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Theorem (Petersen 1891)

Every cubic bridgeless graph contains a perfect matching.
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Conjecture (Lovasz & Plummer 70's)

There exists a constant ¢ > 0, such that any n-vertex cubic bridgeless
graph contains at least 2¢" perfect matchings.
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Theorem (Voorhoeve 1979)

Every bipartite cubic bridgeless graph with n vertices contains at least

6 - (4/3)"/2=3 perfect matchings.

m(n) = the largest k so that every n-vertex bipartite cubic bridgeless
graph has at least k perfect matchings avoiding any given edge.
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BIPARTITE GRAPHS

Theorem (Voorhoeve 1979)

Every bipartite cubic bridgeless graph with n vertices contains at least

6 - (4/3)"/2=3 perfect matchings.

&

3 m(n) > 4 m(n—2), so m(n) > c-(4/3)"?
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2n/655978752 herfect matchings.
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Theorem (Chudnovsky & Seymour 2008)

Every planar cubic bridgeless graph with n vertices contains at least
2n/655978752 herfect matchings.

CRI 0

k disjoint alternating cycles = 2k perfect matchings
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e m(G) > n/2 (Krél', Sereni & Stiebitz 2008)
o m(G) >3n/4 —10 (E., Kral', Skoda & Skrekovski 2008)

Theorem (E., Kardo$ & Kral' 2009)

For any a > 0 there exists a constant b such that every cubic bridgeless
graph with n vertices contains at least an — b perfect matchings.

A graph G is cyclically k-edge-connected, denoted CkC, if at least k edges
need to be removed from G in order to disconnect two cycles.
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A SUPERLINEAR BOUND

Theorem (E., Kardo$ & Kral' 2009)

For any a > 0 there exists a constant b such that every cubic bridgeless
graph with n vertices contains at least an — b perfect matchings.

C4C

C3C

¢ cyclic 3-edge-cut
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AN EXPONENTIAL BOUND

Theorem (E., Kardos, King, Krdl" & Norin 2010)

Every cubic bridgeless graph on n vertices has at least 2"/3701 perfect
matchings.

Let m*(G) be the largest k so that every edge of G is contained in at least
k perfect matchings.

Theorem
If G is a cubic bridgeless graph on n vertices, then
o m*(G) > 2n/3761, or

@ G has a perfect matching with at least n/3761 disjoint alternating
cycles.
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Theorem
If G is a cubic bridgeless graph on n vertices, then
@ m*(G) > 23761 o
@ G has a perfect matching with at least n/3761 disjoint alternating
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SMALL EDGE-CUTS

Theorem
If G is a cubic bridgeless graph on n vertices, then
@ m*(G) > 23761 o
@ G has a perfect matching with at least n/3761 disjoint alternating

cycles.
There is a
m* is large PM with
many
\ alternating
cycles

-/



ALTERNATING SETS

In order to find a perfect matching with many disjoint alternating cycles,
we will find a a probability distribution on the perfect matchings and a

collection X of disjoint sets of vertices, so that the subgraph induced by
each set X € X contains an alternating cycle with probability at least %



ALTERNATING SETS

In order to find a perfect matching with many disjoint alternating cycles,
we will find a a probability distribution on the perfect matchings and a

collection X of disjoint sets of vertices, so that the subgraph induced by
each set X € X contains an alternating cycle with probability at least %

= there must be a perfect matching with a least disjoint |X'|/3 alternating
cycles.



ALTERNATING SETS

In order to find a perfect matching with many disjoint alternating cycles,
we will find a a probability distribution on the perfect matchings and a

collection X of disjoint sets of vertices, so that the subgraph induced by
each set X € X contains an alternating cycle with probability at least %

= there must be a perfect matching with a least disjoint |X'|/3 alternating
cycles.



ALTERNATING SETS

In order to find a perfect matching with many disjoint alternating cycles,
we will find a a probability distribution on the perfect matchings and a

collection X of disjoint sets of vertices, so that the subgraph induced by
each set X € X contains an alternating cycle with probability at least %

= there must be a perfect matching with a least disjoint |X'|/3 alternating
cycles.



ALTERNATING SETS

In order to find a perfect matching with many disjoint alternating cycles,
we will find a a probability distribution on the perfect matchings and a

collection X of disjoint sets of vertices, so that the subgraph induced by
each set X € X contains an alternating cycle with probability at least %

= there must be a perfect matching with a least disjoint |X'|/3 alternating
cycles.



ALTERNATING SETS

In order to find a perfect matching with many disjoint alternating cycles,
we will find a a probability distribution on the perfect matchings and a

collection X of disjoint sets of vertices, so that the subgraph induced by
each set X € X contains an alternating cycle with probability at least %

= there must be a perfect matching with a least disjoint |X'|/3 alternating
cycles.



ALTERNATING SETS

In order to find a perfect matching with many disjoint alternating cycles,
we will find a a probability distribution on the perfect matchings and a

collection X of disjoint sets of vertices, so that the subgraph induced by
each set X € X contains an alternating cycle with probability at least %

= there must be a perfect matching with a least disjoint |X'|/3 alternating
cycles.



ALTERNATING SETS

In order to find a perfect matching with many disjoint alternating cycles,
we will find a a probability distribution on the perfect matchings and a

collection X of disjoint sets of vertices, so that the subgraph induced by
each set X € X contains an alternating cycle with probability at least %

= there must be a perfect matching with a least disjoint |X'|/3 alternating
cycles.

1
3

W=
Q] —

QI —
W=
W —
—

W=




ALTERNATING SETS

In order to find a perfect matching with many disjoint alternating cycles,
we will find a a probability distribution on the perfect matchings and a

collection X of disjoint sets of vertices, so that the subgraph induced by
each set X € X contains an alternating cycle with probability at least %

= there must be a perfect matching with a least disjoint |X'|/3 alternating
cycles.
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FINDING BURLS WHEN THERE IS NO CORE

We first assume that every time we contract a small edge-cut, at least one
of the two parts still has a small edge-cut.
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FINDING BURLS WHEN THERE IS NO CORE

We first assume that every time we contract a small edge-cut, at least one
of the two parts still has a small edge-cut.

00-0C
0-0-0-C

In this case, we can find a linear number of burls
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FINISHING THE PROOF WHEN THERE IS A CORE
Otherwise (if there is a core), we prove by induction that o, 5,7 > 0:

m*(G) > 2en—Almax. number of disjoint burls)+~

@ G is cyclically 4-edge-connected
We look at the four splittings
@ G has a small edge-cut
@ For some edge-cut, both sides have a core
We apply induction on both sides

@ There is a unique core.
We contract everything except the core and apply induction
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Theorem
If G is a cubic bridgeless graph on n vertices, then
(1) m*(G) > 2n/3761, or

@ G has a perfect matching with at least n/3761 disjoint alternating
cycles.

Theorem

Every k-regular (k — 1)-edge-connected graph on n vertices has at least
2n/22026 perfect matchings.
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