Martin Škoviera

Comenius University, Bratislava

Bordeaux Graph Workshop, 18-20 November, 2010

In honour of André Raspaud

Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs

 >
 ●
 >
 ≥
 >
 ≥
 ≥

 Bordeaux, November 18, 2010

1 / 43

Contents

- Part I: Local Tait colourings
 - generalisation of 3-edge-colourings
 - relation to Steiner triple systems and point-line configurations
 - existence of local Tait colourings
- Part II: Local Tait colourings of bridgeless cubic graphs
 - Fano colourings
 - abelian colourings
 - integer *k*-colourings
 - colourings by symmetric configurations

Conclusion

• Hierarchy of conjectures related to local Tait colourings

Credits

D. Archdeacon, H.-L. Fu, M. Grannell, T. Griggs, F. Holroyd, M. Knor, D. Král', E. Máčajová, O. Pangrác, A. Pór, A. Raspaud, J.-S. Sereni, & M. S.

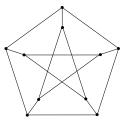
Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs

Edge-colourings of cubic graphs

Edge-colouring of a graph ... assignment of colours to its edges such that adjacent edges receive distinct colours

- First studied by P. G. Tait (1880)
- J. Petersen (1898) ... four colours suffice to colour every cubic (= trivalent) graph



Edge-colourings of cubic graphs

Chromatic index $\chi'(G)$... minimum # of colours needed to colour G

Class 1 ... graphs with $\chi' = 3$ (Tait-colourable graphs) *Class 2* ... graphs with $\chi' = 4$

Edge-colourings of cubic graphs

Chromatic index $\chi'(G)$... minimum # of colours needed to colour G

Class 1 ... graphs with $\chi' = 3$ (Tait-colourable graphs) Class 2 ... graphs with $\chi' = 4$

Well-known:

- colouring by 4 colours ... easy
- deciding whether $\chi' = 3$ or 4 ... difficult ... Holyer (1981)
- almost all cubic graphs are Class 1 ... Wormald (1992)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Edge-colourings of cubic graphs

Chromatic index $\chi'(G)$... minimum # of colours needed to colour G

Class 1 ... graphs with $\chi' = 3$ (Tait-colourable graphs) Class 2 ... graphs with $\chi' = 4$

Well-known:

- colouring by 4 colours ... easy
- deciding whether $\chi' = 3$ or $4 \dots$ difficult \dots Holyer (1981)
- almost all cubic graphs are Class 1 ... Wormald (1992)

Non-trivial graphs with $\chi' = 4$ (called *snarks*) closely related to

• Cycle-Double Cover Conj., Fulkerson's Conj., 5-Flow Conj., etc.

Generalisation of 3-edge-colouring

Local Tait colourings

- allow an arbitrary number of colours
- global condition on # of colours \rightarrow local condition:

(L) any two colours meeting at a vertex always determine the same the third colour

A B F A B F

Generalisation of 3-edge-colouring

Local Tait colourings

- allow an arbitrary number of colours
- global condition on # of colours \rightarrow local condition:

(L) any two colours meeting at a vertex always determine the same the third colour

Condition (L) trivially satisfied by usual 3-edge-colourings

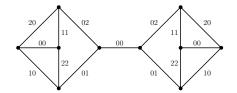
 \Rightarrow "local" Tait colourings generalise "global" ones

超す イヨト イヨト ニヨ

Local Tait colourings: example

Consider a proper edge-colouring $\phi : E(G) \to \mathbb{Z}_3 \times \mathbb{Z}_3$

- \bullet colours \hdots elements of the group $\mathbb{Z}_3\times\mathbb{Z}_3$
- colours meeting at a vertex ... triples that sum to 0
- $\Rightarrow \phi$ is a local Tait colouring by elements of $\mathbb{Z}_3 \times \mathbb{Z}_3$



4 3 5 4 3 5

Geometric viewpoint

- $\phi: E(G) \rightarrow P$... local Tait colouring with colour set P
 - view the colours as geometric points
 - place a line through a pair of points whenever the corresponding colours meet at a vertex

7 / 43

Geometric viewpoint

- $\phi: E(G) \rightarrow P$... local Tait colouring with colour set P
 - view the colours as geometric points
 - place a line through a pair of points whenever the corresponding colours meet at a vertex

