Local Tait colourings of cubic graphs

Martin Škoviera
Comenius University, Bratislava

Bordeaux Graph Workshop, 18-20 November, 2010

In honour of André Raspaud

Contents

- Part I: Local Tait colourings
- generalisation of 3-edge-colourings
- relation to Steiner triple systems and point-line configurations
- existence of local Tait colourings
- Part II: Local Tait colourings of bridgeless cubic graphs
- Fano colourings
- abelian colourings
- integer k-colourings
- colourings by symmetric configurations
- Conclusion
- Hierarchy of conjectures related to local Tait colourings

Credits

D. Archdeacon, H.-L. Fu, M. Grannell, T. Griggs, F. Holroyd, M. Knor, D. Král',
E. Máčajová, O. Pangrác, A. Pór, A. Raspaud, J.-S. Sereni, \& M. S.

Edge-colourings of cubic graphs

Edge-colouring of a graph ... assignment of colours to its edges such that adjacent edges receive distinct colours

- First studied by P. G. Tait (1880)
- J. Petersen (1898) ... four colours suffice to colour every cubic (= trivalent) graph

Edge-colourings of cubic graphs

Chromatic index $\chi^{\prime}(G) \ldots$ minimum \# of colours needed to colour G
Class $1 \ldots$ graphs with $\chi^{\prime}=3$ (Tait-colourable graphs)
Class $2 \ldots$ graphs with $\chi^{\prime}=4$

Edge-colourings of cubic graphs

Chromatic index $\chi^{\prime}(G) \ldots$ minimum \# of colours needed to colour G
Class $1 \ldots$ graphs with $\chi^{\prime}=3$ (Tait-colourable graphs)
Class $2 \ldots$ graphs with $\chi^{\prime}=4$
Well-known:

- colouring by 4 colours ... easy
- deciding whether $\chi^{\prime}=3$ or $4 \ldots$ difficult ... Holyer (1981)
- almost all cubic graphs are Class 1 ... Wormald (1992)

Edge-colourings of cubic graphs

Chromatic index $\chi^{\prime}(G) \ldots$ minimum \# of colours needed to colour G
Class $1 \ldots$ graphs with $\chi^{\prime}=3$ (Tait-colourable graphs)
Class $2 \ldots$ graphs with $\chi^{\prime}=4$
Well-known:

- colouring by 4 colours ... easy
- deciding whether $\chi^{\prime}=3$ or $4 \ldots$ difficult ... Holyer (1981)
- almost all cubic graphs are Class 1 ... Wormald (1992)

Non-trivial graphs with $\chi^{\prime}=4$ (called snarks) closely related to

- Cycle-Double Cover Conj., Fulkerson's Conj., 5-Flow Conj., etc.

Generalisation of 3-edge-colouring

Local Tait colourings

- allow an arbitrary number of colours
- global condition on \# of colours \rightarrow local condition:
(L) any two colours meeting at a vertex always determine the same the third colour

Generalisation of 3-edge-colouring

Local Tait colourings

- allow an arbitrary number of colours
- global condition on \# of colours \rightarrow local condition:
(L) any two colours meeting at a vertex always determine the same the third colour

Condition (L) trivially satisfied by usual 3-edge-colourings
\Rightarrow "local" Tait colourings generalise "global" ones

Local Tait colourings: example

Consider a proper edge-colouring $\phi: E(G) \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{3}$

- colours ... elements of the group $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$
- colours meeting at a vertex ... triples that sum to 0
$\Rightarrow \phi$ is a local Tait colouring by elements of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$

Geometric viewpoint

$\phi: E(G) \rightarrow P$... local Tait colouring with colour set P

- view the colours as geometric points
- place a line through a pair of points whenever the corresponding colours meet at a vertex

Geometric viewpoint

$\phi: E(G) \rightarrow P$... local Tait colouring with colour set P

- view the colours as geometric points
- place a line through a pair of points whenever the corresponding colours meet at a vertex

Then:

- By Condition (L), there is at most one line through a pair of points
- Each line contains exactly three points corresponding to colours

Geometric viewpoint

$\phi: E(G) \rightarrow P$... local Tait colouring with colour set P

- view the colours as geometric points
- place a line through a pair of points whenever the corresponding colours meet at a vertex

Then:

- By Condition (L), there is at most one line through a pair of points
- Each line contains exactly three points corresponding to colours

Every local Tait colouring determines a configuration of points and lines.

