Chromatic Ramsey Number and Fractional Hedetniemi's Conjecture

Xuding Zhu

Department of Mathematics Zhejiang Normal University Among any 6 people, there are either 3 people, any two of them know each other, or 3 people, any two of them do not know each other.

For any 2 - colouring of the edges of K_6 with colours red and blue, there is either a red copy of K_3 or a blue copy of K_3

 $\mathbf{K}_6 \rightarrow (K_3, K_3)$

 $F \rightarrow (G, H)$ means the following

For any 2-colouring of the edges of F with colours red and blue. There is a red copy of G or a blue copy of H.

Bounds for R(k,l)

k l	3	4	5	6	7	8
3	6	9	14	18	23	28
4		18	25	35	49	56
				41	61	84
5			43	58	80	101
			49	87	143	216
6				102	113	169
				165	298	780
7					205	237
					540	1713
8						317
						3583

Bounds for R(k,l)

k l	3	4	5	6	7	8
3	6	9	14	18	23	28
4		18	25	35	49	56
				41	61	84
5			43	58	80	101
			49	87	143	216
6				102	113	169
				165	298	780
7					205	237
					540	1713
8						317
						3583

Bounds for R(k,l)

k l	3	4	5	6	7	8
3	6	9	14	18	23	28
4		18	25	35	49	56
				41	61	84
5			43	58	80	101
			49	87	143	216
6				102	113	169
				165	298	780
7					205	237
					540	1713
8						317
						3583

The Ramsey number of (G, H) is $R(G,H) = \min\{n: K_n \to (G,H)\}$

> The Ramsey number of (G, H) is $R(G,H) = \min\{ |V(F)|: F \rightarrow (G,H) \}$

> > The Size Ramsey number of (G, H) is $R_E(G, H) = \min\{ |E(F)|: F \to (G, H) \}$

> > > The max - degree - Ramsey number of (G, H) is $R_{\Delta}(G,H) = \min\{ |\Delta(F)|: F \to (G,H) \}$

> > > > The chromatic Ramsey number of (G, H) is $R_{\chi}(G,H) = \min\{ |\chi(F)|: F \to (G,H) \}$

The Ramsey number of (G, H) is $R(G,H) = \min\{n: K_n \to (G,H)\}$

> The Ramsey number of (G, H) is $R(G,H) = \min\{ |V(F)|: F \rightarrow (G,H) \}$

> > The Size Ramsey number of (G, H) is $R_E(G, H) = \min\{ |E(F)|: F \to (G, H) \}$

The max - degree - Ramsey number of (G, H) is $R_{\Delta}(G,H) = \min\{ |\Delta(F)|: F \to (G,H) \}$

> The chromatic Ramsey number of (G, H) is $R_{\chi}(G,H) = \min\{ |\chi(F)|: F \to (G,H) \}$

The chromatic Ramsey number of (G, H) is $R_{\chi}(G,H) = \min\{ |\chi(F)|: F \to (G,H) \}$ The chromatic Ramsey number of (G, H) is $R_{\chi}(G,H) = \min\{ |\chi(F)|: F \to (G,H) \}$

 $R_{\chi}(G) = R_{\chi}(G,G)$

Introduced by Burr-Erdos-Lovasz in 1976

 $R_{\gamma}(G,H) \leq R(G,H)$

 $R_{\chi}(K_k,K_l) = R(k,l)$

If F has chromatic number $(n-1)^2$, then there is a 2 edge colouring of F in which each monochromatic subgraph has chromatic number n-1.

$$F \rightarrow (G,G)$$
 for any n-chromatic G.

$$n = 4$$

If F has chromatic number $(n-1)^2$, then there is a 2 edge colouring of F in which each monochromatic subgraph has chromatic number n-1.

$$F \rightarrow (G, G)$$
 for any n-chromatic G.
Could be much larger
Observation : If $\chi(G) = n$, then $R_{\chi}(G) \ge (n-1)^2 + 1$