Then:

- By Condition (L), there is at most one line through a pair of points
- Each line contains exactly three points corresponding to colours

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ● ●

7 / 43

Geometric viewpoint

- $\phi: E(G) \rightarrow P$... local Tait colouring with colour set P
 - view the colours as geometric points
 - place a line through a pair of points whenever the corresponding colours meet at a vertex

Then:

- $\bullet\,$ By Condition (L), there is at most one line through a pair of points
- Each line contains exactly three points corresponding to colours

Every local Tait colouring determines a configuration of points and lines.

Combinatorial viewpoint

- $\phi: E(G) \rightarrow P$... local Tait colouring with
 - P ... set of colours
 - B ... triples of colours occurring at vertices

Combinatorial viewpoint

- $\phi: E(G) \rightarrow P$... local Tait colouring with
 - P ... set of colours
 - B ... triples of colours occurring at vertices

By Condition (L):

any two elements of P belong to at most one triple listed in B

 \Rightarrow the pair (P, B) forms a partial Steiner triple system

Steiner triple systems & configurations

- A Steiner triple system S = (P, B) of order *n* consists of
 - set *P* of *n* points
 - collection *B* of 3-element subsets of *P* (called *blocks*) s.t. any two points belong to exactly one block

If any two points belong to at most one one block \Rightarrow partial Steiner triple system

向下 イヨト イヨト ニヨ

Steiner triple systems & configurations

- A Steiner triple system S = (P, B) of order *n* consists of
 - set *P* of *n* points
 - collection B of 3-element subsets of P (called *blocks*) s.t. any two points belong to exactly one block

If any two points belong to at most one one block \Rightarrow partial Steiner triple system

Well-known:

- Any partial STS embeds into some full STS ... Treash (1976) (may need some extra vertices)
- \Rightarrow Any partial STS can be viewed as a *configuration* of points and blocks of a full STS

Martin Škoviera (Bratislava)

イロト 不得 トイヨト イヨト 二日

Colourings by configurations

Summing up:

Any local Tait colouring can be viewed as one where

- colours \dots points of a (partial) Steiner triple system S
- \bullet colours that meet at a vertex form a block of ${\mathcal S}$

$\Rightarrow S$ -colouring

4 3 5 4 3 5

Colourings by configurations

Summing up:

Any local Tait colouring can be viewed as one where

- colours \dots points of a (partial) Steiner triple system S
- \bullet colours that meet at a vertex form a block of ${\mathcal S}$

$\Rightarrow S$ -colouring

Tait colouring = \mathcal{I} -colouring, \mathcal{I} being the trivial STS of order 3

• • = • • = •

Projective and affine STS's

The *projective* Steiner triple system PG(n, 2), $n \ge 2$, has

- points ... $P = \mathbb{Z}_2^{n+1} \{0\}$
- blocks ... triples $\{x, y, z\}$ with x + y + z = 0

smallest projective STS \dots PG(2,2) \dots Fano plane of order 7

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ● ● ●

Projective and affine STS's

The *projective* Steiner triple system PG(n, 2), $n \ge 2$, has

- points ... $P = \mathbb{Z}_2^{n+1} \{0\}$
- blocks ... triples $\{x, y, z\}$ with x + y + z = 0

smallest projective STS ... PG(2,2) ... Fano plane of order 7

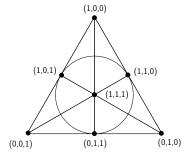
The *affine* Steiner triple system AG(n,3), $n \ge 2$, has

- points $\dots P = \mathbb{Z}_3^n$
- blocks ... triples $\{x, y, z\}$ with x + y + z = 0

smallest affine STS ... AG(2,3) ... affine plane of order 9

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Fano plane PG(2,2), the smallest non-trivial STS



Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs Bordeaux, November 18, 2010 12 / 43

프 에 에 프 어

3

Existence of S-colourings: bridgeless graphs

Problem (Archdeacon, 1986). Is it possible to find an S-colouring of a cubic graph for a given Steiner triple system S ?

