Perfect Matchings in Cubic Graphs

¹ CNRS, Laboratoire G-SCOP, Grenoble, France
² Pavol Jozef Šafárik University, Košice, Slovakia
³ Columbia University, New-York, NY, USA
⁴ Charles University, Prague, Czech Republic
⁵ Princeton University, Princeton, NJ, USA

Graph Workshop in Bordeaux November 20, 2010

Theorem (Petersen 1891)

Every cubic bridgeless graph contains a perfect matching.

Conjecture (Lovász & Plummer 70's)

There exists a constant c > 0, such that any *n*-vertex cubic bridgeless graph contains at least 2^{cn} perfect matchings.

Theorem (Voorhoeve 1979)

Theorem (Voorhoeve 1979)

Theorem (Voorhoeve 1979)

Theorem (Voorhoeve 1979)

Theorem (Voorhoeve 1979)

Theorem (Voorhoeve 1979)

Every bipartite cubic bridgeless graph with *n* vertices contains at least $6 \cdot (4/3)^{n/2-3}$ perfect matchings.

 $\overline{m}(n)$ = the largest k so that every *n*-vertex bipartite cubic bridgeless graph has at least k perfect matchings avoiding any given edge.

Theorem (Voorhoeve 1979)

$$3 \overline{m}(n) \geq 4 \overline{m}(n-2)$$

Theorem (Voorhoeve 1979)

Every bipartite cubic bridgeless graph with *n* vertices contains at least $6 \cdot (4/3)^{n/2-3}$ perfect matchings.

 $3 \overline{m}(n) \ge 4 \overline{m}(n-2)$, so $\overline{m}(n) \ge c \cdot (4/3)^{n/2}$

Theorem (Chudnovsky & Seymour 2008)

Theorem (Chudnovsky & Seymour 2008)

Theorem (Chudnovsky & Seymour 2008)

Theorem (Chudnovsky & Seymour 2008)

Theorem (Chudnovsky & Seymour 2008)

Theorem (Chudnovsky & Seymour 2008)

Every planar cubic bridgeless graph with *n* vertices contains at least $2^{n/655978752}$ perfect matchings.

k disjoint alternating cycles $\Rightarrow 2^k$ perfect matchings

GENERAL CASE

Let G be a cubic bridgeless graph with n vertices.

- $m(G) \ge n/4 + 2$ (Edmonds, Lovász & Pulleyblank, Naddef 1982)
- $m(G) \ge n/2$ (Král', Sereni & Stiebitz 2008)
- $m(G) \ge 3n/4 10$ (E., Kráľ, Škoda & Škrekovski 2008)

GENERAL CASE

Let G be a cubic bridgeless graph with n vertices.

•
$$m(G) \ge n/4 + 2$$
 (Edmonds, Lovász & Pulleyblank, Naddef 1982)

- $m(G) \ge n/2$ (Kráľ, Sereni & Stiebitz 2008)
- $m(G) \ge 3n/4 10$ (E., Král', Škoda & Škrekovski 2008)

Theorem (E., Kardoš & Král' 2009)

GENERAL CASE

Let G be a cubic bridgeless graph with n vertices.

•
$$m(G) \ge n/4 + 2$$
 (Edmonds, Lovász & Pulleyblank, Naddef 1982)

- $m(G) \ge n/2$ (Král', Sereni & Stiebitz 2008)
- $m(G) \ge 3n/4 10$ (E., Kráľ, Škoda & Škrekovski 2008)

Theorem (E., Kardoš & Král' 2009)

For any a > 0 there exists a constant b such that every cubic bridgeless graph with n vertices contains at least an - b perfect matchings.

A graph G is cyclically k-edge-connected, denoted CkC, if at least k edges need to be removed from G in order to disconnect two cycles.

Theorem (E., Kardoš & Král' 2009)

Theorem (E., Kardoš & Král' 2009)

Theorem (E., Kardoš & Král' 2009)

Theorem (E., Kardoš & Král' 2009)

Theorem (E., Kardoš & Král' 2009)

Theorem (E., Kardoš & Král' 2009)

Theorem (E., Kardoš & Král' 2009)

AN EXPONENTIAL BOUND

Theorem (E., Kardoš, King, Král' & Norin 2010)

Every cubic bridgeless graph on n vertices has at least $2^{n/3761}$ perfect matchings.

AN EXPONENTIAL BOUND

Theorem (E., Kardoš, King, Král' & Norin 2010)

Every cubic bridgeless graph on n vertices has at least $2^{n/3761}$ perfect matchings.

Let $m^*(G)$ be the largest k so that every edge of G is contained in at least k perfect matchings.
AN EXPONENTIAL BOUND

Theorem (E., Kardoš, King, Král' & Norin 2010)

Every cubic bridgeless graph on n vertices has at least $2^{n/3761}$ perfect matchings.

Let $m^*(G)$ be the largest k so that every edge of G is contained in at least k perfect matchings.

Theorem

If G is a cubic bridgeless graph on n vertices, then

• $m^*(G) \ge 2^{n/3761}$, or

G has a perfect matching with at least n/3761 disjoint alternating cycles.

Theorem

- $m^*(G) \ge 2^{n/3761}$, or
- **②** G has a perfect matching with at least n/3761 disjoint alternating cycles.