Conjecture [Burr - Erdos - Lovasz, 1976]: For each n, there is a graph G with $\chi(G) = n$ and $R_{\chi}(G) = (n-1)^2 + 1$ The conjecture is true for n=3,4 (Burr-Erdos-Lovasz, 1976)

The conjecture is true for n=5 (Z, 1992)

The conjecture is true (Z, 2010)

Conjecture [Burr - Erdos - Lovasz, 1976]: For each n, there is a graph G with $\chi(G) = n$ and $R_{\chi}(G) = (n-1)^2 + 1$

Lemma [Burr - Erdos - Lovasz] $R_{\chi}(G) \le n \Leftrightarrow K_n \rightarrow \hom(G)$

For any 2 edge-colouring of Kn, there is a monochromatic graph which is a homomorphic image of G.

Graph homomorphism = edge preserving map

Take a huge complete n-partite graph F

Lemma [Burr - Erdos - Lovasz] $R_{\chi}(G) \le n \Leftrightarrow K_n \rightarrow \hom(G)$

Take a huge complete n-partite graph F

For any 2 edge colouring of F

Take a huge complete n-partite graph F

For any 2 edge colouring of F

There is a large complete n-partite graph F', for any two parts A,B, all the edges in E[A,B] have the same colour

Take a huge complete n-partite graph F

For any 2 edge colouring of F

There is a large complete n-partite graph F', for any two parts A,B, all the edges in E[A,B] have the same colour

Take a huge complete n-partite graph F

For any 2 edge colouring of F

There is a large complete n-partite graph F', for any two parts A,B, all the edges in E[A,B] have the same colour

This defines a 2 edge colouring of Kn

There is a monochromatic graph H in Kn, which is a homomorphic image of G

There is a monochromatic graph H in Kn, which is a homomorphic image of G

Pull H back to the complete multipartite graph to find a monochromatic copy of G

To prove Burr-Erdos-Lovasz conjecture for *n*, we need to construct an n-chromatic graph G, so that any 2 edge colouring of $K_{(n-1)^2+1}$ has a monochromatic subgraph which is a homomorphic image of G.

The construction of G is easy:

Take all 2 edge colourings of $K_{(n-1)^2+1}$

$$c_1, c_2, \cdots, c_m$$

For each 2 edge colouring ci of $K_{(n-1)^2+1}$, one of the monochromatic subgraph, say G_i , has chromatic number at least n.

Conjecture [Burr - Erdos - Lovasz, 1976]: For each n,

there is a graph G with $\chi(G) = n$ and $R_{\chi}(G) = (n-1)^2 + 1$

To prove this conjecture for *n*, we need to construct an n-chromatic graph G, so that any 2 edge colouring of $K_{(n-1)^2+1}$ has a monochromatic subgraph which is a homomorphic image of G.

The construction of G is easy:

Take all 2 edge colourings of $K_{(n-1)^2+1}$

$$c_1, c_2, \cdots, c_m$$

For each 2 edge colouring ci of $K_{(n-1)^2+1}$, one of the monochromatic subgraph, say G_i , has chromatic number at least n.

$$G = G_1 \times G_2 \times \cdots \times G_m$$

To prove this conjecture for n, we need to construct an n-chromatic graph G, so that any 2 edge colouring of $K_{(n-1)^2+1}$ has a monochromatic subgraph which is a homomorphic image of G. The construction of G is easy: Take all 2 edge colourings of $K_{(n-1)^2+1}$ C_1, C_2, \cdots, C_m For each 2 edge colouring *ci* of $K_{(n-1)^2+1}$, one of the monochromatic subgraph, say G_i , has chromatic number at least n.

$$G = G_1 \times G_2 \times \cdots \times G_m$$

Each G_i is a homomorphic image of G

Conjecture [Hedetniemi, 1966]: $\chi(G \times H) = \min\{\chi(G), \chi(H)\}$

If Hedetniemi's conjecture is true, then

Burr-Erdos-Lovasz conjecture is true.