A B M A B M

Existence of S-colourings: bridgeless graphs

Problem (Archdeacon, 1986). Is it possible to find an S-colouring of a cubic graph for a given Steiner triple system S?

• (Fu, 2001): Bridgeless cubic graphs of genus \leq 24 or of order \leq 189 are Fano-colourable

• • B • • B • B

Existence of S-colourings: bridgeless graphs

Problem (Archdeacon, 1986). Is it possible to find an S-colouring of a cubic graph for a given Steiner triple system S?

• (Fu, 2001): Bridgeless cubic graphs of genus \leq 24 or of order \leq 189 are Fano-colourable

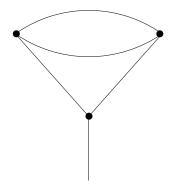
Theorem (Holroyd & S., 2004)

Every bridgeless cubic graph has an S-colouring for every non-trivial Steiner triple system S.

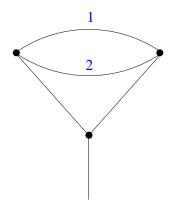
Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs Bordeaux, November 18, 2010 13 / 43

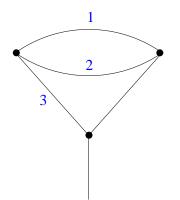
Existence of S-colourings: graphs with bridges



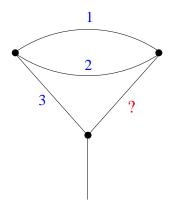
Existence of S-colourings: graphs with bridges



Existence of S-colourings: graphs with bridges



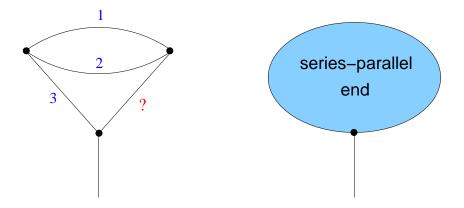
Existence of S-colourings: graphs with bridges



Existence of S-colourings: graphs with bridges

There exist graphs with no local Tait colouring!

Martin Škoviera



series-parallel = no subdivision of K_4

A D N A D N A D N A D N

500

					2.46
(Bratislava)	Edge-colourings of cubic graphs	Bordeaux,	November 18,	2010	14 / 43

Existence of S-colourings: graphs with bridges

• Every cubic graph with no series-parallel end admits a local Tait colouring.

A B M A B M

Existence of S-colourings: graphs with bridges

• Every cubic graph with no series-parallel end admits a local Tait colouring.

Proof. Take (P, B) with P = E(G) and B = triples of pairwise adjacent edges.

Existence of S-colourings: graphs with bridges

• Every cubic graph with no series-parallel end admits a local Tait colouring.

Proof. Take (P, B) with P = E(G) and B = triples of pairwise adjacent edges.

• Question: Does there exist a *universal* STS?

(STS is universal \Leftrightarrow it colours all simple cubic graphs)

• • = • • = • =

Existence of S-colourings: graphs with bridges

• Every cubic graph with no series-parallel end admits a local Tait colouring.

Proof. Take (P, B) with P = E(G) and B = triples of pairwise adjacent edges.

• Question: Does there exist a *universal* STS?

(STS is universal \Leftrightarrow it colours all simple cubic graphs)

• Projective and affine systems are not universal!

Projective systems do not colour graphs with bridges Affine systems do not colour graphs with bipartite ends

- 御下 - 西下 - 西下 - 西

Universal Steiner triple systems

• Universal STS of order 381 (Grannell, Griggs, Knor, S., 2004)

Universal Steiner triple systems

- Universal STS of order 381 (Grannell, Griggs, Knor, S., 2004)
- Universal point-transitive STS of order 21 minimal under inclusion, (a subsystem of the 381-system) (Pál & S., 2007)

4 3 5 4 3 5

Universal Steiner triple systems

- Universal STS of order 381 (Grannell, Griggs, Knor, S., 2004)
- Universal point-transitive STS of order 21 minimal under inclusion, (a subsystem of the 381-system) (Pál & S., 2007)
- Every non-projective and non-affine point-transitive STS is universal.
 ⇒ The smallest order of a universal STS is 13. (Král', Máčajová, Pór, Sereni, 2010)

A B F A B F

Universal Steiner triple systems

- Universal STS of order 381 (Grannell, Griggs, Knor, S., 2004)
- Universal point-transitive STS of order 21 minimal under inclusion, (a subsystem of the 381-system) (Pál & S., 2007)
- Every non-projective and non-affine point-transitive STS is universal.
 ⇒ The smallest order of a universal STS is 13. (Král', Máčajová, Pór, Sereni, 2010)

Question: Point-intransitive systems?

