Local Tait colourings of cubic graphs

Martin Skoviera

Comenius University, Bratislava

Bordeaux Graph Workshop, 18-20 November, 2010

In honour of André Raspaud

Martin Skoviera (Bratislava) Edge-colourings of cubic graphs Bordeaux, November 18, 2010

1/43



Contents

@ Part I: Local Tait colourings
o generalisation of 3-edge-colourings
e relation to Steiner triple systems and point-line configurations
e existence of local Tait colourings

o Part Il: Local Tait colourings of bridgeless cubic graphs

e Fano colourings

e abelian colourings

e integer k-colourings

e colourings by symmetric configurations

@ Conclusion
e Hierarchy of conjectures related to local Tait colourings

Credits

D. Archdeacon, H.-L. Fu, M. Grannell, T. Griggs, F. Holroyd, M. Knor, D. Krél’,
E. Ma&ajova, O. Pangrac, A. Pér, A. Raspaud, J.-S. Sereni, & M. S.

Martin Skoviera (Bratislava) Edge-colourings of cubic graphs Bordeaux, November 18, 2010 2 /43



I. Local Tait colourings of cubic graphs
Edge-colourings of cubic graphs

Edge-colouring of a graph ... assignment of colours to its edges

such that adjacent edges receive distinct colours

@ First studied by P. G. Tait (1880)

@ J. Petersen (1898) ... four colours suffice
to colour every cubic (= trivalent) graph
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I. Local Tait colourings of cubic graphs

Edge-colourings of cubic graphs
Chromatic index x'(G) ... minimum # of colours needed to colour G

Class 1 ... graphs with ' = 3 (Tait-colourable graphs)
Class 2 ... graphs with ' =4

Martin Skoviera (Bratislava) Edge-colourings of cubic graphs Bordeaux, November 18, 2010 4 /43



I. Local Tait colourings of cubic graphs

Edge-colourings of cubic graphs

Chromatic index x'(G) ... minimum # of colours needed to colour G

Class 1 ... graphs with ' = 3 (Tait-colourable graphs)
Class 2 ... graphs with ' =4
Well-known:

@ colouring by 4 colours ... easy
e deciding whether X’ =3 or 4 ... difficult ... Holyer (1981)
@ almost all cubic graphs are Class 1 ... Wormald (1992)
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I. Local Tait colourings of cubic graphs

Edge-colourings of cubic graphs

Chromatic index x'(G) ... minimum # of colours needed to colour G

Class 1 ... graphs with ' = 3 (Tait-colourable graphs)
Class 2 ... graphs with ' =4
Well-known:

@ colouring by 4 colours ... easy
e deciding whether X’ =3 or 4 ... difficult ... Holyer (1981)
@ almost all cubic graphs are Class 1 ... Wormald (1992)

Non-trivial graphs with x’ = 4 (called snarks) closely related to

@ Cycle-Double Cover Conj., Fulkerson's Conj., 5-Flow Conj., etc.
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I. Local Tait colourings of cubic graphs

Generalisation of 3-edge-colouring

Local Tait colourings

@ allow an arbitrary number of colours

@ global condition on # of colours — local condition:

(L) any two colours meeting at a vertex always determine
the same the third colour
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I. Local Tait colourings of cubic graphs

Generalisation of 3-edge-colouring

Local Tait colourings

@ allow an arbitrary number of colours

@ global condition on # of colours — local condition:

(L) any two colours meeting at a vertex always determine
the same the third colour

Condition (L) trivially satisfied by usual 3-edge-colourings

= “local” Tait colourings generalise “global” ones
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I. Local Tait colourings of cubic graphs

Local Tait colourings: example

Consider a proper edge-colouring ¢ : E(G) — Z3 X Z3
@ colours ... elements of the group Z3 x Z3

@ colours meeting at a vertex ... triples that sum to 0

= ¢ is a local Tait colouring by elements of Z3 X Z3
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I. Local Tait colourings of cubic graphs

Geometric viewpoint

¢: E(G) — P ... local Tait colouring with colour set P

@ view the colours as geometric points

@ place a line through a pair of points whenever the corresponding
colours meet at a vertex
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I. Local Tait colourings of cubic graphs

Geometric viewpoint

¢: E(G) — P ... local Tait colouring with colour set P

@ view the colours as geometric points

@ place a line through a pair of points whenever the corresponding
colours meet at a vertex

Then:

e By Condition (L), there is at most one line through a pair of points

@ Each line contains exactly three points corresponding to colours
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I. Local Tait colourings of cubic graphs

