
Perfect Matchings in Cubic Graphs

L. Esperet 1 - F. Kardoš 2 - A. King 3
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The conjecture

Conjecture (Lovász & Plummer 70’s)

There exists a constant c > 0, such that any n-vertex cubic bridgeless
graph contains at least 2cn perfect matchings.
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Theorem (Voorhoeve 1979)

Every bipartite cubic bridgeless graph with n vertices contains at least
6 · (4/3)n/2−3 perfect matchings.

m(n) = the largest k so that every n-vertex bipartite cubic bridgeless
graph has at least k perfect matchings avoiding any given edge.
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Bipartite graphs

Theorem (Voorhoeve 1979)

Every bipartite cubic bridgeless graph with n vertices contains at least
6 · (4/3)n/2−3 perfect matchings.

3 m(n) ≥ 4 m(n − 2), so m(n) ≥ c · (4/3)n/2
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Planar graphs

Theorem (Chudnovsky & Seymour 2008)

Every planar cubic bridgeless graph with n vertices contains at least
2n/655978752 perfect matchings.

k disjoint alternating cycles ⇒ 2k perfect matchings



General case

Let G be a cubic bridgeless graph with n vertices.

m(G ) ≥ n/4 + 2 (Edmonds, Lovász & Pulleyblank, Naddef 1982)

m(G ) ≥ n/2 (Král’, Sereni & Stiebitz 2008)

m(G ) ≥ 3n/4− 10 (E., Král’, Škoda & Škrekovski 2008)

Theorem (E., Kardoš & Král’ 2009)

For any a > 0 there exists a constant b such that every cubic bridgeless
graph with n vertices contains at least an − b perfect matchings.

A graph G is cyclically k-edge-connected, denoted CkC, if at least k edges
need to be removed from G in order to disconnect two cycles.
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Theorem (E., Kardoš & Král’ 2009)
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An exponential bound

Theorem (E., Kardoš, King, Král’ & Norin 2010)

Every cubic bridgeless graph on n vertices has at least 2n/3761 perfect
matchings.

Let m∗(G ) be the largest k so that every edge of G is contained in at least
k perfect matchings.

Theorem

If G is a cubic bridgeless graph on n vertices, then

1 m∗(G ) ≥ 2n/3761, or

2 G has a perfect matching with at least n/3761 disjoint alternating
cycles.
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Theorem
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Alternating sets

In order to find a perfect matching with many disjoint alternating cycles,
we will find a a probability distribution on the perfect matchings and a
collection X of disjoint sets of vertices, so that the subgraph induced by
each set X ∈ X contains an alternating cycle with probability at least 1

3 .

⇒ there must be a perfect matching with a least disjoint |X |/3 alternating
cycles.
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Finding burls when there is no core

We first assume that every time we contract a small edge-cut, at least one
of the two parts still has a small edge-cut.

In this case, we can find a linear number of burls
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Finishing the proof when there is a core

Otherwise (if there is a core), we prove by induction that ∃α, β, γ > 0 :

m∗(G ) ≥ 2αn−β(max. number of disjoint burls)+γ

1 G is cyclically 4-edge-connected
We look at the four splittings

2 G has a small edge-cut
1 For some edge-cut, both sides have a core

We apply induction on both sides
2 There is a unique core.

We contract everything except the core and apply induction



conclusion
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