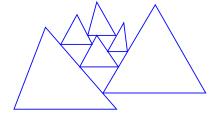
Triangle Contact Systems for Planar Graphs.

Daniel Gonçalves LIRMM, Montpellier

BGW 2010

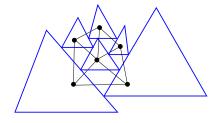
Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)

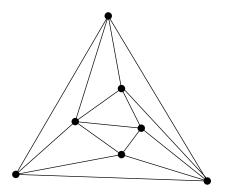
Every planar graph admits a contact representation by triangles.

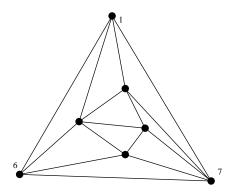


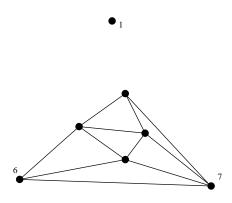
Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)

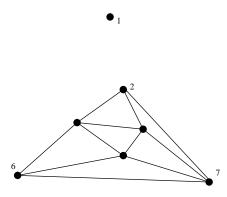
Every planar graph admits a contact representation by triangles.

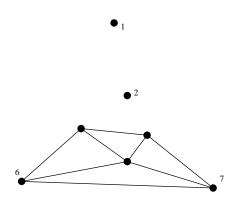


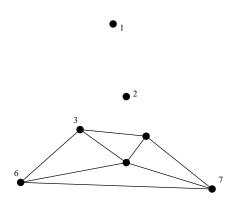


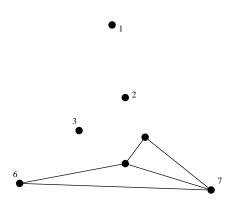


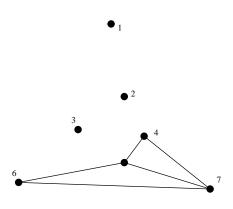


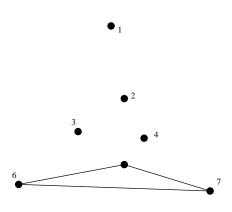


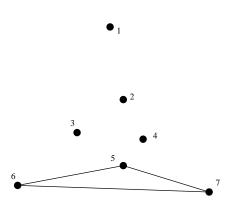


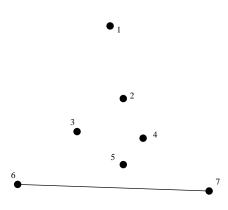


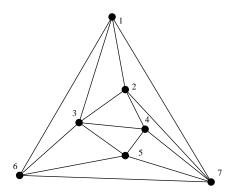


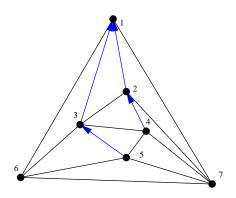


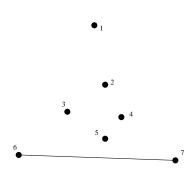


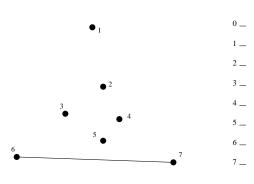


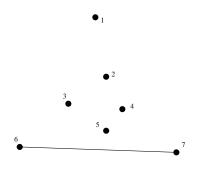


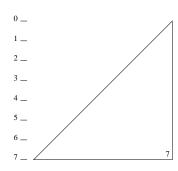


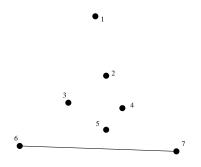


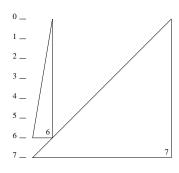


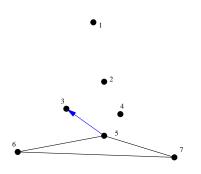


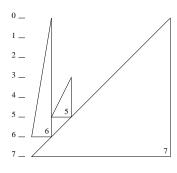


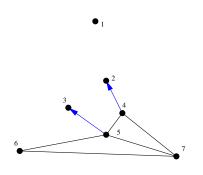


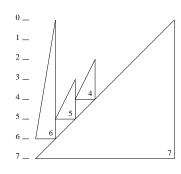


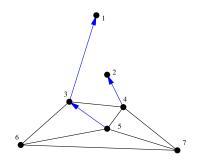


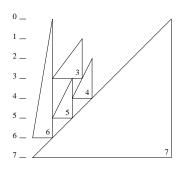


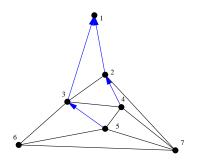


