Chromatic Ramsey Number and Fractional Hedetniemi's Conjecture

Xuding Zhu

Department of Mathematics
Zhejiang Normal University

Among any 6 people, there are either 3 people, any two of them know each other, or 3 people, any two of them do not know each other.

For any 2 -colouring of the edges of K_{6} with colours red and blue, there is either a red copy of K_{3} or a blue copy of K_{3}

$$
\mathrm{K}_{6} \rightarrow\left(K_{3}, K_{3}\right)
$$

$F \rightarrow(G, H)$ means the following
For any 2-colouring of the edges of F with colours red and blue, There is a red copy of G or a blue copy of H.

Theorem [Ramsey] For any graphs G and H, there exists an F such that $F \rightarrow(G, H)$.

Infinitely many graphs F

$$
F=K_{n} \text { for some } n
$$

The Ramsey number of (G, H) is

$$
R(G, H)=\min \left\{n: K_{n} \rightarrow(G, H)\right\}
$$

$$
R(G)=R(G, G)
$$

$$
R\left(K_{k}\right)=R(k)
$$

$$
R\left(K_{k}, K_{l}\right)=R(k, l)
$$

Bounds for $R(k, l)$

$k>$	3	4	5	6	7	8
3	6	9	14	18	23	28
4		18	25	$\begin{aligned} & 35 \\ & 41 \end{aligned}$	$\begin{aligned} & 49 \\ & 61 \end{aligned}$	$\begin{aligned} & 56 \\ & 84 \end{aligned}$
5			$\begin{aligned} & 43 \\ & 49 \end{aligned}$	$\begin{aligned} & 58 \\ & 87 \end{aligned}$	$\begin{aligned} & 80 \\ & 143 \end{aligned}$	$\begin{aligned} & 101 \\ & 216 \end{aligned}$
6				$\begin{aligned} & 102 \\ & 165 \end{aligned}$	$\begin{aligned} & 113 \\ & 298 \end{aligned}$	$\begin{aligned} & 169 \\ & 780 \end{aligned}$
7					$\begin{aligned} & 205 \\ & 540 \end{aligned}$	$\begin{aligned} & 237 \\ & 1713 \end{aligned}$
8						$\begin{aligned} & 317 \\ & 3583 \end{aligned}$

Bounds for $R(k, l)$

$k>$	3	4	5	6	7	8
3	6	9	14	18	23	28
4		18	25	$\begin{aligned} & 35 \\ & 41 \end{aligned}$	$\begin{aligned} & 49 \\ & 61 \end{aligned}$	$\begin{aligned} & 56 \\ & 84 \end{aligned}$
5			$\begin{aligned} & 43 \\ & 49 \end{aligned}$	$\begin{aligned} & 58 \\ & 87 \end{aligned}$	$\begin{aligned} & 80 \\ & 143 \end{aligned}$	$\begin{aligned} & 101 \\ & 216 \end{aligned}$
6				$\begin{aligned} & 102 \\ & 165 \end{aligned}$	$\begin{aligned} & 113 \\ & 298 \end{aligned}$	$\begin{aligned} & 169 \\ & 780 \end{aligned}$
7					$\begin{aligned} & 205 \\ & 540 \end{aligned}$	$\begin{aligned} & 237 \\ & 1713 \end{aligned}$
8						$\begin{aligned} & 317 \\ & 3583 \end{aligned}$

Bounds for $R(k, l)$

$k>$	3	4	5	6	7	8
3	6	9	14	18	23	28
4		18	25	$\begin{aligned} & 35 \\ & 41 \end{aligned}$	$\begin{aligned} & 49 \\ & 61 \end{aligned}$	$\begin{aligned} & 56 \\ & 84 \end{aligned}$
5			$\begin{aligned} & 43 \\ & 49 \end{aligned}$	$\begin{aligned} & 58 \\ & 87 \end{aligned}$	$\begin{aligned} & 80 \\ & 143 \end{aligned}$	$\begin{aligned} & 101 \\ & 216 \end{aligned}$
6				$\begin{aligned} & 102 \\ & 165 \end{aligned}$	$\begin{aligned} & 113 \\ & 298 \end{aligned}$	$\begin{aligned} & 169 \\ & 780 \end{aligned}$
7					$\begin{aligned} & 205 \\ & 540 \end{aligned}$	$\begin{aligned} & 237 \\ & 1713 \end{aligned}$
8						$\begin{aligned} & 317 \\ & 3583 \end{aligned}$