Combinatorial viewpoint

$\phi: E(G) \rightarrow P \ldots$ local Tait colouring with

- P ... set of colours
- B ... triples of colours occurring at vertices

Combinatorial viewpoint

$\phi: E(G) \rightarrow P \ldots$ local Tait colouring with

- P ... set of colours
- B ... triples of colours occurring at vertices

By Condition (L):
any two elements of P belong to at most one triple listed in B
\Rightarrow the pair (P, B) forms a partial Steiner triple system

Steiner triple systems \& configurations

A Steiner triple system $\mathcal{S}=(P, B)$ of order n consists of

- set P of n points
- collection B of 3 -element subsets of P (called blocks) s.t. any two points belong to exactly one block

If any two points belong to at most one one block \Rightarrow partial Steiner triple system

Steiner triple systems \& configurations

A Steiner triple system $\mathcal{S}=(P, B)$ of order n consists of

- set P of n points
- collection B of 3 -element subsets of P (called blocks) s.t. any two points belong to exactly one block

If any two points belong to at most one one block
\Rightarrow partial Steiner triple system

Well-known:

- Any partial STS embeds into some full STS ... Treash (1976) (may need some extra vertices)
\Rightarrow Any partial STS can be viewed as a configuration of points and blocks of a full STS

Colourings by configurations

Summing up:

Any local Tait colouring can be viewed as one where

- colours ... points of a (partial) Steiner triple system \mathcal{S}
- colours that meet at a vertex form a block of \mathcal{S}
$\Rightarrow \mathcal{S}$-colouring

Colourings by configurations

Summing up:

Any local Tait colouring can be viewed as one where

- colours ... points of a (partial) Steiner triple system \mathcal{S}
- colours that meet at a vertex form a block of \mathcal{S}
$\Rightarrow \mathcal{S}$-colouring

Tait colouring $=\mathcal{I}$-colouring, \mathcal{I} being the trivial STS of order 3

Projective and affine STS's

The projective Steiner triple system $P G(n, 2), n \geq 2$, has

- points $\ldots P=\mathbb{Z}_{2}^{n+1}-\{0\}$
- blocks ... triples $\{x, y, z\}$ with $x+y+z=0$
smallest projective STS ... $P G(2,2) \ldots$ Fano plane of order 7

Projective and affine STS's

The projective Steiner triple system $P G(n, 2), n \geq 2$, has

- points $\ldots P=\mathbb{Z}_{2}^{n+1}-\{0\}$
- blocks ... triples $\{x, y, z\}$ with $x+y+z=0$
smallest projective STS $\ldots P G(2,2) \ldots$ Fano plane of order 7

The affine Steiner triple system $A G(n, 3), n \geq 2$, has

- points $\ldots P=\mathbb{Z}_{3}^{n}$
- blocks ... triples $\{x, y, z\}$ with $x+y+z=0$
smallest affine STS ... $A G(2,3) \ldots$ affine plane of order 9

Fano plane $P G(2,2)$, the smallest non-trivial STS

Existence of \mathcal{S}-colourings: bridgeless graphs

Problem (Archdeacon, 1986). Is it possible to find an \mathcal{S}-colouring of a cubic graph for a given Steiner triple system \mathcal{S} ?

Existence of \mathcal{S}-colourings: bridgeless graphs

Problem (Archdeacon, 1986). Is it possible to find an \mathcal{S}-colouring of a cubic graph for a given Steiner triple system \mathcal{S} ?

- (Fu, 2001): Bridgeless cubic graphs of genus ≤ 24 or of order ≤ 189 are Fano-colourable

Existence of \mathcal{S}-colourings: bridgeless graphs

Problem (Archdeacon, 1986). Is it possible to find an \mathcal{S}-colouring of a cubic graph for a given Steiner triple system \mathcal{S} ?