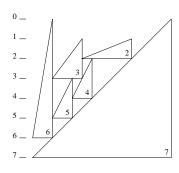


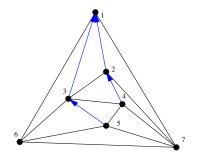


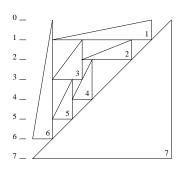






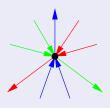






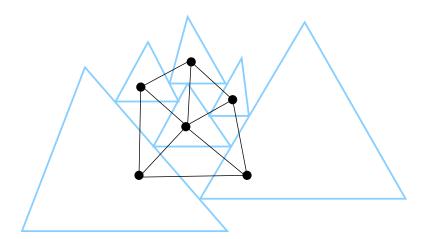
Definition

A Schnyder wood of a triangulation T is an orientation of E(T) and a 3-edge coloring of T such that every inner vertex verifies :

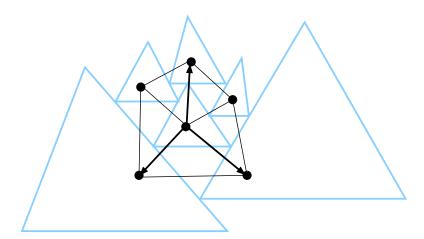


Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)

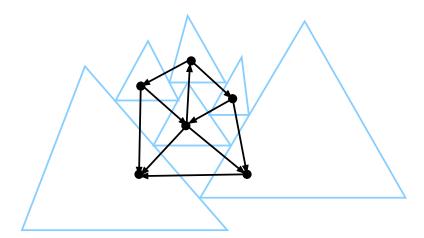
Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)



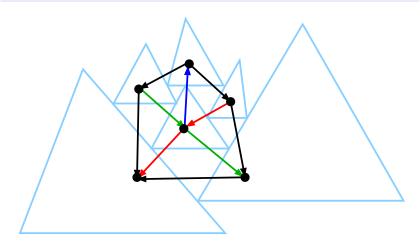
Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)



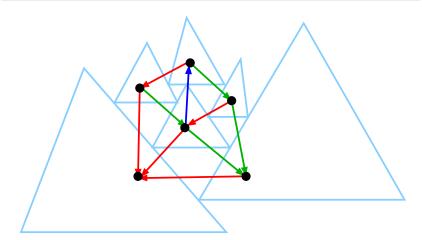
Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)



Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)



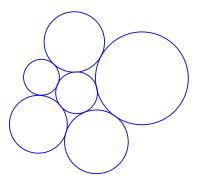
Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)



Primal-Dual Representations

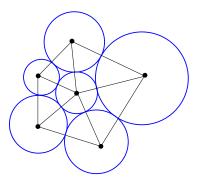
Theorem (Koebe '36)

Every planar graph admits a contact representation by circles.



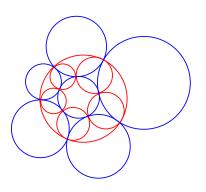
Theorem (Koebe '36)

Every planar graph admits a contact representation by circles.



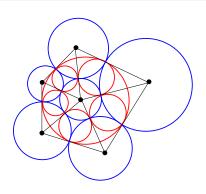
Theorem (Andre'ev '70)

Every 3-connected planar map admits a primal-dual contact representation by circles.



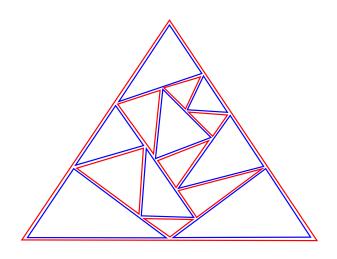
Theorem (Andre'ev '70)

Every 3-connected planar map admits a primal-dual contact representation by circles.