The Ramsey number of (G, H) is

$$
R(G, H)=\min \left\{n: K_{n} \rightarrow(G, H)\right\}
$$

The Ramsey number of (G, H) is

$$
R(G, H)=\min \{|V(F)|: F \rightarrow(G, H)\}
$$

The Size Ramsey number of (G, H) is

$$
R_{E}(G, H)=\min \{|E(F)|: F \rightarrow(G, H)\}
$$

The max - degree-Ramsey number of (G, H) is

$$
R_{\Delta}(G, H)=\min \{|\Delta(F)|: F \rightarrow(G, H)\}
$$

The chromatic Ramsey number of (G, H) is

$$
R_{\chi}(G, H)=\min \{|\chi(F)|: F \rightarrow(G, H)\}
$$

The Ramsey number of (G, H) is

$$
R(G, H)=\min \left\{n: K_{n} \rightarrow(G, H)\right\}
$$

The Ramsey number of (G, H) is

$$
R(G, H)=\min \{|V(F)|: F \rightarrow(G, H)\}
$$

The Size Ramsey number of (G, H) is

$$
R_{E}(G, H)=\min \{|E(F)|: \quad F \rightarrow(G, H)\}
$$

The max - degree-Ramsey number of (G, H) is

$$
R_{\Delta}(G, H)=\min \{|\Delta(F)|: F \rightarrow(G, H)\}
$$

The chromatic Ramsey number of (G, H) is

$$
R_{\chi}(G, H)=\min \{|\chi(F)|: F \rightarrow(G, H)\}
$$

The chromatic Ramsey number of (G, H) is $R_{\chi}(G, H)=\min \{|\chi(F)|: F \rightarrow(G, H)\}$

The chromatic Ramsey number of (G, H) is

$$
R_{\chi}(G, H)=\min \{|\chi(F)|: F \rightarrow(G, H)\}
$$

$$
R_{\chi}(G)=R_{\chi}(G, G)
$$

Introduced by Burr-Erdos-Lovasz in 1976

$$
\begin{aligned}
& R_{\chi}(G, H) \leq R(G, H) \\
& R_{\chi}\left(K_{k}, K_{l}\right)=R(k, l)
\end{aligned}
$$

If F has chromatic number $(n-1)^{2}$, then there is a 2 edge colouring of F in which each monochromatic subgraph has chromatic number $\mathrm{n}-1$.

$F \longrightarrow(G, G)$ for any n-chromatic G.

$$
n=4
$$

If F has chromatic number $(n-1)^{2}$, then there is a 2 edge colouring of F in which each monochromatic subgraph has chromatic number $\mathrm{n}-1$.

$F \longrightarrow(G, G)$ for any n-chromatic G.

Could be much larger
Observation: If $\chi(G)=n$, then $R_{\chi}(G) \geq(n-1)^{2}+1$

Conjecture[Burr-Erdos - Lovasz, 1976]: For each n, there is a graph G with $\chi(G)=n$ and $R_{\chi}(G)=(n-1)^{2}+1$

The conjecture is true for $\mathrm{n}=3,4$ (Burr-Erdos-Lovasz, 1976)
The conjecture is true for $\mathrm{n}=5(\mathrm{Z}, 1992)$

The conjecture is true ($\mathrm{Z}, 2010$)

Conjecture [Burr-Erdos - Lovasz, 1976]: For each n, there is a graph G with $\chi(G)=n$ and $R_{\chi}(G)=(n-1)^{2}+1$

$$
\begin{aligned}
& \text { Lemma [Burr-Erdos - Lovasz] } \\
& R_{\chi}(G) \leq \mathrm{n} \Leftrightarrow \mathrm{~K}_{\mathrm{n}} \rightarrow \operatorname{hom}(G)
\end{aligned}
$$

For any 2 edge-colouring of Kn , there is a monochromatic graph which is a homomorphic image of G.