- (Fu, 2001): Bridgeless cubic graphs of genus ≤ 24 or of order ≤ 189 are Fano-colourable

Theorem (Holroyd \& S., 2004)

Every bridgeless cubic graph has an \mathcal{S}-colouring for every non-trivial Steiner triple system \mathcal{S}.

Existence of \mathcal{S}-colourings: graphs with bridges

There exist graphs with no local Tait colouring!

Existence of \mathcal{S}-colourings: graphs with bridges

There exist graphs with no local Tait colouring!

Existence of \mathcal{S}-colourings: graphs with bridges

There exist graphs with no local Tait colouring!

Existence of \mathcal{S}-colourings: graphs with bridges

There exist graphs with no local Tait colouring!

Existence of \mathcal{S}-colourings: graphs with bridges

There exist graphs with no local Tait colouring!

series-parallel $=$ no subdivision of K_{4}

Existence of \mathcal{S}-colourings: graphs with bridges

- Every cubic graph with no series-parallel end admits a local Tait colouring.

Existence of \mathcal{S}-colourings: graphs with bridges

- Every cubic graph with no series-parallel end admits a local Tait colouring.

> Proof. Take (P, B) with
> $P=E(G)$ and $B=$ triples of pairwise adjacent edges.

Existence of \mathcal{S}-colourings: graphs with bridges

- Every cubic graph with no series-parallel end admits a local Tait colouring.

$$
\begin{aligned}
& \text { Proof. Take }(P, B) \text { with } \\
& P=E(G) \text { and } B=\text { triples of pairwise adjacent edges. }
\end{aligned}
$$

- Question: Does there exist a universal STS?
(STS is universal \Leftrightarrow it colours all simple cubic graphs)

Existence of \mathcal{S}-colourings: graphs with bridges

- Every cubic graph with no series-parallel end admits a local Tait colouring.

Proof. Take (P, B) with
$P=E(G)$ and $B=$ triples of pairwise adjacent edges.

- Question: Does there exist a universal STS?
(STS is universal \Leftrightarrow it colours all simple cubic graphs)
- Projective and affine systems are not universal!

Projective systems do not colour graphs with bridges
Affine systems do not colour graphs with bipartite ends

Universal Steiner triple systems

- Universal STS of order 381 (Grannell, Griggs, Knor, S., 2004)

Universal Steiner triple systems

- Universal STS of order 381 (Grannell, Griggs, Knor, S., 2004)
- Universal point-transitive STS of order 21 minimal under inclusion, (a subsystem of the 381 -system) (Pál \& S., 2007)

Universal Steiner triple systems

- Universal STS of order 381 (Grannell, Griggs, Knor, S., 2004)
- Universal point-transitive STS of order 21 minimal under inclusion, (a subsystem of the 381 -system) (Pál \& S., 2007)
- Every non-projective and non-affine point-transitive STS is universal.
$\Rightarrow \quad$ The smallest order of a universal STS is 13. (Král', Máčajová, Pór, Sereni, 2010)

Universal Steiner triple systems

- Universal STS of order 381 (Grannell, Griggs, Knor, S., 2004)
- Universal point-transitive STS of order 21 minimal under inclusion, (a subsystem of the 381 -system) (Pál \& S., 2007)
- Every non-projective and non-affine point-transitive STS is universal.
$\Rightarrow \quad$ The smallest order of a universal STS is 13. (Král', Máčajová, Pór, Sereni, 2010)

Question: Point-intransitive systems?

Universal Steiner triple systems

Universality of point-intransitive STS's (Grannell, Griggs, Máčajová, S., 2010+):

- Infinitely many point-intransitive inclusion-minimal universal systems (Wilson-Schreiber systems = abelian group + two extra points)
- Infinitely many point-intransitive systems that are not universal (projective systems $P G(2, n), n \geq 3$, modified by one Pasch switch)

PART II

Local Tait colourings of bridgeless cubic graphs

Colourings by configurations in STS's

Theorem (Holroyd \& S., 2004)
Every bridgeless cubic graph has an \mathcal{S}-colouring for every non-trivial Steiner triple system \mathcal{S}.

