& Plummer 70's)

There exists a constant $c>0$, such that any n-vertex cubic bridgeless graph contains at least $2^{c n}$ perfect matchings.

Bipartite graphs

Theorem (Voorhoeve 1979)
Every bipartite cubic bridgeless graph with n vertices contains at least $6 \cdot(4 / 3)^{n / 2-3}$ perfect matchings.

Bipartite graphs

Theorem (Voorhoeve 1979)
Every bipartite cubic bridgeless graph with n vertices contains at least $6 \cdot(4 / 3)^{n / 2-3}$ perfect matchings.

Bipartite graphs

Theorem (Voorhoeve 1979)

Every bipartite cubic bridgeless graph with n vertices contains at least $6 \cdot(4 / 3)^{n / 2-3}$ perfect matchings.

Bipartite graphs

Theorem (Voorhoeve 1979)

Every bipartite cubic bridgeless graph with n vertices contains at least $6 \cdot(4 / 3)^{n / 2-3}$ perfect matchings.

Bipartite graphs

Theorem (Voorhoeve 1979)

Every bipartite cubic bridgeless graph with n vertices contains at least $6 \cdot(4 / 3)^{n / 2-3}$ perfect matchings.

Bipartite graphs

Theorem (Voorhoeve 1979)

Every bipartite cubic bridgeless graph with n vertices contains at least $6 \cdot(4 / 3)^{n / 2-3}$ perfect matchings.

$\bar{m}(n)=$ the largest k so that every n-vertex bipartite cubic bridgeless graph has at least k perfect matchings avoiding any given edge.

Bipartite graphs

Theorem (Voorhoeve 1979)

Every bipartite cubic bridgeless graph with n vertices contains at least $6 \cdot(4 / 3)^{n / 2-3}$ perfect matchings.

$$
3 \bar{m}(n) \geq 4 \bar{m}(n-2),
$$

Bipartite graphs

Theorem (Voorhoeve 1979)

Every bipartite cubic bridgeless graph with n vertices contains at least $6 \cdot(4 / 3)^{n / 2-3}$ perfect matchings.

$$
3 \bar{m}(n) \geq 4 \bar{m}(n-2), \text { so } \bar{m}(n) \geq c \cdot(4 / 3)^{n / 2}
$$

Planar graphs

Theorem (Chudnovsky \& Seymour 2008)
Every planar cubic bridgeless graph with n vertices contains at least $2^{\text {n/655978752 }}$ perfect matchings.

Planar graphs

Theorem (Chudnovsky \& Seymour 2008)

Every planar cubic bridgeless graph with n vertices contains at least $2^{\text {n/655978752 }}$ perfect matchings.

Planar graphs

Theorem (Chudnovsky \& Seymour 2008)
Every planar cubic bridgeless graph with n vertices contains at least $2^{\text {n/655978752 }}$ perfect matchings.

Planar graphs

Theorem (Chudnovsky \& Seymour 2008)
Every planar cubic bridgeless graph with n vertices contains at least $2^{\text {n/655978752 }}$ perfect matchings.

Planar graphs

Theorem (Chudnovsky \& Seymour 2008)
Every planar cubic bridgeless graph with n vertices contains at least $2^{\text {n/655978752 }}$ perfect matchings.

Planar graphs

Theorem (Chudnovsky \& Seymour 2008)
Every planar cubic bridgeless graph with n vertices contains at least $2^{\text {n/655978752 }}$ perfect matchings.

k disjoint alternating cycles $\Rightarrow 2^{k}$ perfect matchings

General case

Let G be a cubic bridgeless graph with n vertices.

- $m(G) \geq n / 4+2$ (Edmonds, Lovász \& Pulleyblank, Naddef 1982)
- $m(G) \geq n / 2$ (Král', Sereni \& Stiebitz 2008)
- $m(G) \geq 3 n / 4-10$ (E., Král', Škoda \& Škrekovski 2008)

General case

Let G be a cubic bridgeless graph with n vertices.

- $m(G) \geq n / 4+2$ (Edmonds, Lovász \& Pulleyblank, Naddef 1982)
- $m(G) \geq n / 2$ (Král', Sereni \& Stiebitz 2008)
- $m(G) \geq 3 n / 4-10$ (E., Král', Škoda \& Škrekovski 2008)

Theorem (E., Kardoš \& Král' 2009)

For any $a>0$ there exists a constant b such that every cubic bridgeless graph with n vertices contains at least $a n-b$ perfect matchings.

General case

Let G be a cubic bridgeless graph with n vertices.

