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For any 2-colouring of the edges of F with coloursredandblue,
There is a red copy ofG or a blue copy ofH.

Among any 6 people, there are either 3 people, any two of them
know each other, or 3 people, any two of them do not know
each other. 
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Introduced by Burr-Erdos-Lovasz in 1976
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If  F has chromatic number                , then there is a
2 edge colouring of F  in which each  monochromatic
subgraph has chromatic number n-1.

2)1( −n

),( GGF → for any n-chromatic G.

4=n



If  F has chromatic number                , then there is a
2 edge colouring of F  in which each  monochromatic
subgraph has chromatic number n-1.

2)1( −n

),( GGF → for any n-chromatic G.

1)1()(   then  ,)(  If  :nObservatio 2 +−≥= nGRnG χχ

1)1()(  and  )(G with  graph  a is there

 n,each For   :1976] Lovasz,-Erdos-[Burr Conjecture
2 +−== nGRnG χχ

Could be much larger



1)1()(  and  )(G with  graph  a is there

 n,each For   :1976] Lovasz,-Erdos-[Burr Conjecture
2 +−== nGRnG χχ

The conjecture is true for n=3,4  (Burr-Erdos-Lovasz, 1976)

The conjecture is true for n=5 (Z, 1992)

The conjecture is true (Z, 2010)
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For any 2 edge-colouring of Kn, there is a monochromatic
graph which is a homomorphic image of G.



Graph homomorphism = edge preserving map

G
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Assume Kn� hom(G)

Take a huge complete n-partite graph  F 

For any 2 edge colouring of  F

There is  a large complete n-partite graph F’,
for any two parts A,B, all the edges in E[A,B] have the same colour

This defines a 2 edge colouring of Kn
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There is a monochromatic graph H in Kn, 
which is a homomorphic image of G



G
H

There is a monochromatic graph H in Kn, 
which is a homomorphic image of G

Pull H back to the complete multipartite graph to find a monochromatic copy of G

)hom(Kn  

Lovasz]-Erdos-[Burr Lemma  

n G(G)R →⇔≤χ



1)1()(  and  )(G with  graph  a is there

 n,each For   :1976] Lovasz,-Erdos-[Burr Conjecture
2 +−== nGRnG χχ

To prove Burr-Erdos-Lovasz conjecture for n,  we need to construct 
an n-chromatic graph G, so that any 2 edge colouring of                 
has a monochromatic subgraph which is a homomorphic image of  G.

1)1( 2 +−n
K

The construction of  G is easy:

Take all 2 edge colourings of  1)1( 2 +−n
K

mccc ,,, 21 L

For each 2 edge colouringci of                  , one of the monochromatic
subgraph, say Gi, , has chromatic number at least n.

1)1( 2 +−n
K

iG



To prove this conjecture for n,  we need to construct an 
n-chromatic graph G, so that any 2 edge colouring of                 
has a monochromatic subgraph which is a homomorphic image of  G.

1)1( 2 +−n
K

The construction of  G is easy:

Take all 2 edge colourings of 1)1( 2 +−n
K
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To prove this conjecture for n,  we need to construct an 
n-chromatic graph G, so that any 2 edge colouring of                 
has a monochromatic subgraph which is a homomorphic image of  G.

1)1( 2 +−n
K

The construction of  G is easy: 

Take all 2 edge colourings of  1)1( 2 +−n
K

mccc ,,, 21 L

For each 2 edge colouringci of                  , one of the monochromatic
subgraph, say Gi, , has chromatic number at least n.  
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To prove this conjecture for n,  we need to construct an 
n-chromatic graph G, so that any 2 edge colouring of                 
has a monochromatic subgraph which is a homomorphic image of  G.

1)1( 2 +−n
K

?

If Hedetniemi’s conjecture is true, then

Burr-Erdos-Lovasz conjecture is true.
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Fractional Hedetniemi’s conjecture



To prove this conjecture for n,  we need to construct an 
n-chromatic graph G, so that any 2 edge colouring of                 
has a monochromatic subgraph which is a homomorphic image of  G.

1)1( 2 +−n
K

If Hedetniemi’s conjecture is true, then

Burr-Erdos-Lovasz conjecture is true.

Observation [Claude Tardif]  If fractional Hedetniemi’s
conjecture is true, thenBurr-Erdos-Lovasz conjecture is true.



To prove this conjecture for n,  we need to construct an 
n-chromatic graph G, so that any 2 edge colouring of                 
has a monochromatic subgraph which is a homomorphic image of  G.

1)1( 2 +−n
K

The construction of  G is easy: 

Take all 2 edge colourings of  1)1( 2 +−n
K

mccc ,,, 21 L

For each 2 edge colouringci of                  , one of the monochromatic
subgraph, say Gi, , has chromatic number at least n.  
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Fractional Hedetniemi’s conjecture

Theorem   [Z, 2010]    
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The fractional chromatic number of G is obtained 
by solving a linear programming problem

The fractional clique number of G is obtained 
by solving its dual problem
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