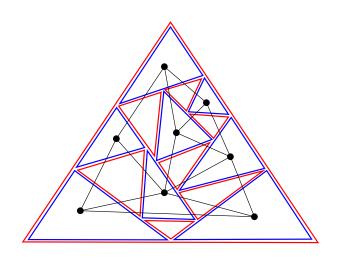
Theorem (G., Lévêque, Pinlou '10)

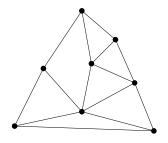
Every 3-connected planar map admits a primal-dual contact representation by triangles.

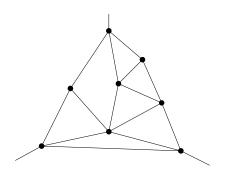


Theorem (G., Lévêque, Pinlou '10)

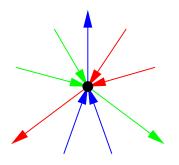
Every 3-connected planar map admits a primal-dual contact representation by triangles.



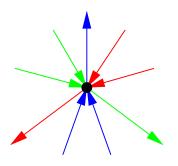




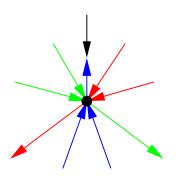
Add 3 edges on the outerface



For inner vertices

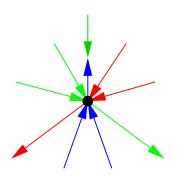


For EVERY vertex



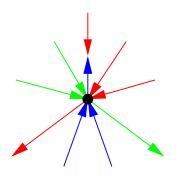
For EVERY vertex

Allow BI-ORIENTED edges



For EVERY vertex

Allow BI-ORIENTED edges

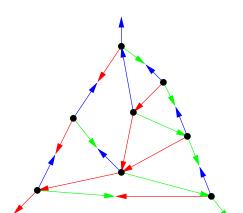


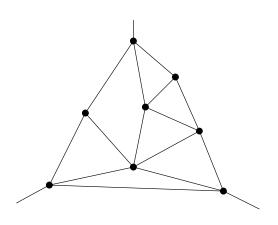
For EVERY vertex

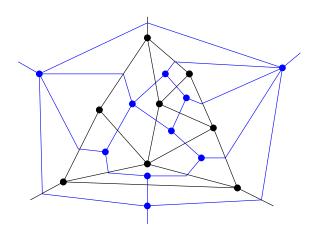
Allow BI-ORIENTED edges

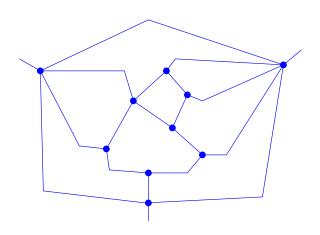
Theorem (Felsner '01)

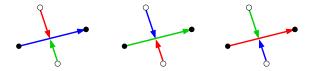
Every 3-connected planar map admits a generalized Schnyder wood.

