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I. Local Tait colourings of cubic graphs

Edge-colourings of cubic graphs

Edge-colouring of a graph . . . assignment of colours to its edges

such that adjacent edges receive distinct colours

First studied by P. G. Tait (1880)

J. Petersen (1898) . . . four colours suffice
to colour every cubic (= trivalent) graph
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I. Local Tait colourings of cubic graphs

Edge-colourings of cubic graphs

Chromatic index χ′(G ) . . . minimum # of colours needed to colour G

Class 1 . . . graphs with χ′ = 3 (Tait-colourable graphs)
Class 2 . . . graphs with χ′ = 4

Well-known:

colouring by 4 colours . . . easy

deciding whether χ′ = 3 or 4 . . . difficult . . . Holyer (1981)

almost all cubic graphs are Class 1 . . . Wormald (1992)

Non-trivial graphs with χ′ = 4 (called snarks) closely related to

Cycle-Double Cover Conj., Fulkerson’s Conj., 5-Flow Conj., etc.
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I. Local Tait colourings of cubic graphs

Generalisation of 3-edge-colouring

Local Tait colourings

allow an arbitrary number of colours

global condition on # of colours → local condition:

(L) any two colours meeting at a vertex always determine
the same the third colour

Condition (L) trivially satisfied by usual 3-edge-colourings

⇒ “local” Tait colourings generalise “global” ones
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I. Local Tait colourings of cubic graphs

Local Tait colourings: example

Consider a proper edge-colouring φ : E (G ) → Z3 × Z3

colours . . . elements of the group Z3 × Z3

colours meeting at a vertex . . . triples that sum to 0

⇒ φ is a local Tait colouring by elements of Z3 × Z3
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I. Local Tait colourings of cubic graphs

Geometric viewpoint

φ : E (G ) → P . . . local Tait colouring with colour set P

view the colours as geometric points

place a line through a pair of points whenever the corresponding
colours meet at a vertex

Then:

By Condition (L), there is at most one line through a pair of points

Each line contains exactly three points corresponding to colours

Every local Tait colouring determines a configuration of points and lines.
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I. Local Tait colourings of cubic graphs

Combinatorial viewpoint

φ : E (G ) → P . . . local Tait colouring with

P . . . set of colours

B . . . triples of colours occurring at vertices

By Condition (L):

any two elements of P belong to at most one triple listed in B

⇒ the pair (P,B) forms a partial Steiner triple system
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I. Local Tait colourings of cubic graphs

Steiner triple systems & configurations

A Steiner triple system S = (P,B) of order n consists of

set P of n points

collection B of 3-element subsets of P (called blocks) s.t.
any two points belong to exactly one block

If any two points belong to at most one one block
⇒ partial Steiner triple system

Well-known:

Any partial STS embeds into some full STS . . . Treash (1976)
(may need some extra vertices)

⇒ Any partial STS can be viewed as a configuration
of points and blocks of a full STS
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I. Local Tait colourings of cubic graphs

Colourings by configurations

Summing up:

Any local Tait colouring can be viewed as one where

colours . . . points of a (partial) Steiner triple system S
colours that meet at a vertex form a block of S

⇒ S-colouring

Tait colouring = I-colouring, I being the trivial STS of order 3
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I. Local Tait colourings of cubic graphs

Projective and affine STS’s

The projective Steiner triple system PG (n, 2), n ≥ 2, has

points . . . P = Zn+1
2 − {0}

blocks . . . triples {x , y , z} with x + y + z = 0

smallest projective STS . . . PG (2, 2) . . . Fano plane of order 7

The affine Steiner triple system AG (n, 3), n ≥ 2, has

points . . . P = Zn
3

blocks . . . triples {x , y , z} with x + y + z = 0

smallest affine STS . . . AG (2, 3) . . . affine plane of order 9
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I. Local Tait colourings of cubic graphs

Fano plane PG (2, 2), the smallest non-trivial STS

(1,0,0)

(1,1,1)

(1,1,0)(1,0,1)

(0,0,1) (0,1,0)(0,1,1)
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: bridgeless graphs

Problem (Archdeacon, 1986). Is it possible to find an S-colouring of a
cubic graph for a given Steiner triple system S ?