Conjecture [Hedetniemi, 1966]: $\chi(G \times H) = \min\{\chi(G), \chi(H)\}$

Fractional Hedetniemi's conjecture

Conjecture [Z, 2002]: $\chi_f(G \times H) = \min \{ \chi_f(G), \chi_f(H) \}$ To prove this conjecture for *n*, we need to construct an n-chromatic graph G, so that any 2 edge colouring of $K_{(n-1)^2+1}$ has a monochromatic subgraph which is a homomorphic image of G.

If Hedetniemi's conjecture is true, then

Burr-Erdos-Lovasz conjecture is true.

Observation [Claude Tardif] If fractional Hedetniemi's conjecture is true, then Burr-Erdos-Lovasz conjecture is true.

To prove this conjecture for *n*, we need to construct an n-chromatic graph G, so that any 2 edge colouring of $K_{(n-1)^2+1}$ has a momentum matrix subgraph which is a homomorphic image of G.

The construction of G is easy:

Take all 2 edge colourings of $K_{(n-1)^2+1}$

$$c_1, c_2, \cdots, c_m$$

For each 2 edge colouring ci of $K_{(n-1)^2+1}$, one of the monochromatic subgraph, say G_i , has fractional chromatic number > n-1

$$G = G_1 \times G_2 \times \cdots \times G_m \quad \chi_f(G) > n-1 \quad \chi(G) \ge \chi_f(G) > n-1$$

Each G_i is a homomorphic image of G

A fractional colouring of *G* is a mapping *f* which assigns to each independent set U of G a nonnegative weight f(U)so that for any vertex *v* of *G*, $\sum_{v \in U} f(U) \ge 1$.

The minimum total weight of a fractional colouring of Gis the fractional chromatic number of G, and is denoted by $\chi_f(G)$ Conjecture [Hedetniemi, 1966]: $\chi(G \times H) = \min\{\chi(G), \chi(H)\}$

Fractional Hedetniemi's conjecture

Theorem [Z, 2010] $\chi_f(G \times H) = \min\{\chi_f(G), \chi_f(H)\}$ A fractional clique of *G* is a mapping *f* which assigns to each vertex *v* a nonnegative weight f(v) so that for any independent set *U* of *G*, $f(U) = \sum_{v \in U} f(v) \le 1$.

The maximum total weight of a fractional clique of G is the fractional clique number of G, and is denoted by $\omega_f(G)$ The fractional chromatic number of G is obtained by solving a linear programming problem

The fractional clique number of G is obtained by solving its dual problem

$$\chi_f(G) = \omega_f(G)$$

Fractional Hedetniemi's conjecture is true

Theorem [Z, 2010]

$$\omega_f(G \times H) = \min\{\omega_f(G), \omega_f(H)\}$$

Proof sketch:

$$\chi_f(G \times H) = \min\{\chi_f(G), \chi_f(H)\}$$

$$\chi_f(G \times H) \le \min \{\chi_f(G), \chi_f(H)\} \longrightarrow \text{Easy!}$$
$$\chi_f(G \times H) \ge \min \{\chi_f(G), \chi_f(G), \chi_f(H)\} \longrightarrow \text{Difficult!}$$
$$\omega_f(G \times H) \ge \min \{\omega_f(G), \omega_f(H)\}$$

suffices to construct a fractional clique of $G \times H$ with total weight min $\{\omega_f(G), \omega_f(H)\}$

$$g: V(G) \rightarrow [0,1], \text{ a maximum fractional clique of G}$$

$$h: V(H) \rightarrow [0,1], \text{ a maximum fractional clique of H}$$

$$\varphi: V(G \times H) \rightarrow [0,1], \text{ defined as}$$

$$\varphi(x,y) = \frac{g(x)h(y)}{\max\{\omega_f(G),\omega_f(H)\}}$$
It is a fractional clique of $G \times H$ Difficult!
with total weight min $\{\omega_f(G), \omega_f(H)\}$ Easy!
 \forall independent set U of $G \times H$,
 $\sum_{(x,y) \in U} g(x)h(y) \leq \max\{\omega_f(G), \omega_f(H)\}$ Assume $\omega_f(G) \ge \omega_f(H)$