Colourings by configurations in STS's

Theorem (Holroyd \& S., 2004)
Every bridgeless cubic graph has an \mathcal{S}-colouring for every non-trivial Steiner triple system \mathcal{S}.

Question: What happens if a Steiner triple system \mathcal{S} is replaced by a suitable configuration?

1. Fano colourings

Fano colouring - proper edge-colouring of a cubic graph

- colours - points of the Fano plane
- the colours around each vertex form a line

1. Fano colourings

How many points/lines of the Fano plane are needed to colour a given cubic graph G ?

1. Fano colourings

How many points/lines of the Fano plane are needed to colour a given cubic graph G ?

- If G is 3-edge-colourable
- any single line is sufficient.

1. Fano colourings

How many points/lines of the Fano plane are needed to colour a given cubic graph G ?

- If G is 3-edge-colourable
- any single line is sufficient.
- If G is not 3-edge-colourable
- all seven points
- at least four lines are needed.

1. Fano colourings

How many points/lines of the Fano plane are needed to colour a given cubic graph G ?

- If G is 3-edge-colourable
- any single line is sufficient.
- If G is not 3-edge-colourable
- all seven points
- at least four lines are needed.
F_{i}-colouring - colouring using at most i lines of the Fano plane

F_{5}-colouring of the Petersen graph

F_{i}-colourings

All seven lines are never needed:

F_{i}-colourings

All seven lines are never needed:

Theorem (Máčajová \& S., 2005)
Every bridgeless cubic graph admits an F_{6}-colouring.

F_{i}-colourings

All seven lines are never needed:

Theorem (Máčajová \& S., 2005)
Every bridgeless cubic graph admits an F_{6}-colouring.

We believe that four lines are always enough:

4-Line Conjecture (Máčajová \& S., 2005)

Every bridgeless cubic graph admits an F_{4}-colouring.

Conjecture of Fan and Raspaud

Theorem (Máčajová \& S., 2005)
The 4-Line Conjecture is equivalent to the following conjecture of Fan and Raspaud:

Conjecture (Fan \& Raspaud, 1994)

Every bridgeless cubic graphs contains three perfect matchings with no edge in common.

Conjecture of Fan and Raspaud - background

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Conjecture of Fan and Raspaud - background

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

- A cubic graphs has two disjoint perfect matchings \Leftrightarrow 3-edge-colourable.

Conjecture of Fan and Raspaud - background

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

- A cubic graphs has two disjoint perfect matchings \Leftrightarrow 3-edge-colourable.
- Every two perfect matchings in a non-3-edge-colourable graph have an edge in common.

Conjecture of Fan and Raspaud - background

Conjecture (Fan \& Raspaud, 1994)

Every bridgeless cubic graphs contains three perfect matchings with no edge in common.

Conjecture of Fan and Raspaud - background

Conjecture (Fan \& Raspaud, 1994)
Every bridgeless cubic graphs contains three perfect matchings with no edge in common.

Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings which together cover each edge exactly twice.

Conjecture of Fan and Raspaud - background

Definition. A configuration \mathcal{C} is Class 1 if $\mathcal{C} \rightarrow \mathcal{I}$, otherwise it is Class 2.

Example: The smallest Class 2 configuration is $C_{15} \cong F_{4}$, the sail.

Conjecture of Fan and Raspaud - background

Definition. A configuration \mathcal{C} is Class 1 if $\mathcal{C} \rightarrow \mathcal{I}$, otherwise it is Class 2 .

Example: The smallest Class 2 configuration is $C_{15} \cong F_{4}$, the sail.

4-Line-Conjecture (rephrased)

The smallest Class 2 configuration colours every bridgeless cubic graph.