(Fu, 2001): Bridgeless cubic graphs of genus ≤ 24 or of order ≤ 189
are Fano-colourable

Theorem (Holroyd & S., 2004)

Every bridgeless cubic graph has an S-colouring for every non-trivial
Steiner triple system S.
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: graphs with bridges

There exist graphs with no local Tait colouring!

series-parallel = no subdivision of K4
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: graphs with bridges

Every cubic graph with no series-parallel end admits a local Tait
colouring.

Proof. Take (P,B) with
P = E (G ) and B = triples of pairwise adjacent edges.

Question: Does there exist a universal STS?

(STS is universal ⇔ it colours all simple cubic graphs)

Projective and affine systems are not universal!

Projective systems do not colour graphs with bridges
Affine systems do not colour graphs with bipartite ends
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I. Local Tait colourings of cubic graphs

Universal Steiner triple systems

Universal STS of order 381 (Grannell, Griggs, Knor, S., 2004)

Universal point-transitive STS of order 21 minimal under inclusion,
(a subsystem of the 381-system) (Pál & S., 2007)

Every non-projective and non-affine point-transitive STS is universal.
⇒ The smallest order of a universal STS is 13.

(Král’, Máčajová, Pór, Sereni, 2010)

Question: Point-intransitive systems?
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(Král’, Máčajová, Pór, Sereni, 2010)

Question: Point-intransitive systems?
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I. Local Tait colourings of cubic graphs

Universal Steiner triple systems

Universality of point-intransitive STS’s
(Grannell, Griggs, Máčajová, S., 2010+):

Infinitely many point-intransitive inclusion-minimal universal systems
(Wilson-Schreiber systems = abelian group + two extra points)

Infinitely many point-intransitive systems that are not universal
(projective systems PG (2, n), n ≥ 3, modified by one Pasch switch)
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II. Local Tait colourings of bridgeless cubic graphs

PART II

Local Tait colourings of bridgeless cubic graphs

Martin Škoviera (Bratislava) Edge-colourings of cubic graphs Bordeaux, November 18, 2010 18 / 43



II. Local Tait colourings of bridgeless cubic graphs

Colourings by configurations in STS’s

Theorem (Holroyd & S., 2004)

Every bridgeless cubic graph has an S-colouring for every non-trivial
Steiner triple system S.

Question: What happens if a Steiner triple system S is replaced by a
suitable configuration?
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1. Fano colourings

1. Fano colourings

(1,0,0)

(1,1,1)

(1,1,0)(1,0,1)

(0,0,1) (0,1,0)(0,1,1)

Fano colouring – proper edge-colouring of a cubic graph

colours – points of the Fano plane

the colours around each vertex form a line

Martin Škoviera (Bratislava) Edge-colourings of cubic graphs Bordeaux, November 18, 2010 20 / 43



1. Fano colourings

1. Fano colourings

How many points/lines of the Fano plane are needed to colour a given
cubic graph G?

If G is 3-edge-colourable
– any single line is sufficient.

If G is not 3-edge-colourable
– all seven points
– at least four lines are needed.

Fi -colouring – colouring using at most i lines of the Fano plane
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1. Fano colourings

F5-colouring of the Petersen graph

(1,1,0)

(0,1,0)

(0,1,0)

(1,1,1)

(0,1,0)

(0,1,1)

(1,0,0)

(1,1,0)

(0,1,0)

(1,0,0)

(1,1,0)

(0,0,1)

(0,0,1)

(1,0,1)

(1,0,0)
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1. Fano colourings

Fi -colourings

All seven lines are never needed:

Theorem (Máčajová & S., 2005) F6T

Every bridgeless cubic graph admits an F6-colouring.

We believe that four lines are always enough:

4-Line Conjecture (Máčajová & S., 2005) F4C

Every bridgeless cubic graph admits an F4-colouring.
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1. Fano colourings

Conjecture of Fan and Raspaud

Theorem (Máčajová & S., 2005)

The 4-Line Conjecture is equivalent to the following conjecture of Fan and
Raspaud:

Conjecture (Fan & Raspaud, 1994) F&RC

Every bridgeless cubic graphs contains three perfect matchings
with no edge in common.
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1. Fano colourings

Conjecture of Fan and Raspaud – background

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

A cubic graphs has two disjoint perfect matchings
⇔ 3-edge-colourable.

Every two perfect matchings in a non-3-edge-colourable graph
have an edge in common.
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1. Fano colourings

Conjecture of Fan and Raspaud – background

Conjecture (Fan & Raspaud, 1994) F&RC

Every bridgeless cubic graphs contains three perfect matchings
with no edge in common.