• • = • • = •

I. Local Tait colourings of cubic graphs

Universal Steiner triple systems

Universality of point-intransitive STS's (Grannell, Griggs, Máčajová, S., 2010+):

- Infinitely many point-intransitive inclusion-minimal universal systems (Wilson-Schreiber systems = abelian group + two extra points)
- Infinitely many point-intransitive systems that are not universal (projective systems PG(2, n), $n \ge 3$, modified by one Pasch switch)

PART II

Local Tait colourings of bridgeless cubic graphs

伺下 イヨト イヨト

II. Local Tait colourings of bridgeless cubic graphs

Colourings by configurations in STS's

Theorem (Holroyd & S., 2004)

Every bridgeless cubic graph has an S-colouring for every non-trivial Steiner triple system S.

• • = • • = •

II. Local Tait colourings of bridgeless cubic graphs

Colourings by configurations in STS's

Theorem (Holroyd & S., 2004)

Every bridgeless cubic graph has an S-colouring for every non-trivial Steiner triple system S.

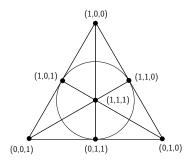
Question: What happens if a Steiner triple system S is replaced by a suitable configuration?

Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs Bordeaux, November 18, 2010 19 / 43

• • = • • = •

1. Fano colourings



Fano colouring – proper edge-colouring of a cubic graph

- colours points of the Fano plane
- the colours around each vertex form a line

Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs Bordeaux, Nover

Bordeaux, November 18, 2010 20 / 43

1. Fano colourings

How many points/lines of the Fano plane are needed to colour a given cubic graph G?

• • = • • = •

How many points/lines of the Fano plane are needed to colour a given cubic graph G?

- If *G* is 3-edge-colourable
 - any single line is sufficient.

★ 3 > < 3 >

How many points/lines of the Fano plane are needed to colour a given cubic graph G?

- If G is 3-edge-colourable
 any single line is sufficient.
- If G is not 3-edge-colourable
 - all seven points
 - at least four lines are needed.

4 1 1 4 1 1 1

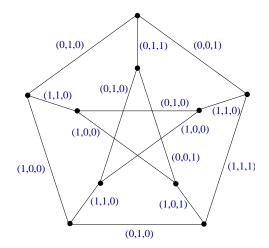
How many points/lines of the Fano plane are needed to colour a given cubic graph G?

- If G is 3-edge-colourable
 any single line is sufficient.
- If G is not 3-edge-colourable
 - all seven points
 - at least four lines are needed.

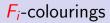
 F_i -colouring – colouring using at most *i* lines of the Fano plane

A B M A B M

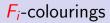
F_5 -colouring of the Petersen graph



э.



All seven lines are never needed:



All seven lines are never needed:

Theorem (Máčajová & S., 2005)

Every bridgeless cubic graph admits an F_6 -colouring.

Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs Bordeaux, November 18, 2010 23 / 43

A B F A B F

3

 F_6



All seven lines are never needed:

We believe that four lines are always enough:

Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs Bordeaux, November 18, 2010 23 / 43

超す イヨト イヨト ニヨ

Conjecture of Fan and Raspaud

Theorem (Máčajová & S., 2005)

The 4-Line Conjecture is equivalent to the following conjecture of Fan and Raspaud:

Conjecture (Fan & Raspaud, 1994)

F&RC

3

24 / 43

Every bridgeless cubic graphs contains three perfect matchings with no edge in common.

Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs Bordeaux, November 18, 2010

くぼう くほう くほう

Conjecture of Fan and Raspaud - background

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Conjecture of Fan and Raspaud - background

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

A cubic graphs has two disjoint perfect matchings
 ⇔ 3-edge-colourable.

