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Correspondence with Schnyder woods

Definition
A Schnyder wood of a triangulation T is an orientation of E(T)
and a 3-edge coloring of T such that every inner vertex verifies :
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Theorem (G., Lévéque, Pinlou '10)

Every 3-connected planar map admits a primal-dual contact
representation by triangles.
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Generalized Schnyder woods

Theorem (Felsner '01)

Every 3-connected planar map admits a generalized Schnyder
wood.
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The Construction on an Orthogonal Surfaces




How to Stretch

Theorem (de Fraysseix, Ossona de Mendez '07)

A contact sytem of peudo-segments (no loops or tangent arcs) is
stretchable if and only if each subsystem of cardinality at least two
has at least three extremal points.
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Particular type of triangles?

» Right triangles
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» Right triangles

Open Problem

Does every 3-connected planar map admits a primal-dual contact
representation by right triangles?



Homothetic Triangles
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Conjecture (Kratochvil '07)

Every 4-connected planar triangulation admits a contact
representation by homothetic triangles.



Contact of Homothetic Triangles

Theorem (by Schramm's Convex Packing Theorem)

Every 4-connected planar triangulation admits a contact
representation by homothetic triangles.
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v € V(T), there is a contact representation of T
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Theorem (Schramm '90)

For any triangulation T and any convex and=smwooth bodies P,, for
v € V(T), there is a contact representation of G 2 T , with
eventually degenerated triangles.
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Intersection of Homothetic Triangles

Theorem

Every planar graph is the intersection graph of homothetic
triangles (without 3 intersecting triangles).

> Restriction to triangulations.

» Work on the 4-connected components.
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4-Connected Triangulations

Theorem

For every 4-connected triangulation T and every € > 0 there is an
intersection system of homothetic triangles like that :

» No 3 intersecting triangles
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Thank you!