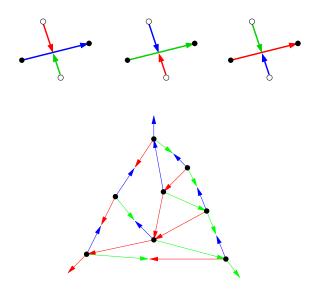


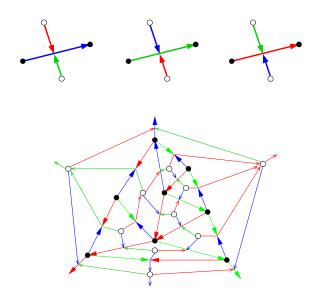


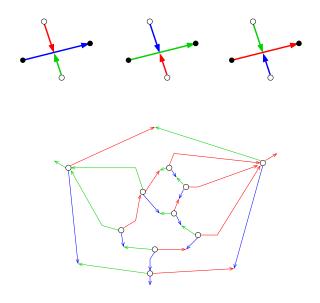


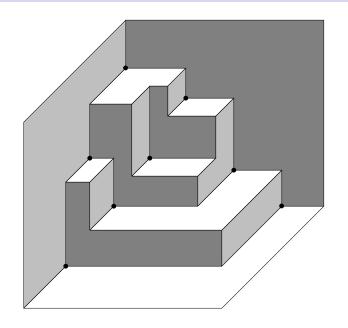


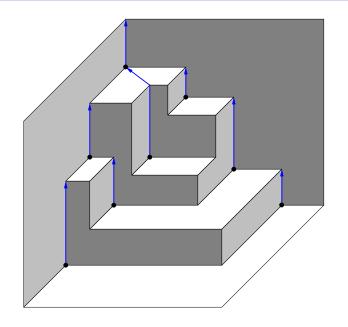


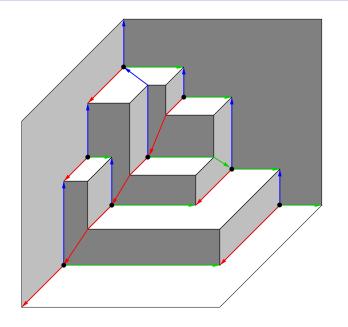


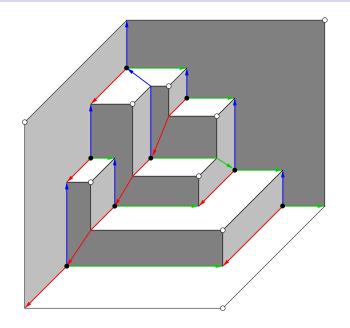


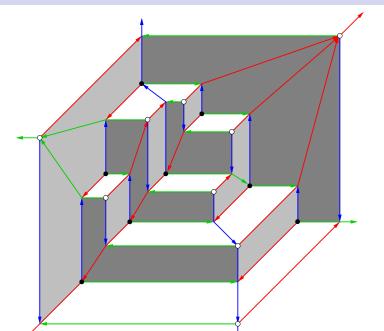


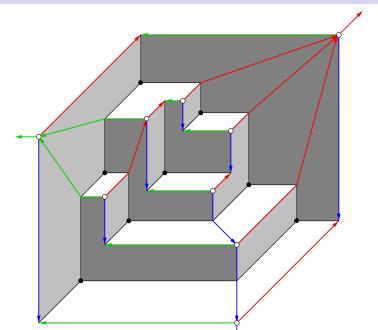


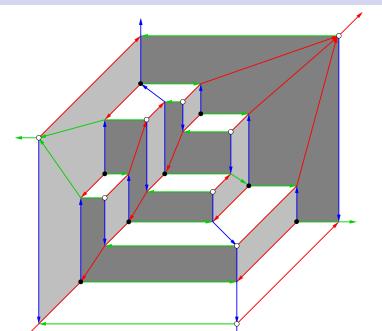


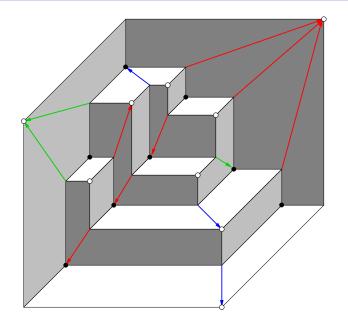


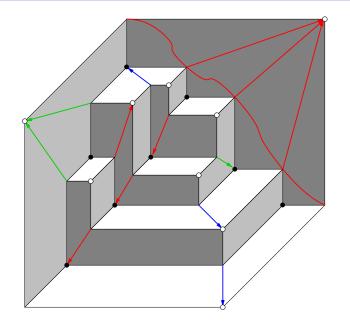


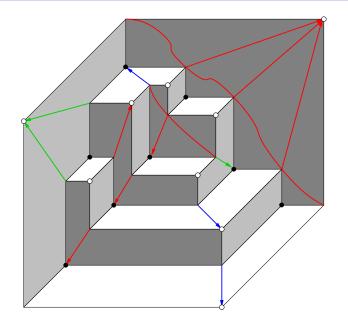


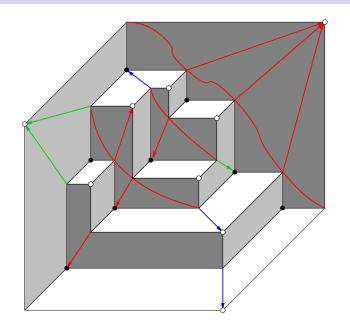


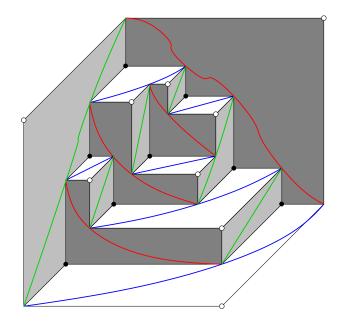


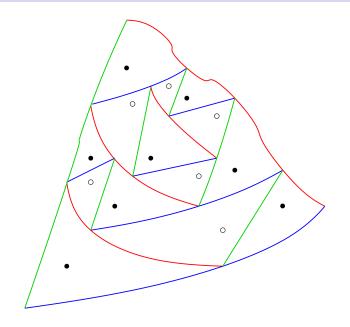


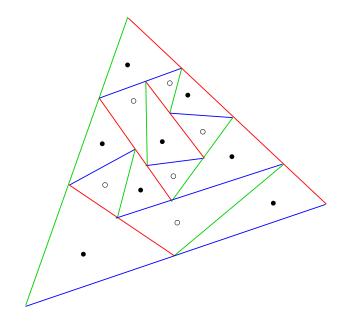


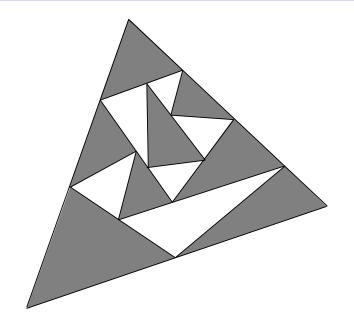












How to Stretch

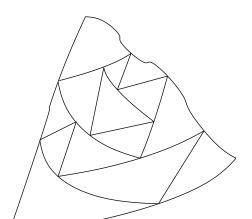
Theorem (de Fraysseix, Ossona de Mendez '07)

A contact sytem of peudo-segments (no loops or tangent arcs) is stretchable if and only if each subsystem of cardinality at least two has at least three extremal points.

How to Stretch