Conjecture of Fan and Raspaud

$\mathrm{FC} \Rightarrow \mathrm{F} \& \mathrm{RC} \Leftrightarrow F_{4} \mathrm{C} \Rightarrow F_{5} \mathrm{C} \Rightarrow F_{6} \mathrm{~T} \equiv$ TRUE

Conjecture of Fan and Raspaud

$$
\mathrm{FC} \Rightarrow \mathrm{~F} \& \mathrm{RC} \Leftrightarrow F_{4} \mathrm{C} \Rightarrow F_{5} \mathrm{C} \Rightarrow F_{6} \mathrm{~T} \equiv \mathrm{TRUE}
$$

Theorem (Kaiser \& Raspaud, 2007, 2010)

Every bridgeless cubic graph of oddness ≤ 2 admits an F_{5}-colouring.
oddness - minimum number of odd circuits in a 2-factor oddness $0 \Leftrightarrow$ Class 1

Conjecture of Fan and Raspaud

$$
\mathrm{FC} \Rightarrow \mathrm{~F} \& \mathrm{RC} \Leftrightarrow F_{4} \mathrm{C} \Rightarrow F_{5} \mathrm{C} \Rightarrow F_{6} \mathrm{~T} \equiv \mathrm{TRUE}
$$

Theorem (Kaiser \& Raspaud, 2007, 2010)

Every bridgeless cubic graph of oddness ≤ 2 admits an F_{5}-colouring.
oddness - minimum number of odd circuits in a 2-factor oddness $0 \Leftrightarrow$ Class 1

Theorem (Máčajová \& S., 2009+)

Every bridgeless cubic graph of oddness ≤ 2 admits an F_{4}-colouring.
Equivalently:
Every bridgeless cubic graph of oddness ≤ 2 has three perfect matchings with no edge in common.

2. Abelian colourings

- Given an abelian group A, an A-colouring of a cubic graph is a proper colouring by elements of $A-0$ such that around each vertex the colours sum to zero.

2. Abelian colourings

- Given an abelian group A, an A-colouring of a cubic graph is a proper colouring by elements of $A-0$ such that around each vertex the colours sum to zero.

Abelian colourings are local Tait colourings:

- Let A be an abelian group. Define $\mathcal{C}(A)$ to be the partial STS where points ... A-0 blocks \ldots triples $\{x, y, z\}$ with $x+y+z=0$

Clearly, A-colouring $=\mathcal{C}(A)$-colouring

2. Abelian colourings

- Given an abelian group A, an A-colouring of a cubic graph is a proper colouring by elements of $A-0$ such that around each vertex the colours sum to zero.

Abelian colourings are local Tait colourings:

- Let A be an abelian group. Define $\mathcal{C}(A)$ to be the partial STS where points ... A-0 blocks \ldots triples $\{x, y, z\}$ with $x+y+z=0$

Clearly, A-colouring $=\mathcal{C}(A)$-colouring
Remark.
A-colouring \leftrightarrow n.-z. A-flow on a cubic graph with antibalanced bidirection

2. Abelian colourings

- If A is one of $\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{4}$, and \mathbb{Z}_{5}, then $\mathcal{C}(A)=\emptyset \Rightarrow$ no A-colouring
- If A is one of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{6}, \mathbb{Z}_{7}, \mathbb{Z}_{8}$, and \mathbb{Z}_{9}, then A-colouring \Leftrightarrow 3-edge-colouring

2. Abelian colourings

- If A is one of $\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{4}$, and \mathbb{Z}_{5}, then $\mathcal{C}(A)=\emptyset \Rightarrow$ no A-colouring
- If A is one of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{6}, \mathbb{Z}_{7}, \mathbb{Z}_{8}$, and \mathbb{Z}_{9}, then A-colouring \Leftrightarrow 3-edge-colouring

Theorem (Máčajová, Raspaud \& S., 2005)
If $A=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $|A| \geq 12 \Rightarrow$ every bridgeless cubic graph is A-colourable.

2. Abelian colourings

- If A is one of $\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{4}$, and \mathbb{Z}_{5}, then $\mathcal{C}(A)=\emptyset \Rightarrow$ no A-colouring
- If A is one of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{6}, \mathbb{Z}_{7}, \mathbb{Z}_{8}$, and \mathbb{Z}_{9}, then A-colouring \Leftrightarrow 3-edge-colouring

Theorem (Máčajová, Raspaud \& S., 2005)

If $A=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $|A| \geq 12 \Rightarrow$ every bridgeless cubic graph is A-colourable.

Proof.