Graph homomorphism = edge preserving map

G

Assume $\mathrm{Kn} \rightarrow$ hom(G)

Take a huge complete n-partite graph F

$$
\begin{aligned}
& \text { Lemma[Burr-Erdos-Lovasz] } \\
& R_{\chi}(G) \leq \mathrm{n} \Leftrightarrow \mathrm{~K}_{\mathrm{n}} \rightarrow \operatorname{hom}(G)
\end{aligned}
$$

Assume $\mathrm{Kn} \rightarrow$ hom(G)

Take a huge complete n-partite graph F
For any 2 edge colouring of F

Assume $\mathrm{Kn} \rightarrow$ hom(G)

Take a huge complete n-partite graph F
For any 2 edge colouring of F
There is a large complete n-partite graph F , for any two parts A, B, all the edges in $\mathrm{E}[\mathrm{A}, \mathrm{B}]$ have the same colour

Assume $\mathrm{Kn} \rightarrow$ hom(G)

Take a huge complete n-partite graph F
For any 2 edge colouring of F
There is a large complete n-partite graph F , for any two parts A, B, all the edges in $\mathrm{E}[\mathrm{A}, \mathrm{B}]$ have the same colour

Assume $\mathrm{Kn} \rightarrow$ hom(G)

Take a huge complete n-partite graph F
For any 2 edge colouring of F
There is a large complete n-partite graph F , for any two parts A, B, all the edges in $\mathrm{E}[\mathrm{A}, \mathrm{B}]$ have the same colour

This defines a 2 edge colouring of Kn

There is a monochromatic graph H in Kn , which is a homomorphic image of G

There is a monochromatic graph H in Kn , which is a homomorphic image of G

Pull H back to the complete multipartite graph to find a monochromatic copy of G

G

Lemma [Burr - Erdos - Lovasz]

$$
R_{\chi}(G) \leq \mathrm{n} \Leftarrow \mathrm{~K}_{\mathrm{n}} \rightarrow \operatorname{hom}(G)
$$

To prove Burr-Erdos-Lovasz conjecture for n, we need to construct an n-chromatic graph G, so that any 2 edge colouring of $K_{(n-1)^{2}+1}$ has a monochromatic subgraph which is a homomorphic image of G.

The construction of G is easy:
Take all 2 edge colourings of $K_{(n-1)^{2}+1}$

$$
c_{1}, c_{2}, \cdots, c_{m}
$$

For each 2 edge colouring $c i$ of $K_{(n-1)^{2}+1}$, one of the monochromatic subgraph, say G_{i}, has chromatic number at least n .

Conjecture [Burr - Erdos - Lovasz, 1976]: For each n, there is a graph G with $\chi(G)=n$ and $R_{\chi}(G)=(n-1)^{2}+1$

To prove this conjecture for n, we need to construct an n-chromatic graph G, so that any 2 edge colouring of $K_{(n-1)^{2}+1}$ has a monochromatic subgraph which is a homomorphic image of G.

The construction of G is easy:
Take all 2 edge colourings of $K_{(n-1)^{2}+1}$

$$
c_{1}, c_{2}, \cdots, c_{m}
$$

For each 2 edge colouring $c i$ of $K_{(n-1)^{2}+1}$, one of the monochromatic subgraph, say G_{i}, has chromatic number at least n .

$$
G=G_{1} \times G_{2} \times \cdots \times G_{m}
$$

$G \times H$

- H

G
GxH

To prove this conjecture for n, we need to constract an n-chromatic graph G so that any 2 edge colouring of

The construction of G is easy:
Take all 2 edge colourings of $K_{(n-1)^{2}+1}$

$$
c_{1}, c_{2}, \cdots, c_{m}
$$

For each 2 edge colouring $c i$ of $K_{(n-1)^{2}+1}$, one of the monochromatic subgraph, say G_{i}, has chromatic number at least n .

$$
G=G_{1} \times G_{2} \times \cdots \times G_{m}
$$

Each G_{i} is a homomorphic image of G

Conjecture [Hedetniemi, 1966]:

$$
\chi(G \times H)=\min \{\chi(G), \chi(H)\}
$$

To prove this conjecture for n, we need to constrict an n-chromatic araph G so that any 2 edge colouring of

If Hedetniemi's conjecture is true, then
Burr-Erdos-Lovasz conjecture is true.

Conjecture [Hedetniemi, 1966]:
 $$
\chi(G \times H)=\min \{\chi(G), \chi(H)\}
$$

Fractional Hedetniemi's conjecture
Conjecture [Z, 2002]:

$$
\chi_{f}(G \times H)=\min \left\{\chi_{f}(G), \chi_{f}(H)\right\}
$$

To prove this conjecture for n, we need to construct an n-chromatic graph G, so that any 2 edge colouring of $K_{(n-1)^{2}+1}$ has a monochromatic subgraph which is a homomorphic image of G.