Geometric viewpoint

¢: E(G) — P ... local Tait colouring with colour set P
@ view the colours as geometric points

@ place a line through a pair of points whenever the corresponding
colours meet at a vertex

Then:

e By Condition (L), there is at most one line through a pair of points

@ Each line contains exactly three points corresponding to colours

Every local Tait colouring determines a configuration of points and lines.
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I. Local Tait colourings of cubic graphs

Combinatorial viewpoint

¢ E(G) — P ... local Tait colouring with

@ P ... set of colours

@ B ... triples of colours occurring at vertices
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I. Local Tait colourings of cubic graphs

Combinatorial viewpoint

¢ E(G) — P ... local Tait colouring with

@ P ... set of colours

@ B ... triples of colours occurring at vertices

By Condition (L):

any two elements of P belong to at most one triple listed in B

= the pair (P, B) forms a partial Steiner triple system
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I. Local Tait colourings of cubic graphs

Steiner triple systems & configurations

A Steiner triple system & = (P, B) of order n consists of
@ set P of n points

@ collection B of 3-element subsets of P (called blocks) s.t.
any two points belong to exactly one block

If any two points belong to at most one one block
= partial Steiner triple system

Martin Skoviera (Bratislava) Edge-colourings of cubic graphs Bordeaux, November 18, 2010

9/43



I. Local Tait colourings of cubic graphs

Steiner triple systems & configurations

A Steiner triple system & = (P, B) of order n consists of
@ set P of n points

@ collection B of 3-element subsets of P (called blocks) s.t.
any two points belong to exactly one block

If any two points belong to at most one one block
= partial Steiner triple system

Well-known:

@ Any partial STS embeds into some full STS ... Treash (1976)

(may need some extra vertices)

= Any partial STS can be viewed as a configuration
of points and blocks of a full STS
Martin Skoviera (Bratislava)
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I. Local Tait colourings of cubic graphs

Colourings by configurations

Summing up:

Any local Tait colouring can be viewed as one where

@ colours ... points of a (partial) Steiner triple system &

@ colours that meet at a vertex form a block of &

= S-colouring
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I. Local Tait colourings of cubic graphs

Colourings by configurations
Summing up:

Any local Tait colouring can be viewed as one where

@ colours ... points of a (partial) Steiner triple system &
@ colours that meet at a vertex form a block of &

= S-colouring
Tait colouring = Z-colouring, 7 being the trivial STS of order 3
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I. Local Tait colourings of cubic graphs

Projective and affine STS's

The projective Steiner triple system PG(n,2), n > 2, has
e points ... P =75 — {0}
@ blocks ... triples {x,y,z} withx+y+2z=0

smallest projective STS ... PG(2,2) ... Fano plane of order 7
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I. Local Tait colourings of cubic graphs

Projective and affine STS's

The projective Steiner triple system PG(n,2), n > 2, has
e points ... P =75 — {0}
@ blocks ... triples {x,y,z} withx+y+2z=0

smallest projective STS ... PG(2,2) ... Fano plane of order 7

The affine Steiner triple system AG(n,3), n > 2, has
@ points ... P=173
@ blocks ... triples {x,y,z} withx+y+z=0

smallest affine STS ... AG(2,3) ... affine plane of order 9
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I. Local Tait colourings of cubic graphs

Fano plane PG(2,2), the smallest non-trivial STS

(1,0,0)

(0,0,1) (0,1,1) (0,1,0)
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: bridgeless graphs

Problem (Archdeacon, 1986). Is it possible to find an S-colouring of a
cubic graph for a given Steiner triple system S 7
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: bridgeless graphs

Problem (Archdeacon, 1986). Is it possible to find an S-colouring of a
cubic graph for a given Steiner triple system S 7

e (Fu, 2001): Bridgeless cubic graphs of genus < 24 or of order < 189
are Fano-colourable
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: bridgeless graphs
Problem (Archdeacon, 1986). Is it possible to find an S-colouring of a
cubic graph for a given Steiner triple system S 7

e (Fu, 2001): Bridgeless cubic graphs of genus < 24 or of order < 189
are Fano-colourable

Theorem (Holroyd & S., 2004)

Every bridgeless cubic graph has an S-colouring for every non-trivial
Steiner triple system S.
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: graphs with bridges

There exist graphs with no local Tait colouring!
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: graphs with bridges

There exist graphs with no local Tait colouring!

