## Triangle Contact Systems for Planar Graphs.

Daniel Gonçalves LIRMM, Montpellier

**BGW 2010** 

# Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)

Every planar graph admits a contact representation by triangles.



# Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)

Every planar graph admits a contact representation by triangles.





























































#### Definition

A Schnyder wood of a triangulation T is an orientation of E(T) and a 3-edge coloring of T such that every inner vertex verifies :



Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)

#### Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)



#### Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)



#### Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)



#### Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)



#### Theorem (de Fraysseix, Ossona de Mendez, Rosenstiehl '94)



Primal-Dual Representations

#### Theorem (Koebe '36)

Every planar graph admits a contact representation by circles.



#### Theorem (Koebe '36)

Every planar graph admits a contact representation by circles.



#### Theorem (Andre'ev '70)

Every 3-connected planar map admits a primal-dual contact representation by circles.



#### Theorem (Andre'ev '70)

Every 3-connected planar map admits a primal-dual contact representation by circles.



#### Theorem (G., Lévêque, Pinlou '10)

Every 3-connected planar map admits a primal-dual contact representation by triangles.



#### Theorem (G., Lévêque, Pinlou '10)

Every 3-connected planar map admits a primal-dual contact representation by triangles.







Add 3 edges on the outerface



For inner vertices



For EVERY vertex



For EVERY vertex

Allow BI-ORIENTED edges



For EVERY vertex

Allow BI-ORIENTED edges



For EVERY vertex

Allow BI-ORIENTED edges

#### Theorem (Felsner '01)

Every 3-connected planar map admits a generalized Schnyder wood.















































#### How to Stretch

#### Theorem (de Fraysseix, Ossona de Mendez '07)

A contact sytem of peudo-segments (no loops or tangent arcs) is stretchable if and only if each subsystem of cardinality at least two has at least three extremal points.

#### How to Stretch

#### Theorem (de Fraysseix, Ossona de Mendez '07)

A contact sytem of peudo-segments (no loops or tangent arcs) is stretchable if and only if each subsystem of cardinality at least two has at least three extremal points.



#### How to Stretch

#### Theorem (de Fraysseix, Ossona de Mendez '07)

A contact sytem of peudo-segments (no loops or tangent arcs) is stretchable if and only if each subsystem of cardinality at least two has at least three extremal points.



#### How to Stretch

#### Theorem (de Fraysseix, Ossona de Mendez '07)

A contact sytem of peudo-segments (no loops or tangent arcs) is stretchable if and only if each subsystem of cardinality at least two has at least three extremal points.











# Particular type of triangles?

#### Right triangles



# Particular type of triangles?

#### Right triangles



#### Open Problem

Does every 3-connected planar map admits a primal-dual contact representation by right triangles?



# Contact of Homothetic Triangles



# Contact of Homothetic Triangles



#### Conjecture (Kratochvil '07)

Every 4-connected planar triangulation admits a contact representation by homothetic triangles.

# Contact of Homothetic Triangles



#### Theorem (by Schramm's Convex Packing Theorem)

Every 4-connected planar triangulation admits a contact representation by homothetic triangles.

#### Theorem (Schramm '90)

For any triangulation T and any convex and smooth bodies  $P_{\nu}$ , for  $\nu \in V(T)$ , there is a contact representation of T



#### Theorem (Schramm '90)

For any triangulation T and any convex and smooth bodies  $P_{\nu}$ , for  $\nu \in V(T)$ , there is a contact representation of T



#### Theorem (Schramm '90)

For any triangulation T and any convex and smooth bodies  $P_{\nu}$ , for  $\nu \in V(T)$ , there is a contact representation of T



#### Theorem (Schramm '90)

#### Theorem (Schramm '90)



#### Theorem (Schramm '90)



#### Theorem (Schramm '90)



#### Theorem (Schramm '90)



# Intersection of Homothetic Triangles

#### Theorem

Every planar graph is the intersection graph of homothetic triangles (without 3 intersecting triangles).

# Intersection of Homothetic Triangles

#### **Theorem**

Every planar graph is the intersection graph of homothetic triangles (without 3 intersecting triangles).

Restriction to triangulations.

#### Intersection of Homothetic Triangles

#### **Theorem**

Every planar graph is the intersection graph of homothetic triangles (without 3 intersecting triangles).

- Restriction to triangulations.
- ▶ Work on the 4-connected components.

















#### 4-Connected Triangulations

#### Theorem

For every 4-connected triangulation T and every  $\epsilon>0$  there is an intersection system of homothetic triangles like that :

► No 3 intersecting triangles























# Thank you!