If Hedetniemi's conjecture is true, then
Burr-Erdos-Lovasz conjecture is true.

Observation [Claude Tardif] If fractional Hedetniemi's conjecture is true, then Burr-Erdos-Lovasz conjecture is true.

To prove this conjecture for n, we need to construct an n-chromati_ araph G, so that any 2 edge colouring of $K_{(n-1)^{2}+1}$ has a $=0$ natic subgraph which is a homomorphic image of G.
The construction of G is easy:
Take all 2 edge colourings of $K_{(n-1)^{2}+1}$

$$
c_{1}, c_{2}, \cdots, c_{m}
$$

For each 2 edge colouring $c i$ of $K_{(n-1)^{2}+1}$, one of the monochromatic subgraph, say G_{i}, has fractional chromatic number > n-1

$$
G=G_{1} \times G_{2} \times \cdots \times G_{m} \quad \chi_{f}(G)>n-1 \quad \chi(G) \geq \chi_{f}(G)>n-1
$$

Each G_{i} is a homomorphic image of G

A fractional colouring of G is a mapping f which assigns to each independent set U of G a nonnegative weight $f(U)$ so that for any vertex v of $G, \sum_{v \in U} f(U) \geq 1$.

The minimum total weight of a fractional colouring of G is the fractional chromatic number of G, and is denoted by

$$
\chi_{f}(G)
$$

Conjecture [Hedetniemi, 1966]:
 $$
\chi(G \times H)=\min \{\chi(G), \chi(H)\}
$$

Fractional Hedetniemi's conjecture

$$
\begin{aligned}
& \text { Theorem }[\mathrm{Z}, 2010]: \\
& \qquad \chi_{f}(G \times H)=\min \left\{\chi_{f}(G), \chi_{f}(H)\right\}
\end{aligned}
$$

A fractional clique of G is a mapping f which assigns to each vertex v a nonnegative weight $f(v)$ so that for any independent set U of $G, f(U)=\sum_{v \in U} f(v) \leq 1$.

The maximum total weight of a fractional clique of G is the fractional clique number of G, and is denoted by

$$
\omega_{f}(G)
$$

The fractional chromatic number of G is obtained by solving a linear programming problem

The fractional clique number of G is obtained by solving its dual problem

$$
\chi_{f}(G)=\omega_{f}(G)
$$

Fractional Hedetniemi's conjecture is true

```
Theorem [Z, 2010]
    \omega
```

Pr oof sketch:

$$
\begin{aligned}
& \chi_{f}(G \times H)=\min \left\{\chi_{f}(G), \chi_{f}(H)\right\} \\
& \chi_{f}(G \times H) \leq \min \left\{\chi_{f}(G), \chi_{f}(H)\right\} \rightarrow \text { Easy! } \\
& \chi_{f}(G \times H) \geq \min \left\{\chi_{f}(G), \chi_{f}(H)\right\} \rightarrow \text { Difficult! } \\
& \omega_{f}(G \times H) \geq \min \left\{\omega_{f}(G), \omega_{f}(H)\right\}
\end{aligned}
$$

suffices to construct a fractional clique of $G \times H$ with total weight $\min \left\{\omega_{f}(G), \omega_{f}(H)\right\}$

$g: V(G) \rightarrow[0,1]$, a maximum fractional clique of G

$h: V(H) \rightarrow[0,1]$, a maximum fractional clique of H
$\varphi: V(G \times H) \rightarrow[0,1]$, defined as
$\varphi(x, y)=\frac{g(x) h(y)}{\max \left\{\omega_{f}(G), \omega_{f}(H)\right\}}$
is a fractional clique of $G \times H$ Difficult!
With total weight $\min \left\{\omega_{f}(G), \omega_{f}(H)\right\}$ Easy!
\forall independent set U of $G \times H$,

$$
\sum_{(x, y) \in U} g(x) h(y) \leq \max \left\{\omega_{f}(G), \omega_{f}(H)\right\}
$$

$$
\begin{aligned}
& \mathrm{H} \\
& \begin{array}{cccccccccc}
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet
\end{array}
\end{aligned}
$$

An independent set in H

An independent set U in $G \times H$

An independent set in H
 . H .