Conjecture of Fan and Raspaud - background

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

- A cubic graphs has two disjoint perfect matchings \Leftrightarrow 3-edge-colourable.
- Every two perfect matchings in a non-3-edge-colourable graph have an edge in common.

• • = • • = • =

Conjecture of Fan and Raspaud - background

Conjecture (Fan & Raspaud, 1994)

F&RC

Every bridgeless cubic graphs contains three perfect matchings with no edge in common.

通 と く ヨ と く ヨ と

Conjecture of Fan and Raspaud - background

Conjecture (Fan & Raspaud, 1994)

Every bridgeless cubic graphs contains three perfect matchings with no edge in common.

Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings which together cover each edge exactly twice.

Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs Bordeau

□ ▶ < @ ▶ < ≥ ▶ < ≥ ▶ ≥ Bordeaux, November 18, 2010

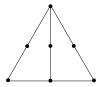
26 / 43

F&RC

Conjecture of Fan and Raspaud - background

Definition. A configuration C is *Class* 1 if $C \to I$, otherwise it is *Class* 2.

Example: The smallest Class 2 configuration is $C_{15} \cong F_4$, the sail.



Conjecture of Fan and Raspaud - background

Definition. A configuration C is *Class* 1 if $C \to I$, otherwise it is *Class* 2.

Example: The smallest Class 2 configuration is $C_{15} \cong F_4$, the sail.

4-Line-Conjecture (rephrased)

The smallest Class 2 configuration colours every bridgeless cubic graph.

Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶
 Bordeaux, November 18, 2010

) 27 / 43

Conjecture of Fan and Raspaud

 $\mathbf{FC} \Rightarrow \mathbf{F\&RC} \Leftrightarrow F_4\mathsf{C} \Rightarrow F_5\mathsf{C} \Rightarrow F_6\mathsf{T} \equiv \mathbf{TRUE}$

Martin Škoviera (Bratislava) Edge-colourings of cubic graphs Bordeaux, November 18, 2010 28 / 43

Conjecture of Fan and Raspaud

 $\mathbf{FC} \Rightarrow \mathbf{F} \& \mathbf{RC} \Leftrightarrow F_4 \mathbf{C} \Rightarrow F_5 \mathbf{C} \Rightarrow F_6 \mathbf{T} \equiv \mathbf{TRUE}$

Theorem (Kaiser & Raspaud, 2007, 2010)

Every bridgeless cubic graph of oddness ≤ 2 admits an F_5 -colouring.

oddness – minimum number of odd circuits in a 2-factor oddness 0 \Leftrightarrow Class 1

Conjecture of Fan and Raspaud

 $\mathbf{FC} \Rightarrow \mathbf{F} \& \mathbf{RC} \Leftrightarrow F_4 \mathbf{C} \Rightarrow F_5 \mathbf{C} \Rightarrow F_6 \mathbf{T} \equiv \mathbf{TRUE}$

Theorem (Kaiser & Raspaud, 2007, 2010)

Every bridgeless cubic graph of oddness ≤ 2 admits an F_5 -colouring.

oddness – minimum number of odd circuits in a 2-factor oddness 0 \Leftrightarrow Class 1

Theorem (Máčajová & S., 2009+)

Every bridgeless cubic graph of oddness ≤ 2 admits an F_4 -colouring.

Equivalently:

Every bridgeless cubic graph of oddness ≤ 2 has three perfect matchings with no edge in common.

Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs

2. Abelian colourings

• Given an abelian group A, an A-colouring of a cubic graph is a proper colouring by elements of A - 0 such that around each vertex the colours sum to zero.

2. Abelian colourings

• Given an abelian group A, an A-colouring of a cubic graph is a proper colouring by elements of A - 0 such that around each vertex the colours sum to zero.

Abelian colourings are local Tait colourings:

Let A be an abelian group. Define C(A) to be the partial STS where points ... A - 0 blocks ... triples {x, y, z} with x + y + z = 0

Clearly, A-colouring = C(A)-colouring

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

2. Abelian colourings

• Given an abelian group A, an A-colouring of a cubic graph is a proper colouring by elements of A - 0 such that around each vertex the colours sum to zero.