Theorem (de Fraysseix, Ossona de Mendez '07)

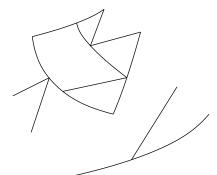
A contact sytem of peudo-segments (no loops or tangent arcs) is stretchable if and only if each subsystem of cardinality at least two has at least three extremal points.



How to Stretch

Theorem (de Fraysseix, Ossona de Mendez '07)

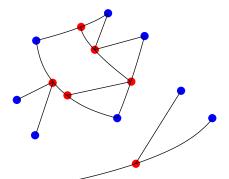
A contact sytem of peudo-segments (no loops or tangent arcs) is stretchable if and only if each subsystem of cardinality at least two has at least three extremal points.

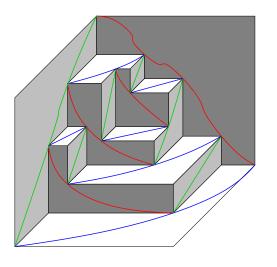


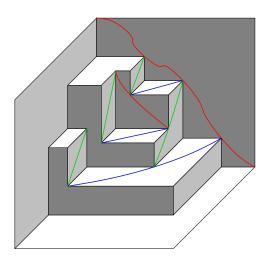
How to Stretch

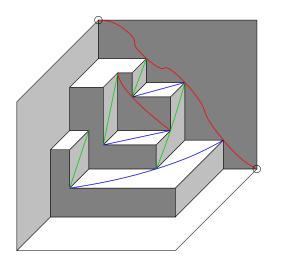
Theorem (de Fraysseix, Ossona de Mendez '07)

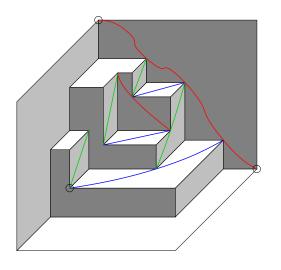
A contact sytem of peudo-segments (no loops or tangent arcs) is stretchable if and only if each subsystem of cardinality at least two has at least three extremal points.





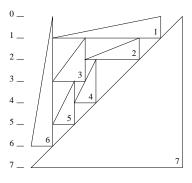






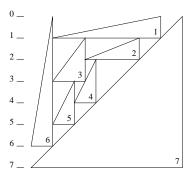
Particular type of triangles?

Right triangles



Particular type of triangles?