-

An independent
set in G $-\quad$ of weight β

An independent set U in $G \times H$

- $\begin{aligned} & y \\ & 0\end{aligned}$ H

$$
(x, y)
$$

An independent set U in $G \times H$
$(x, y) \in B \Leftrightarrow \exists x^{\prime},\left(x, x^{\prime}\right) \in E(G),\left(x^{\prime}, y\right) \in U$.

An independent set U in $G \times H \quad U=A \cup B$

\forall independent set U of $G \times H$,
$\sum_{(x, y) \in U} g(x) h(y) \leq \omega_{f}(G)$

$$
\sum_{(x, y) \in U} g(x) h(y)=\sum_{(x, y) \in A} g(x) h(y)+\sum_{(x, y) \in B} g(x) h(y)
$$

for any independent set Y^{\prime} $g(A(y))+g\left(Y^{\prime}\right) \leq 1$ in $G-N_{G}[A(y)], \quad A(y) \cup Y^{\prime}$
is independent

$$
g\left(Y^{\prime}\right) \leq 1-g(A(y))
$$

$g^{\prime}(x)=\frac{g(x)}{1-g(A(y))}$ is a
fractional clique of $G-N_{G}[A(y)]$

$$
\begin{aligned}
& \sum_{x \in V(G)-N_{G}[A(y)]} \frac{g(x)}{1-g(A(y))} \leq \omega_{f}(G) \\
& \omega_{f}(G)-g\left(N_{G}[A(y)]\right) \leq \omega_{f}(G)-\omega_{f}(G) g(A(y)) \\
& \omega_{f}(G) \cdot g(A(y)) \leq g\left(N_{G}[A(y)]\right)
\end{aligned}
$$

\forall independent set U of $G \times H$,

$$
\sum_{(x, y) \in U} g(x) h(y) \leq \omega_{f}(G)
$$

$$
\begin{aligned}
\sum_{(x, y) \in U} g(x) h(y) & =\sum_{(x, y) \in A} g(x) h(y)+\sum_{(x, y) \in B} g(x) h(y) \\
& =\sum_{y \in V(H)} g(A(y)) h(y)+\sum_{x \in V(G)} g(x) h(B(x))
\end{aligned}
$$

$$
\leq \frac{1}{\omega_{f}(G)} \sum_{y \in V(H)} g\left(N_{G}[A(y)]\right) h(y)
$$

$$
\left.\mathbf{G}+\frac{1}{\omega_{f}(H)} \sum_{y \in V(H)} h\left(N_{H}[B(x)]\right) g(x)\right)
$$

$g(A(y)) \leq g\left(N_{G}[A(y)]\right) / \omega_{f}(G)$

$$
\begin{aligned}
\sum_{(x, y) \in U} g(x) h(y) & =\sum_{(x, y) \in A} g(x) h(y)+\sum_{(x, y) \in B} g(x) h(y) \\
& =\sum_{y \in V(H)} g(A(y)) h(y)+\sum_{x \in V(G)} g(x) h(B(x)) \\
\leq & \frac{1}{\omega_{f}(H)} \sum_{v \in V(H)} g\left(N_{G}[A(y)]\right] h(y) \\
\mathrm{G} & +\frac{1}{\omega_{f}(H)} \sum_{v \in V(H)} h\left(N_{H}[B(x)]\right) g(x)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{(x, y) \in U} g(x) h(y)= & \sum_{(x, y) \in A} g(x) h(y)+\sum_{(x, y) \in B} g(x) h(y) \\
= & \sum_{y \in V(H)} g(A(y)) h(y)+\sum_{x \in V(G)} g(x) h(B(x)) \\
\leq & \frac{1}{\omega_{f}(H)} \sum_{v \in V(H)} g\left(N_{G}[A(y)]\right) h(y) \\
& \quad+\frac{1}{\omega_{f}(H)} \sum_{y \in V(H)} h\left(N_{H}[B(x)]\right) g(x) \\
= & \frac{1}{\omega_{f}(H)}\left(\sum_{v e l l o w} g(x) h(y)+\sum_{\text {blue }} g(x) h(y)\right) \\
\leq & \frac{1}{\omega_{f}(H)} \sum_{x \in V(G), y \in V(H)} g(x) h(y)
\end{aligned}
$$