Abelian colourings are local Tait colourings:

Let A be an abelian group. Define C(A) to be the partial STS where points ... A − 0 blocks ... triples {x, y, z} with x + y + z = 0

Clearly, A-colouring = C(A)-colouring

Remark.

A-colouring \leftrightarrow n.-z. A-flow on a cubic graph with antibalanced bidirection

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

2. Abelian colourings

If A is one of Z₂, Z₃, Z₄, and Z₅, then C(A) = Ø ⇒ no A-colouring
If A is one of Z₂ × Z₂, Z₆, Z₇, Z₈, and Z₉, then A-colouring ⇔ 3-edge-colouring

• • = • • = • =

2. Abelian colourings

If A is one of Z₂, Z₃, Z₄, and Z₅, then C(A) = Ø ⇒ no A-colouring
If A is one of Z₂ × Z₂, Z₆, Z₇, Z₈, and Z₉, then A-colouring ⇔ 3-edge-colouring

Theorem (Máčajová, Raspaud & S., 2005)

If $A = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ or $|A| \ge 12 \Rightarrow$ every bridgeless cubic graph is A-colourable.

2. Abelian colourings

If A is one of Z₂, Z₃, Z₄, and Z₅, then C(A) = Ø ⇒ no A-colouring
If A is one of Z₂ × Z₂, Z₆, Z₇, Z₈, and Z₉, then A-colouring ⇔ 3-edge-colouring

Theorem (Máčajová, Raspaud & S., 2005)

If $A = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ or $|A| \ge 12 \Rightarrow$ every bridgeless cubic graph is A-colourable.

Proof.

Each of F_7 , D_9 , or D_8 colours all bridgeless cubic graphs (Holroyd & S.):

The four remaining groups

Remaining groups:

 $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_3 \times \mathbb{Z}_3$, \mathbb{Z}_{10} , and $\mathbb{Z}_{11} \Rightarrow ???$

伺下 イヨト イヨト ニヨ

The four remaining groups

Remaining groups:

 $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_3 \times \mathbb{Z}_3$, \mathbb{Z}_{10} , and $\mathbb{Z}_{11} \Rightarrow ???$

For each A ∈ {Z₄ × Z₂, Z₃ × Z₃, Z₁₀, Z₁₁} we have F₄ ⊆ C(A)
 ⇒ 4-Line-Conjecture implies A-colouring

• • = • • = • = •

The four remaining groups

Remaining groups:

 $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_3 \times \mathbb{Z}_3$, \mathbb{Z}_{10} , and $\mathbb{Z}_{11} \Rightarrow ???$

- For each A ∈ {Z₄ × Z₂, Z₃ × Z₃, Z₁₀, Z₁₁} we have F₄ ⊆ C(A) ⇒ 4-Line-Conjecture implies A-colouring
- $\mathcal{C}(\mathbb{Z}_4 \times \mathbb{Z}_2) = F_5$

The four remaining groups

Remaining groups:

 $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_3 \times \mathbb{Z}_3$, \mathbb{Z}_{10} , and $\mathbb{Z}_{11} \Rightarrow$???

- For each A ∈ {Z₄ × Z₂, Z₃ × Z₃, Z₁₀, Z₁₁} we have F₄ ⊆ C(A) ⇒ 4-Line-Conjecture implies A-colouring
- $\mathcal{C}(\mathbb{Z}_4 \times \mathbb{Z}_2) = F_5$
- $F_5 \not\subseteq \mathcal{C}(A)$ for the other three groups

The four remaining groups

Remaining groups:

 $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_3 \times \mathbb{Z}_3$, \mathbb{Z}_{10} , and $\mathbb{Z}_{11} \Rightarrow ???$

- For each A ∈ {Z₄ × Z₂, Z₃ × Z₃, Z₁₀, Z₁₁} we have F₄ ⊆ C(A)
 ⇒ 4-Line-Conjecture implies A-colouring
- $\mathcal{C}(\mathbb{Z}_4 \times \mathbb{Z}_2) = F_5$
- $F_5 \not\subseteq C(A)$ for the other three groups

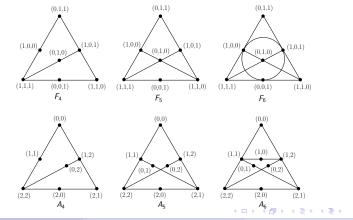
Theorem (Král', Máčajová, Pangrác, Raspaud, Sereni & S., 2008)