Conjecture (Berge, Fulkerson, 1971) FC

Every bridgeless cubic graphs contains a family of six perfect matchings
which together cover each edge exactly twice.
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1. Fano colourings

Conjecture of Fan and Raspaud – background

Definition. A configuration C is Class 1 if C → I, otherwise it is Class 2 .

Example: The smallest Class 2 configuration is C15
∼= F4, the sail .

4-Line-Conjecture (rephrased)

The smallest Class 2 configuration colours every bridgeless cubic graph.

Martin Škoviera (Bratislava) Edge-colourings of cubic graphs Bordeaux, November 18, 2010 27 / 43



1. Fano colourings

Conjecture of Fan and Raspaud – background

Definition. A configuration C is Class 1 if C → I, otherwise it is Class 2 .

Example: The smallest Class 2 configuration is C15
∼= F4, the sail .

4-Line-Conjecture (rephrased)

The smallest Class 2 configuration colours every bridgeless cubic graph.
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1. Fano colourings

Conjecture of Fan and Raspaud

FC⇒ F&RC ⇔ F4C ⇒ F5C ⇒ F6T≡ TRUE

Theorem (Kaiser & Raspaud, 2007, 2010)

Every bridgeless cubic graph of oddness ≤ 2 admits an F5-colouring.

oddness – minimum number of odd circuits in a 2-factor
oddness 0 ⇔ Class 1

Theorem (Máčajová & S., 2009+)

Every bridgeless cubic graph of oddness ≤ 2 admits an F4-colouring.

Equivalently:

Every bridgeless cubic graph of oddness ≤ 2 has three perfect matchings
with no edge in common.
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2. Abelian colourings

2. Abelian colourings

Given an abelian group A, an A-colouring of a cubic graph is a proper
colouring by elements of A− 0 such that around each vertex the
colours sum to zero.

Abelian colourings are local Tait colourings:

Let A be an abelian group. Define C(A) to be the partial STS where

points . . . A− 0
blocks . . . triples {x , y , z} with x + y + z = 0

Clearly, A-colouring = C(A)-colouring

Remark.
A-colouring ↔ n.-z. A-flow on a cubic graph with antibalanced bidirection
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2. Abelian colourings

2. Abelian colourings

If A is one of Z2, Z3, Z4, and Z5, then C(A) = ∅ ⇒ no A-colouring
If A is one of Z2 × Z2, Z6, Z7, Z8, and Z9, then

A-colouring ⇔ 3-edge-colouring

Theorem (Máčajová, Raspaud & S., 2005)

If A = Z2 × Z2 × Z2 or |A| ≥ 12 ⇒ every bridgeless cubic graph is
A-colourable.

Proof.

Each of F7, D9, or D8 colours all bridgeless cubic graphs (Holroyd & S.):
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2. Abelian colourings

The four remaining groups

Remaining groups:

Z4 × Z2, Z3 × Z3, Z10, and Z11 ⇒ ???

For each A ∈ {Z4 × Z2, Z3 × Z3, Z10, Z11} we have F4 ⊆ C(A)
⇒ 4-Line-Conjecture implies A-colouring

C(Z4 × Z2) = F5

F5 6⊆ C(A) for the other three groups

Theorem (Král’, Máčajová, Pangrác, Raspaud, Sereni & S., 2008)

The 5-Line Conjecture implies the existence of an A-colouring of every
bridgeless cubic graph for each A ∈ {Z4 × Z2, Z3 × Z3, Z10, Z11}
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Martin Škoviera (Bratislava) Edge-colourings of cubic graphs Bordeaux, November 18, 2010 31 / 43



2. Abelian colourings

The four remaining groups

Remaining groups:

Z4 × Z2, Z3 × Z3, Z10, and Z11 ⇒ ???

For each A ∈ {Z4 × Z2, Z3 × Z3, Z10, Z11} we have F4 ⊆ C(A)
⇒ 4-Line-Conjecture implies A-colouring

C(Z4 × Z2) = F5

F5 6⊆ C(A) for the other three groups
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2. Abelian colourings

Equivalence of colourings by Fano plane and by affine plane

Theorem (Král’, Máčajová, Pangrác, Raspaud, Sereni & S., 2008)

There exist i -line configurations Ai ⊆ AG (2, 3) and Fi ⊆ PG (2, 2),
4 ≤ i ≤ 6, s. t. a cubic graph has an Fi -colouring ⇔ has an Ai -colouring.