1
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: graphs with bridges

There exist graphs with no local Tait colouring!

1
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: graphs with bridges

There exist graphs with no local Tait colouring!

1
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: graphs with bridges

There exist graphs with no local Tait colouring!

1

series—parallel
end

series-parallel = no subdivision of K,
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: graphs with bridges

@ Every cubic graph with no series-parallel end admits a local Tait
colouring.
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: graphs with bridges

@ Every cubic graph with no series-parallel end admits a local Tait
colouring.

Proof. Take (P, B) with
P = E(G) and B = triples of pairwise adjacent edges.
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: graphs with bridges

@ Every cubic graph with no series-parallel end admits a local Tait
colouring.

Proof. Take (P, B) with
P = E(G) and B = triples of pairwise adjacent edges.

@ Question: Does there exist a universal STS?

(STS is universal < it colours all simple cubic graphs)
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I. Local Tait colourings of cubic graphs

Existence of S-colourings: graphs with bridges

@ Every cubic graph with no series-parallel end admits a local Tait
colouring.

Proof. Take (P, B) with
P = E(G) and B = triples of pairwise adjacent edges.
@ Question: Does there exist a universal STS?
(STS is universal < it colours all simple cubic graphs)
@ Projective and affine systems are not universal!

Projective systems do not colour graphs with bridges
Affine systems do not colour graphs with bipartite ends
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I. Local Tait colourings of cubic graphs

Universal Steiner triple systems

@ Universal STS of order 381 (Grannell, Griggs, Knor, S., 2004)
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I. Local Tait colourings of cubic graphs

Universal Steiner triple systems

@ Universal STS of order 381 (Grannell, Griggs, Knor, S., 2004)

@ Universal point-transitive STS of order 21 minimal under inclusion,
(a subsystem of the 381-system) (Pal & S., 2007)
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I. Local Tait colourings of cubic graphs

Universal Steiner triple systems

@ Universal STS of order 381 (Grannell, Griggs, Knor, S., 2004)

@ Universal point-transitive STS of order 21 minimal under inclusion,
(a subsystem of the 381-system) (Pal & S., 2007)

@ Every non-projective and non-affine point-transitive STS is universal.

= The smallest order of a universal STS is 13.
(Kral', Ma&ajova, Pér, Sereni, 2010)
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I. Local Tait colourings of cubic graphs

Universal Steiner triple systems

@ Universal STS of order 381 (Grannell, Griggs, Knor, S., 2004)

@ Universal point-transitive STS of order 21 minimal under inclusion,
(a subsystem of the 381-system) (Pal & S., 2007)

@ Every non-projective and non-affine point-transitive STS is universal.
= The smallest order of a universal STS is 13.
(Kral', Ma&ajova, Pér, Sereni, 2010)

Question: Point-intransitive systems?
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I. Local Tait colourings of cubic graphs

Universal Steiner triple systems

Universality of point-intransitive STS's
(Grannell, Griggs, Ma&ajova, S., 2010+):

@ Infinitely many point-intransitive inclusion-minimal universal systems
(Wilson-Schreiber systems = abelian group + two extra points)

@ Infinitely many point-intransitive systems that are not universal
(projective systems PG(2,n), n > 3, modified by one Pasch switch)
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Il. Local Tait colourings of bridgeless cubic graphs

PART Il

Local Tait colourings of bridgeless cubic graphs
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Il. Local Tait colourings of bridgeless cubic graphs

Colourings by configurations in STS's

Theorem (Holroyd & S., 2004)

Every bridgeless cubic graph has an S-colouring for every non-trivial
Steiner triple system S.
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Il. Local Tait colourings of bridgeless cubic graphs

Colourings by configurations in STS's

Theorem (Holroyd & S., 2004)

Every bridgeless cubic graph has an S-colouring for every non-trivial
Steiner triple system S.

Question: What happens if a Steiner triple system S is replaced by a
suitable configuration?
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1. Fano colourings

1. Fano colourings

(0,0,1) (0,1,1) (0,1,0)

Fano colouring — proper edge-colouring of a cubic graph
@ colours — points of the Fano plane

@ the colours around each vertex form a line
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1. Fano colourings

1. Fano colourings

How many points/lines of the Fano plane are needed to colour a given
cubic graph G?