An independent set U in $G \ge H$

An independent set U in $G \ge H$

An independent set U in G x H

$$\forall \text{ independent set } U \text{ of } G \times H,$$
$$\sum_{(x,y) \in U} g(x)h(y) \leq \omega_f(G)$$

$$\sum_{(x,y)\in U} g(x)h(y) = \sum_{(x,y)\in A} g(x)h(y) + \sum_{(x,y)\in B} g(x)h(y)$$

for any independent set Y' in $G-N_G[A(y)]$, $A(y) \cup Y'$ is independent

$$g(A(y)) + g(Y') \le 1$$

$$g(Y') \le 1 - g(A(y))$$

 $g'(x) = \frac{g(x)}{1 - g(A(y))}$ is a fractional clique of $G - N_G[A(y)]$

$$\sum_{x \in V(G) - N_G[A(y)]} \frac{g(x)}{1 - g(A(y))} \le \omega_f(G)$$

$$\omega_f(G) \cdot g(N_G[A(y)]) \le \omega_f(G) - \omega_f(G)g(A(y))$$

$$N_c[A(y)]$$

$$\omega_f(G) \cdot g(A(y)) \le g(N_G[A(y)])$$

$$\begin{aligned} \forall \text{ independent set } U \text{ of } G \times H, \\ \sum_{(x,y) \in U} g(x)h(y) &\leq \omega_f(G) \end{aligned}$$

$$\begin{aligned} \sum_{(x,y) \in U} g(x)h(y) &= \sum_{(x,y) \in A} g(x)h(y) + \sum_{(x,y) \in B} g(x)h(y) \\ &= \sum_{y \in V(H)} g(A(y))h(y) + \sum_{x \in V(G)} g(x)h(B(x)) \end{aligned}$$

$$\begin{aligned} &\leq \frac{1}{\omega_f(G)} \sum_{y \in V(H)} g(N_G[A(y)])h(y) \\ &\mathbf{G} \quad + \frac{1}{\omega_f(H)} \sum_{y \in V(H)} h(N_H[B(x)])g(x) \end{aligned}$$

$$g(A(y)) \leq g(N_G[A(y)]) / \omega_f(G)$$

$$\sum_{(x,y)\in U} g(x)h(y) = \sum_{(x,y)\in A} g(x)h(y) + \sum_{(x,y)\in B} g(x)h(y)$$
$$= \sum_{y\in V(H)} g(A(y))h(y) + \sum_{x\in V(G)} g(x)h(B(x))$$
$$\leq \frac{1}{\omega_f(H)} \sum_{y\in V(H)} g(N_G[A(y)])h(y)$$
$$\mathbf{G} + \frac{1}{\omega_f(H)} \sum_{y\in V(H)} h(N_H[B(x)])g(x)$$

$$\sum_{(x,y)\in U} g(x)h(y) = \sum_{(x,y)\in A} g(x)h(y) + \sum_{(x,y)\in B} g(x)h(y)$$
$$= \sum_{y\in V(H)} g(A(y))h(y) + \sum_{x\in V(G)} g(x)h(B(x))$$
$$\leq \frac{1}{\omega_f(H)} \sum_{y\in V(H)} g(N_G[A(y)])h(y)$$
$$+ \frac{1}{\omega_f(H)} \sum_{y\in V(H)} h(N_H[B(x)])g(x)$$
$$= \frac{1}{\omega_f(H)} \left(\sum_{vellow} g(x)h(y) + \sum_{blue} g(x)h(y)\right)$$
$$\leq \frac{1}{\omega_f(H)} \sum_{x\in V(G), y\in V(H)} g(x)h(y)$$