- $m(G) \geq n / 4+2$ (Edmonds, Lovász \& Pulleyblank, Naddef 1982)
- $m(G) \geq n / 2$ (Král', Sereni \& Stiebitz 2008)
- $m(G) \geq 3 n / 4-10$ (E., Král', Škoda \& Škrekovski 2008)

Theorem (E., Kardoš \& Král' 2009)

For any $a>0$ there exists a constant b such that every cubic bridgeless graph with n vertices contains at least $a n-b$ perfect matchings.

A graph G is cyclically k-edge-connected, denoted $C k C$, if at least k edges need to be removed from G in order to disconnect two cycles.

A superlinear bound

Theorem (E., Kardoš \& Král' 2009)
For any $a>0$ there exists a constant b such that every cubic bridgeless graph with n vertices contains at least $a n-b$ perfect matchings.

A superlinear bound

Theorem (E., Kardoš \& Král' 2009)
For any $a>0$ there exists a constant b such that every cubic bridgeless graph with n vertices contains at least $a n-b$ perfect matchings.

A superlinear bound

Theorem (E., Kardoš \& Král' 2009)
For any $a>0$ there exists a constant b such that every cubic bridgeless graph with n vertices contains at least $a n-b$ perfect matchings.

A superlinear bound

Theorem (E., Kardoš \& Král' 2009)
For any $a>0$ there exists a constant b such that every cubic bridgeless graph with n vertices contains at least $a n-b$ perfect matchings.

A superlinear bound

Theorem (E., Kardoš \& Král' 2009)
For any $a>0$ there exists a constant b such that every cubic bridgeless graph with n vertices contains at least $a n-b$ perfect matchings.

A superlinear bound

Theorem (E., Kardoš \& Král' 2009)
For any $a>0$ there exists a constant b such that every cubic bridgeless graph with n vertices contains at least $a n-b$ perfect matchings.

A superlinear bound

Theorem (E., Kardoš \& Král' 2009)
For any $a>0$ there exists a constant b such that every cubic bridgeless graph with n vertices contains at least $a n-b$ perfect matchings.

An exponential bound

Theorem (E., Kardoš, King, Král' \& Norin 2010)
Every cubic bridgeless graph on n vertices has at least $2^{n / 3761}$ perfect matchings.

An exponential bound

Theorem (E., Kardoš, King, Král' \& Norin 2010)
Every cubic bridgeless graph on n vertices has at least $2^{n / 3761}$ perfect matchings.

Let $m^{*}(G)$ be the largest k so that every edge of G is contained in at least k perfect matchings.

An exponential bound

Theorem (E., Kardoš, King, Král' \& Norin 2010)
Every cubic bridgeless graph on n vertices has at least $2^{n / 3761}$ perfect matchings.

Let $m^{*}(G)$ be the largest k so that every edge of G is contained in at least k perfect matchings.

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

Small EDGE-CUTS

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

Small EDGE-CUTS

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

Small EDGE-CUTS

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

Small EDGE-CUTS

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

Small EDGE-CUTS

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

Small EDGE-CUTS

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

Small EDGE-CUTS

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

Small EDGE-CUTS

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

Small EDGE-CUTS

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

Small EDGE-CUTS

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

Small EDGE-CUTS

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

Small EDGE-CUTS

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

Alternating sets

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.

Alternating sets

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.
\Rightarrow there must be a perfect matching with a least disjoint $|\mathcal{X}| / 3$ alternating cycles.

Alternating sets

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.
\Rightarrow there must be a perfect matching with a least disjoint $|\mathcal{X}| / 3$ alternating cycles.

Alternating sets

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.
\Rightarrow there must be a perfect matching with a least disjoint $|\mathcal{X}| / 3$ alternating cycles.

Alternating sets

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.
\Rightarrow there must be a perfect matching with a least disjoint $|\mathcal{X}| / 3$ alternating cycles.

Alternating sets

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.
\Rightarrow there must be a perfect matching with a least disjoint $|\mathcal{X}| / 3$ alternating cycles.

Alternating sets

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.
\Rightarrow there must be a perfect matching with a least disjoint $|\mathcal{X}| / 3$ alternating cycles.

Alternating sets

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.
\Rightarrow there must be a perfect matching with a least disjoint $|\mathcal{X}| / 3$ alternating cycles.

Alternating sets

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.
\Rightarrow there must be a perfect matching with a least disjoint $|\mathcal{X}| / 3$ alternating cycles.

Finding burls when there is no core

We first assume that every time we contract a small edge-cut, at least one of the two parts still has a small edge-cut.