F5

A6

(0,1,1)

(1,0,1)(1,0,0)
(0,1,0)

(0,0,1)(1,1,1) (1,1,0)

(1,2)(1,1)

(2,2) (2,1)

F6

(0,1) (0,2)

(1,0)

(0,0)

(2,0)

A4

(1,2)

(0,2)

(1,0,0) (1,0,1)
(0,1,0)

(0,0,1)(1,1,1) (1,1,0)

(2,0)

(0,0)

(1,1)

(2,2) (2,1)

F4

(0,1,1)

A5

(1,1,1)

(0,1,1)

(0,1,0)
(1,0,0) (1,0,1)

(0,0,1) (1,1,0)

(1,1)

(0,0)

(1,2)

(0,2)(0,1)

(2,0) (2,1)(2,2)
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3. Integer colourings

3. Integer colourings

An integer k-colouring of a cubic graph is a proper Z-colouring σ
satisfying the condition 0 < |σ(e)| < k for each edge e.

Integer k-colourings are local Tait colourings:

Define Ik to be the partial STS where

points . . . all integers n with |n| < k
blocks . . . triples {x , y , z} with x + y + z = 0

Clearly, integer k-colouring = Ik -colouring
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3. Integer colourings

3. Integer colourings

Theorem (Král’, Máčajová, Pangrác, Raspaud, Sereni & S., 2008)

Let G be a bridgeless cubic graph.
(1) If G admits an Fi -colouring, i ∈ {4, 5, 6}, then it also admits an
integer (i + 2)-colouring.

(2) If G admits an integer 6-colouring, then it admits both a Z10-colouring
and a Z11-colouring.

Corollary

Every bridgeless cubic graph has an integer 8-colouring.

Conjecture

Every bridgeless cubic graph admits an integer 6-colouring.
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4. Colourings by symmetric configurations

4. Colourings by symmetric configurations

Definition. Symmetric configuration n3 . . . partial STS which has

n points and n blocks

each point contained in exactly three blocks

Examples:
73 = Fano plane (Class 2)
83 = Moebius-Kantor configuration = AG (2, 3)−pt (Class 2)
93 = Pappus configuration (Class 1)

103 = Desargues configuration (Class 2)
153 = Cremona-Richmond configuration (Class 2)
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4. Colourings by symmetric configurations

Desargues configuration 103

{1,2}

{2,4}

{3,5}

{3,4}

{4,5}

{1,4}{1,3}

{1,5}

{2,5}{2,3}
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4. Colourings by symmetric configurations

Desargues colouring and 5-CDC

5-Cycle-Double-Cover Conjecture. Every bridgeless graph contains a
collection of ≤ 5 cycles (even subgraphs) s.t. each edge belongs to
exactly two of them.

Theorem

A cubic graph has a Desargues colouring ⇔ it has a 5-CDC.
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4. Colourings by symmetric configurations

Cremona-Richmond configuration 153

{1,4}

{4,5}

{1,5}

{2,4}
{5,6}

{2,5}

{4,6}

{3,6}

{3,5}

{3,4}

{2,6}

{1,3}

{1,2}

{2,3}

{1,6}
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4. Colourings by symmetric configurations

Cremona-Richmond colouring and Fulkerson’s conjecture

Fulkerson’s Conjecture. Every bridgeless cubic graph contains
a collection of six perfect matchings s.t. each edge is contained in
exactly two of them.

Theorem

A cubic graph has a Cremona-Richmond colouring ⇔ it has
a double covering of its edges by six perfect matchings.
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4. Colourings by symmetric configurations

Cremona-Richmond configuration and Petersen colourings

Petersen colouring conjecture

The edges of every bridgeless cubic graph G can be mapped into the edges
of the Petersen graph in such a way that any three mutually incident edges
of G are mapped to three mutually incident edges of the Petersen graph.

Definition. Such a mapping is called a Petersen colouring of G .

A Petersen colouring is a local Tait colouring.

Define P to be the partial STS where

points . . . edges of the Petersen graph

blocks . . . triples {x , y , z} incident to the same vertex

P = depleted Cremona-Richmond configuration

= 153 − {parallel class of blocks}.
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III. Conclusion

PART III

Conclusion
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III. Conclusion

III. Conclusion: hierarchy of conjectures

Petersen Conj.

Mitre

5−CDCFulkerson Conj.

Z3 × Z3

I6

F6

F5

Z11

Z10

F4

I7

I8
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THANK YOU!
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