The 5-Line Conjecture implies the existence of an A-colouring of every bridgeless cubic graph for each $A \in \{\mathbb{Z}_4 \times \mathbb{Z}_2, \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_{10}, \mathbb{Z}_{11}\}$

2. Abelian colourings

Equivalence of colourings by Fano plane and by affine plane

Theorem (Král', Máčajová, Pangrác, Raspaud, Sereni & S., 2008) There exist *i*-line configurations $A_i \subseteq AG(2,3)$ and $F_i \subseteq PG(2,2)$, $4 \le i \le 6$, s. t. a cubic graph has an F_i -colouring \Leftrightarrow has an A_i -colouring.



Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs

Bordeaux, November 18, 2010

oer 18, 2010 32 / 43

- 3. Integer colourings
- 3. Integer colourings

 An integer k-colouring of a cubic graph is a proper Z-colouring σ satisfying the condition 0 < |σ(e)| < k for each edge e.

• • = • • = •

An *integer k-colouring* of a cubic graph is a proper Z-colouring σ satisfying the condition 0 < |σ(e)| < k for each edge e.

Integer *k*-colourings are local Tait colourings:

Define \$\mathcal{I}_k\$ to be the partial STS where
 points ... all integers \$n\$ with \$|n| < k\$
 blocks ... triples \$\{x, y, z\}\$ with \$x + y + z = 0\$

Clearly, integer k-colouring = \mathcal{I}_k -colouring

超す イヨト イヨト ニヨ

3. Integer colourings

Theorem (Král', Máčajová, Pangrác, Raspaud, Sereni & S., 2008)

Let G be a bridgeless cubic graph. (1) If G admits an F_i -colouring, $i \in \{4, 5, 6\}$, then it also admits an integer (i + 2)-colouring.

3. Integer colourings

Theorem (Král', Máčajová, Pangrác, Raspaud, Sereni & S., 2008)

Let G be a bridgeless cubic graph. (1) If G admits an F_i -colouring, $i \in \{4, 5, 6\}$, then it also admits an integer (i + 2)-colouring. (2) If G admits an integer 6-colouring, then it admits both a \mathbb{Z}_{10} -colouring and a \mathbb{Z}_{11} -colouring.

• • = • • = • =

3. Integer colourings

Theorem (Král', Máčajová, Pangrác, Raspaud, Sereni & S., 2008)

Let G be a bridgeless cubic graph. (1) If G admits an F_i -colouring, $i \in \{4, 5, 6\}$, then it also admits an integer (i + 2)-colouring. (2) If G admits an integer 6-colouring, then it admits both a \mathbb{Z}_{10} -colouring and a \mathbb{Z}_{11} -colouring.

Corollary

Every bridgeless cubic graph has an integer 8-colouring.

向下 イヨト イヨト 二日

3. Integer colourings

Theorem (Král', Máčajová, Pangrác, Raspaud, Sereni & S., 2008)

Let G be a bridgeless cubic graph. (1) If G admits an F_i -colouring, $i \in \{4, 5, 6\}$, then it also admits an integer (i + 2)-colouring. (2) If G admits an integer 6-colouring, then it admits both a \mathbb{Z}_{10} -colouring and a \mathbb{Z}_{11} -colouring.

Corollary

Every bridgeless cubic graph has an integer 8-colouring.

Conjecture Every bridgeless cubic graph admits an integer 6-colouring. Martin Škoviera (Bratislava) Edge-colourings of cubic graphs Bordeaux, November 18, 2010 34 / 43

Definition. Symmetric configuration n_3 ... partial STS which has

- *n* points and *n* blocks
- each point contained in exactly three blocks

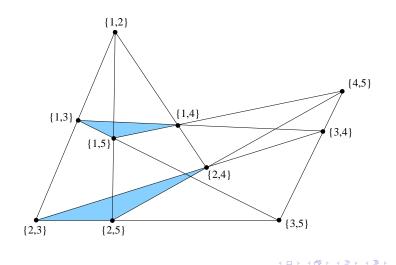
Definition. Symmetric configuration n_3 ... partial STS which has