Each of F_{7}, D_{9}, or D_{8} colours all bridgeless cubic graphs (Holroyd \& S.):

The four remaining groups

Remaining groups:
$\mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{10}$, and $\mathbb{Z}_{11} \Rightarrow$???

The four remaining groups

Remaining groups:

$\mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{10}$, and $\mathbb{Z}_{11} \Rightarrow$???

- For each $A \in\left\{\mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{10}, \mathbb{Z}_{11}\right\}$ we have $F_{4} \subseteq \mathcal{C}(A)$ \Rightarrow 4-Line-Conjecture implies A-colouring

The four remaining groups

Remaining groups:

$\mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{10}$, and $\mathbb{Z}_{11} \Rightarrow$???

- For each $A \in\left\{\mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{10}, \mathbb{Z}_{11}\right\}$ we have $F_{4} \subseteq \mathcal{C}(A)$ \Rightarrow 4-Line-Conjecture implies A-colouring
- $\mathcal{C}\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right)=F_{5}$

The four remaining groups

Remaining groups:

$\mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{10}$, and $\mathbb{Z}_{11} \Rightarrow$???

- For each $A \in\left\{\mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{10}, \mathbb{Z}_{11}\right\}$ we have $F_{4} \subseteq \mathcal{C}(A)$ \Rightarrow 4-Line-Conjecture implies A-colouring
- $\mathcal{C}\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right)=F_{5}$
- $F_{5} \nsubseteq \mathcal{C}(A)$ for the other three groups

The four remaining groups

Remaining groups:

$\mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{10}$, and $\mathbb{Z}_{11} \Rightarrow$???

- For each $A \in\left\{\mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{10}, \mathbb{Z}_{11}\right\}$ we have $F_{4} \subseteq \mathcal{C}(A)$ \Rightarrow 4-Line-Conjecture implies A-colouring
- $\mathcal{C}\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right)=F_{5}$
- $F_{5} \nsubseteq \mathcal{C}(A)$ for the other three groups

Theorem (Král', Máčajová, Pangrác, Raspaud, Sereni \& S., 2008)

The 5-Line Conjecture implies the existence of an A-colouring of every bridgeless cubic graph for each $A \in\left\{\mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{10}, \mathbb{Z}_{11}\right\}$

Equivalence of colourings by Fano plane and by affine plane

Theorem (Král', Máčajová, Pangrác, Raspaud, Sereni \& S., 2008)

There exist i-line configurations $A_{i} \subseteq A G(2,3)$ and $F_{i} \subseteq P G(2,2)$, $4 \leq i \leq 6$, s. t. a cubic graph has an F_{i}-colouring \Leftrightarrow has an A_{i}-colouring.

3. Integer colourings

- An integer k-colouring of a cubic graph is a proper \mathbb{Z}-colouring σ satisfying the condition $0<|\sigma(e)|<k$ for each edge e.

3. Integer colourings

- An integer k-colouring of a cubic graph is a proper \mathbb{Z}-colouring σ satisfying the condition $0<|\sigma(e)|<k$ for each edge e.

Integer k-colourings are local Tait colourings:

- Define I_{k} to be the partial STS where points ... all integers n with $|n|<k$ blocks \ldots triples $\{x, y, z\}$ with $x+y+z=0$

Clearly, integer k-colouring $=\mathcal{I}_{k}$-colouring

3. Integer colourings

Theorem (Král', Máčajová, Pangrác, Raspaud, Sereni \& S., 2008)
Let G be a bridgeless cubic graph.
(1) If G admits an F_{i}-colouring, $i \in\{4,5,6\}$, then it also admits an integer $(i+2)$-colouring.

3. Integer colourings

Theorem (Král', Máčajová, Pangrác, Raspaud, Sereni \& S., 2008)

Let G be a bridgeless cubic graph.
(1) If G admits an F_{i}-colouring, $i \in\{4,5,6\}$, then it also admits an integer $(i+2)$-colouring.
(2) If G admits an integer 6 -colouring, then it admits both a \mathbb{Z}_{10}-colouring and a \mathbb{Z}_{11}-colouring.