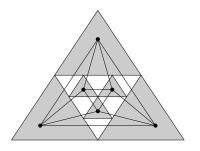
Right triangles



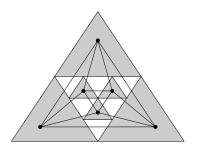
Open Problem

Does every 3-connected planar map admits a primal-dual contact representation by right triangles?

Contact of Homothetic Triangles



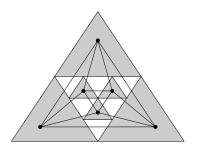
Contact of Homothetic Triangles



Conjecture (Kratochvil '07)

Every 4-connected planar triangulation admits a contact representation by homothetic triangles.

Contact of Homothetic Triangles

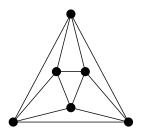


Theorem (by Schramm's Convex Packing Theorem)

Every 4-connected planar triangulation admits a contact representation by homothetic triangles.

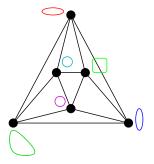
Theorem (Schramm '90)

For any triangulation T and any convex and smooth bodies P_{ν} , for $\nu \in V(T)$, there is a contact representation of T



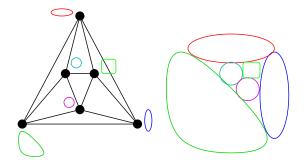
Theorem (Schramm '90)

For any triangulation T and any convex and smooth bodies P_{ν} , for $\nu \in V(T)$, there is a contact representation of T



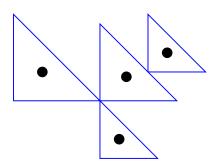
Theorem (Schramm '90)

For any triangulation T and any convex and smooth bodies P_{ν} , for $\nu \in V(T)$, there is a contact representation of T

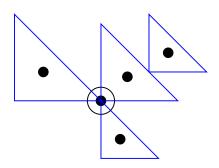


Theorem (Schramm '90)

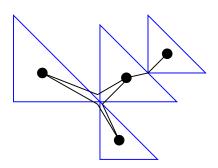
Theorem (Schramm '90)



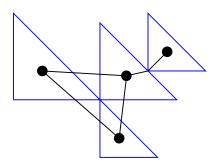
Theorem (Schramm '90)



Theorem (Schramm '90)



Theorem (Schramm '90)



Intersection of Homothetic Triangles

Theorem

Every planar graph is the intersection graph of homothetic triangles (without 3 intersecting triangles).

Intersection of Homothetic Triangles

Theorem

Every planar graph is the intersection graph of homothetic triangles (without 3 intersecting triangles).

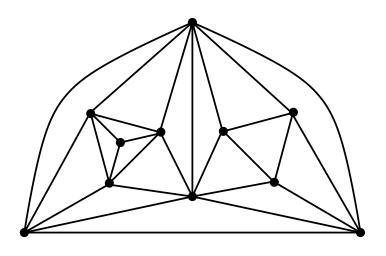
Restriction to triangulations.

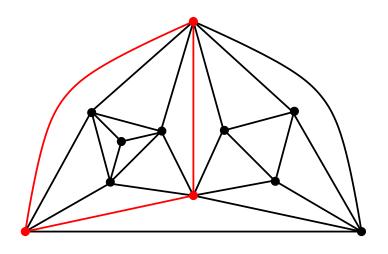
Intersection of Homothetic Triangles

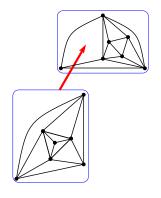
Theorem

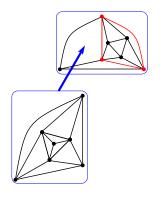
Every planar graph is the intersection graph of homothetic triangles (without 3 intersecting triangles).

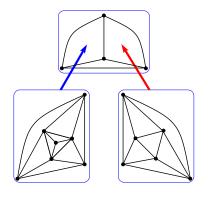
- Restriction to triangulations.
- ▶ Work on the 4-connected components.