Theorem

- $m^*(G) \ge 2^{n/3761}$, or
- **②** *G* has a perfect matching with at least n/3761 disjoint alternating cycles.

Theorem

- $m^*(G) \ge 2^{n/3761}$, or
- **②** *G* has a perfect matching with at least n/3761 disjoint alternating cycles.

Theorem

- $m^*(G) \ge 2^{n/3761}$, or
- **②** G has a perfect matching with at least n/3761 disjoint alternating cycles.

Theorem

- $m^*(G) \ge 2^{n/3761}$, or
- **②** G has a perfect matching with at least n/3761 disjoint alternating cycles.

Theorem

- $m^*(G) \ge 2^{n/3761}$, or
- **②** G has a perfect matching with at least n/3761 disjoint alternating cycles.

Theorem

- $m^*(G) \ge 2^{n/3761}$, or
- **②** *G* has a perfect matching with at least n/3761 disjoint alternating cycles.

Theorem

- $m^*(G) \ge 2^{n/3761}$, or
- **②** G has a perfect matching with at least n/3761 disjoint alternating cycles.

Theorem

- $m^*(G) \ge 2^{n/3761}$, or
- **②** G has a perfect matching with at least n/3761 disjoint alternating cycles.

Theorem

- $m^*(G) \ge 2^{n/3761}$, or
- **②** G has a perfect matching with at least n/3761 disjoint alternating cycles.

Theorem

- $m^*(G) \ge 2^{n/3761}$, or
- **②** *G* has a perfect matching with at least n/3761 disjoint alternating cycles.

Theorem

- $m^*(G) \ge 2^{n/3761}$, or
- **②** *G* has a perfect matching with at least n/3761 disjoint alternating cycles.

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.

In order to find a perfect matching with many disjoint alternating cycles, we will find a a probability distribution on the perfect matchings and a collection \mathcal{X} of disjoint sets of vertices, so that the subgraph induced by each set $X \in \mathcal{X}$ contains an alternating cycle with probability at least $\frac{1}{3}$.

FINDING BURLS WHEN THERE IS NO CORE

We first assume that every time we contract a small edge-cut, at least one of the two parts still has a small edge-cut.

FINDING BURLS WHEN THERE IS NO CORE

We first assume that every time we contract a small edge-cut, at least one of the two parts still has a small edge-cut.

In this case, we can find a linear number of burls

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma > 0$:

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma > 0$:

 $m^*(G) \geq 2^{\alpha n - \beta}(\mathsf{max.~number~of~disjoint~burls}) + \gamma$

G is cyclically 4-edge-connected

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma > 0$:

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma > 0$:

- G is cyclically 4-edge-connected
 We look at the four splittings
- G has a small edge-cut

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma > 0$:

- G is cyclically 4-edge-connected
 We look at the four splittings
- G has a small edge-cut
 - Is For some edge-cut, both sides have a core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma > 0$:

- G is cyclically 4-edge-connected
 We look at the four splittings
- G has a small edge-cut
 - For some edge-cut, both sides have a core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma > 0$:

- G is cyclically 4-edge-connected
 We look at the four splittings
- G has a small edge-cut
 - Is For some edge-cut, both sides have a core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma > 0$:

- G is cyclically 4-edge-connected
 We look at the four splittings
- G has a small edge-cut
 - Is For some edge-cut, both sides have a core

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma > 0$:

- G is cyclically 4-edge-connected
 We look at the four splittings
- G has a small edge-cut
 - For some edge-cut, both sides have a core We apply induction on both sides

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma > 0$:

- G is cyclically 4-edge-connected
 We look at the four splittings
- \bigcirc G has a small edge-cut
 - For some edge-cut, both sides have a core We apply induction on both sides
 - O There is a unique core.

Otherwise (if there is a core), we prove by induction that $\exists \alpha, \beta, \gamma > 0$:

- G is cyclically 4-edge-connected
 We look at the four splittings
- \bigcirc G has a small edge-cut
 - For some edge-cut, both sides have a core We apply induction on both sides
 - There is a unique core.
 We contract everything except the core and apply induction

CONCLUSION

Theorem (E., Kardoš, King, Král' & Norin 2010)

Every cubic bridgeless graph on n vertices has at least $2^{n/3761}$ perfect matchings.
CONCLUSION

Theorem (E., Kardoš, King, Král' & Norin 2010)

Every cubic bridgeless graph on n vertices has at least $2^{n/3761}$ perfect matchings.

Theorem

- If G is a cubic bridgeless graph on n vertices, then
 - $m^*(G) \ge 2^{n/3761}$, or
 - G has a perfect matching with at least n/3761 disjoint alternating cycles.

CONCLUSION

Theorem (E., Kardoš, King, Král' & Norin 2010)

Every cubic bridgeless graph on n vertices has at least $2^{n/3761}$ perfect matchings.

Theorem

If G is a cubic bridgeless graph on n vertices, then

• $m^*(G) \ge 2^{n/3761}$, or

G has a perfect matching with at least n/3761 disjoint alternating cycles.

Theorem

Every k-regular (k - 1)-edge-connected graph on n vertices has at least $2^{n/22026}$ perfect matchings.