3. Integer colourings

Theorem (Král', Máčajová, Pangrác, Raspaud, Sereni \& S., 2008)

Let G be a bridgeless cubic graph.
(1) If G admits an F_{i}-colouring, $i \in\{4,5,6\}$, then it also admits an integer $(i+2)$-colouring.
(2) If G admits an integer 6 -colouring, then it admits both a \mathbb{Z}_{10}-colouring and a \mathbb{Z}_{11}-colouring.

Corollary

Every bridgeless cubic graph has an integer 8-colouring.

3. Integer colourings

Theorem (Král', Máčajová, Pangrác, Raspaud, Sereni \& S., 2008)

Let G be a bridgeless cubic graph.
(1) If G admits an F_{i}-colouring, $i \in\{4,5,6\}$, then it also admits an integer $(i+2)$-colouring.
(2) If G admits an integer 6 -colouring, then it admits both a \mathbb{Z}_{10}-colouring and a \mathbb{Z}_{11}-colouring.

Corollary

Every bridgeless cubic graph has an integer 8-colouring.

Conjecture

Every bridgeless cubic graph admits an integer 6-colouring.

4. Colourings by symmetric configurations

Definition. Symmetric configuration $n_{3} \ldots$ partial STS which has

- n points and n blocks
- each point contained in exactly three blocks

4. Colourings by symmetric configurations

Definition. Symmetric configuration $n_{3} \ldots$ partial STS which has

- n points and n blocks
- each point contained in exactly three blocks

```
Examples:
    \(7_{3}=\) Fano plane (Class 2)
    \(8_{3}=\) Moebius-Kantor configuration \(=A G(2,3)-\) pt (Class 2)
    \(9_{3}=\) Pappus configuration (Class 1)
\(10_{3}=\) Desargues configuration (Class 2)
\(15_{3}=\) Cremona-Richmond configuration (Class 2)
```


Desargues configuration 10_{3}

Desargues colouring and 5-CDC

5-Cycle-Double-Cover Conjecture. Every bridgeless graph contains a collection of ≤ 5 cycles (even subgraphs) s.t. each edge belongs to exactly two of them.

```
Theorem
A cubic graph has a Desargues colouring \Leftrightarrow it has a 5-CDC.
```


Cremona-Richmond configuration 153

Cremona-Richmond colouring and Fulkerson's conjecture

Fulkerson's Conjecture. Every bridgeless cubic graph contains a collection of six perfect matchings s.t. each edge is contained in exactly two of them.

> Theorem
> A cubic graph has a Cremona-Richmond colouring \Leftrightarrow it has a double covering of its edges by six perfect matchings.

Cremona-Richmond configuration and Petersen colourings

Petersen colouring conjecture

The edges of every bridgeless cubic graph G can be mapped into the edges of the Petersen graph in such a way that any three mutually incident edges of G are mapped to three mutually incident edges of the Petersen graph.

Definition. Such a mapping is called a Petersen colouring of G.

Cremona-Richmond configuration and Petersen colourings

Petersen colouring conjecture

The edges of every bridgeless cubic graph G can be mapped into the edges of the Petersen graph in such a way that any three mutually incident edges of G are mapped to three mutually incident edges of the Petersen graph.

Definition. Such a mapping is called a Petersen colouring of G.

- A Petersen colouring is a local Tait colouring.

Define \mathcal{P} to be the partial STS where points ... edges of the Petersen graph blocks ... triples $\{x, y, z\}$ incident to the same vertex

Cremona-Richmond configuration and Petersen colourings

Petersen colouring conjecture

The edges of every bridgeless cubic graph G can be mapped into the edges of the Petersen graph in such a way that any three mutually incident edges of G are mapped to three mutually incident edges of the Petersen graph.

Definition. Such a mapping is called a Petersen colouring of G.

- A Petersen colouring is a local Tait colouring.

Define \mathcal{P} to be the partial STS where points ... edges of the Petersen graph blocks ... triples $\{x, y, z\}$ incident to the same vertex
$\mathcal{P}=$ depleted Cremona-Richmond configuration
$=15_{3}-$ \{parallel class of blocks $\}$.

PART III

Conclusion

III. Conclusion: hierarchy of conjectures

THANK YOU!