- *n* points and *n* blocks
- each point contained in exactly three blocks

Examples:

- $7_3 =$ Fano plane (Class 2)
- 8_3 = Moebius-Kantor configuration = AG(2,3)-pt (Class 2)
- $9_3 =$ Pappus configuration (Class 1)
- $10_3 = \text{Desargues configuration}$ (Class 2)
- 15_3 = Cremona-Richmond configuration (Class 2)

Desargues configuration 10₃



Desargues colouring and 5-CDC

5-Cycle-Double-Cover Conjecture. Every bridgeless graph contains a collection of ≤ 5 cycles (even subgraphs) s.t. each edge belongs to exactly two of them.

Theorem

A cubic graph has a Desargues colouring \Leftrightarrow it has a 5-CDC.

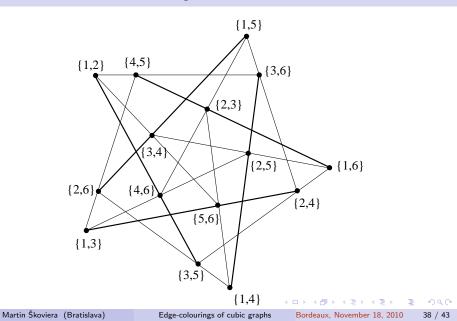
Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs Bordeaux, November

Bordeaux, November 18, 2010 37 / 43

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Cremona-Richmond configuration 153



Cremona-Richmond colouring and Fulkerson's conjecture

Fulkerson's Conjecture. Every bridgeless cubic graph contains a collection of six perfect matchings s.t. each edge is contained in exactly two of them.

Theorem

A cubic graph has a Cremona-Richmond colouring \Leftrightarrow it has a double covering of its edges by six perfect matchings.

Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs Bordeaux, November 18, 2010

通 と く ヨ と く ヨ と

39 / 43

Cremona-Richmond configuration and Petersen colourings

Petersen colouring conjecture

The edges of every bridgeless cubic graph G can be mapped into the edges of the Petersen graph in such a way that any three mutually incident edges of G are mapped to three mutually incident edges of the Petersen graph.

Definition. Such a mapping is called a *Petersen colouring* of G.

Cremona-Richmond configuration and Petersen colourings

Petersen colouring conjecture

The edges of every bridgeless cubic graph G can be mapped into the edges of the Petersen graph in such a way that any three mutually incident edges of G are mapped to three mutually incident edges of the Petersen graph.

Definition. Such a mapping is called a *Petersen colouring* of G.

- A Petersen colouring is a local Tait colouring.
- Define \mathcal{P} to be the partial STS where points ... edges of the Petersen graph blocks ... triples $\{x, y, z\}$ incident to the same vertex

向下 イヨト イヨト ニヨ

Cremona-Richmond configuration and Petersen colourings

Petersen colouring conjecture

The edges of every bridgeless cubic graph G can be mapped into the edges of the Petersen graph in such a way that any three mutually incident edges of G are mapped to three mutually incident edges of the Petersen graph.

Definition. Such a mapping is called a *Petersen colouring* of G.

• A Petersen colouring is a local Tait colouring.

Define \mathcal{P} to be the partial STS where points ... edges of the Petersen graph blocks ... triples $\{x, y, z\}$ incident to the same vertex

 $\mathcal{P} = depleted Cremona-Richmond configuration$ = $15_3 - \{ \text{parallel class of blocks} \}.$

Martin Škoviera (Bratislava)

Edge-colourings of cubic graphs

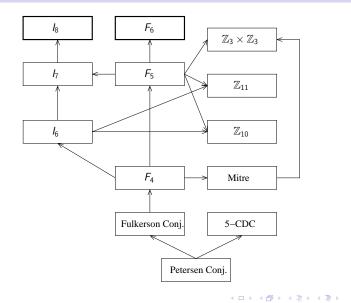
40 / 43

PART III

Conclusion

III. Conclusion

III. Conclusion: hierarchy of conjectures



Martin Škoviera (Bratislava)

THANK YOU!

Martin S	Skoviera (Bratislava)

Edge-colourings of cubic graphs Bordeaux, November 18, 2010 43 / 43