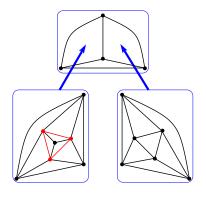


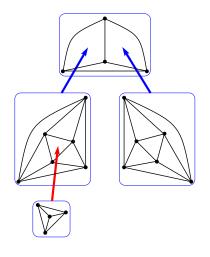


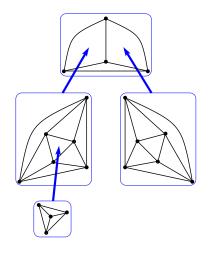










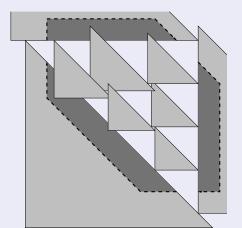


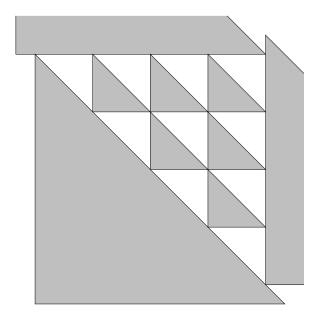
4-Connected Triangulations

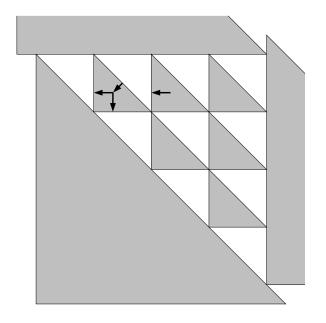
Theorem

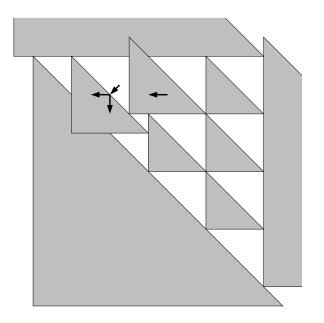
For every 4-connected triangulation T and every $\epsilon>0$ there is an intersection system of homothetic triangles like that :

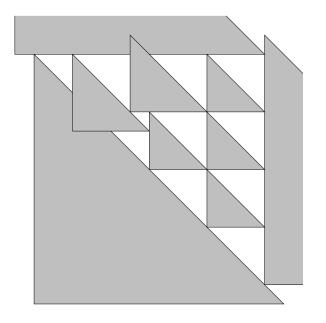
► No 3 intersecting triangles

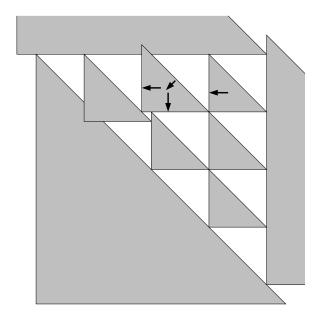


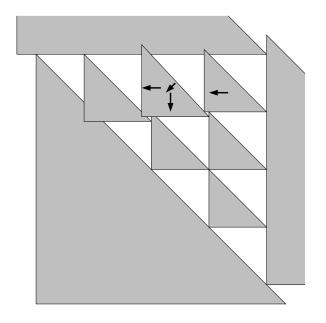


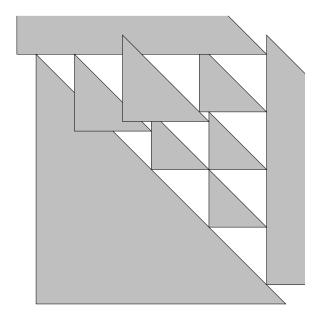


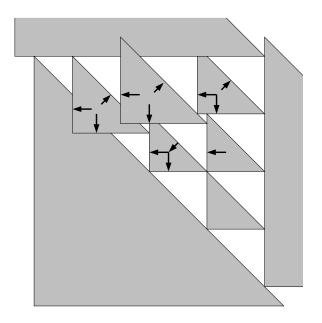


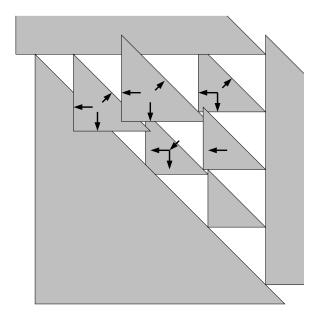


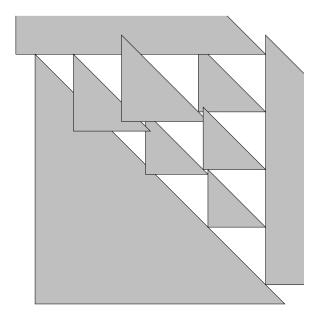












Thank you!