Finding burls when there is no core

We first assume that every time we contract a small edge-cut, at least one of the two parts still has a small edge-cut.

In this case, we can find a linear number of burls

Finishing the proof when there is a core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma>0$:

$$
m^{*}(G) \geq 2^{\alpha n-\beta(\text { max. }} \text { number of disjoint burls) }+\gamma
$$

Finishing the proof when there is A core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma>0$:

$$
m^{*}(G) \geq 2^{\alpha n-\beta(\max .} \text { number of disjoint burls) }+\gamma
$$

(1) G is cyclically 4-edge-connected

Finishing the proof when there is A core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma>0$:

$$
m^{*}(G) \geq 2^{\alpha n-\beta(\max .} \text { number of disjoint burls)+ }
$$

(1) G is cyclically 4-edge-connected

Finishing the proof when there is A core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma>0$:

$$
m^{*}(G) \geq 2^{\alpha n-\beta(\max .} \text { number of disjoint burls)+ }
$$

(1) G is cyclically 4-edge-connected We look at the four splittings
(2) G has a small edge-cut

Finishing the proof when there is A core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma>0$:

$$
m^{*}(G) \geq 2^{\alpha n-\beta(\max .} \text { number of disjoint burls)+ }
$$

(1) G is cyclically 4-edge-connected We look at the four splittings
(2) G has a small edge-cut
(1) For some edge-cut, both sides have a core

Finishing the proof when there is A core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma>0$:

$$
m^{*}(G) \geq 2^{\alpha n-\beta(\text { max. number of disjoint burls) }+\gamma}
$$

(1) G is cyclically 4-edge-connected We look at the four splittings
(2) G has a small edge-cut
(1) For some edge-cut, both sides have a core

Finishing the proof when there is A core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma>0$:

$$
m^{*}(G) \geq 2^{\alpha n-\beta(\max .} \text { number of disjoint burls) }+\gamma
$$

(1) G is cyclically 4-edge-connected We look at the four splittings
(2) G has a small edge-cut
(1) For some edge-cut, both sides have a core

Finishing the proof when there is A core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma>0$:

$$
m^{*}(G) \geq 2^{\alpha n-\beta(\text { max. }} \text { number of disjoint burls) }+\gamma
$$

(1) G is cyclically 4-edge-connected We look at the four splittings
(2) G has a small edge-cut
(1) For some edge-cut, both sides have a core

Finishing the proof when there is A core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma>0$:

$$
m^{*}(G) \geq 2^{\alpha n-\beta(\max .} \text { number of disjoint burls)+ }
$$

(1) G is cyclically 4-edge-connected We look at the four splittings
(2) G has a small edge-cut
(1) For some edge-cut, both sides have a core We apply induction on both sides

Finishing the proof when there is A core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma>0$:

$$
m^{*}(G) \geq 2^{\alpha n-\beta(\max .} \text { number of disjoint burls) }+\gamma
$$

(1) G is cyclically 4-edge-connected We look at the four splittings
(2) G has a small edge-cut
(1) For some edge-cut, both sides have a core We apply induction on both sides
(2) There is a unique core.

Finishing the proof when there is A core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma>0$:

$$
m^{*}(G) \geq 2^{\alpha n-\beta(\text { max. }} \text { number of disjoint burls) }+\gamma
$$

(1) G is cyclically 4-edge-connected We look at the four splittings
(2) G has a small edge-cut
(1) For some edge-cut, both sides have a core We apply induction on both sides
(2) There is a unique core. We contract everything except the core and apply induction

CONCLUSION

Theorem (E., Kardoš, King, Král' \& Norin 2010)
Every cubic bridgeless graph on n vertices has at least $2^{n / 3761}$ perfect matchings.

CONCLUSION

Theorem (E., Kardoš, King, Král' \& Norin 2010)
Every cubic bridgeless graph on n vertices has at least $2^{n / 3761}$ perfect matchings.

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

CONCLUSION

Theorem (E., Kardoš, King, Král' \& Norin 2010)
Every cubic bridgeless graph on n vertices has at least $2^{n / 3761}$ perfect matchings.

Theorem

If G is a cubic bridgeless graph on n vertices, then
(1) $m^{*}(G) \geq 2^{n / 3761}$, or
(2) G has a perfect matching with at least $n / 3761$ disjoint alternating cycles.

Theorem

Every k-regular $(k-1)$-edge-connected graph on n vertices has at least $2^{n / 22026}$ perfect matchings.