Martin Skoviera (Bratislava) Edge-colourings of cubic graphs Bordeaux, November 18, 2010 21 /43



1. Fano colourings

1. Fano colourings

How many points/lines of the Fano plane are needed to colour a given
cubic graph G?

o If G is 3-edge-colourable
— any single line is sufficient.
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1. Fano colourings

1. Fano colourings

How many points/lines of the Fano plane are needed to colour a given
cubic graph G?

o If G is 3-edge-colourable
— any single line is sufficient.

e If G is not 3-edge-colourable

— all seven points
— at least four lines are needed.
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1. Fano colourings

1. Fano colourings
How many points/lines of the Fano plane are needed to colour a given
cubic graph G?

o If G is 3-edge-colourable
— any single line is sufficient.

e If G is not 3-edge-colourable
— all seven points
— at least four lines are needed.

Fi-colouring — colouring using at most / lines of the Fano plane
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1. Fano colourings

Fs-colouring of the Petersen graph
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All seven lines are never needed:

«O>r «Fr o« a



1. Fano colourings

Fi-colourings

All seven lines are never needed:

Theorem (Macajova & S., 2005)

Every bridgeless cubic graph admits an Fg-colouring.
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1. Fano colourings

Fi-colourings

All seven lines are never needed:

Theorem (Macajova & S., 2005)

Every bridgeless cubic graph admits an Fg-colouring.

We believe that four lines are always enough:

4-Line Conjecture (M&&ajova & S., 2005)

Every bridgeless cubic graph admits an Fz-colouring.
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1. Fano colourings

Conjecture of Fan and Raspaud

Theorem (Mé&cajova & S., 2005)

The 4-Line Conjecture is equivalent to the following conjecture of Fan and
Raspaud:

Conjecture (Fan & Raspaud, 1994)

Every bridgeless cubic graphs contains three perfect matchings
with no edge in common.
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1. Fano colourings

Conjecture of Fan and Raspaud — background

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.
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1. Fano colourings

Conjecture of Fan and Raspaud — background

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

@ A cubic graphs has two disjoint perfect matchings
< 3-edge-colourable.
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1. Fano colourings

Conjecture of Fan and Raspaud — background

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

@ A cubic graphs has two disjoint perfect matchings
< 3-edge-colourable.

@ Every two perfect matchings in a non-3-edge-colourable graph
have an edge in common.
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1. Fano colourings

Conjecture of Fan and Raspaud — background

Conjecture (Fan & Raspaud, 1994)

Every bridgeless cubic graphs contains three perfect matchings
with no edge in common.
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1. Fano colourings

Conjecture of Fan and Raspaud — background

Conjecture (Fan & Raspaud, 1994)

Every bridgeless cubic graphs contains three perfect matchings
with no edge in common.

Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings
which together cover each edge exactly twice.
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1. Fano colourings

Conjecture of Fan and Raspaud — background

Definition. A configuration C is Class 1 if C — Z, otherwise it is Class 2.

Example: The smallest Class 2 configuration is Ci5 = Fy4, the sail.
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1. Fano colourings

Conjecture of Fan and Raspaud — background

Definition. A configuration C is Class 1 if C — Z, otherwise it is Class 2.

Example: The smallest Class 2 configuration is Ci5 = Fy4, the sail.

4-Line-Conjecture (rephrased)

The smallest Class 2 configuration colours every bridgeless cubic graph.
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1. Fano colourings

Conjecture of Fan and Raspaud

FC= F&RC & F,C = FC = F¢T= TRUE
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1. Fano colourings

Conjecture of Fan and Raspaud

FC= F&RC & F,C = FC = F¢T= TRUE

Theorem (Kaiser & Raspaud, 2007, 2010)

Every bridgeless cubic graph of oddness < 2 admits an Fs-colouring.

oddness — minimum number of odd circuits in a 2-factor
oddness 0 < Class 1
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1. Fano colourings

Conjecture of Fan and Raspaud

FC= F&RC & F,C = FC = F¢T= TRUE

Theorem (Kaiser & Raspaud, 2007, 2010)

Every bridgeless cubic graph of oddness < 2 admits an Fs-colouring.

oddness — minimum number of odd circuits in a 2-factor
oddness 0 < Class 1

Theorem (Méacajova & S., 2009+)

Every bridgeless cubic graph of oddness < 2 admits an F,-colouring.
Equivalently:

Every bridgeless cubic graph of oddness < 2 has three perfect matchings
with no edge in common.
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2. Abelian colourings

2. Abelian colourings

@ Given an abelian group A, an A-colouring of a cubic graph is a proper
colouring by elements of A — 0 such that around each vertex the
colours sum to zero.
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2. Abelian colourings

2. Abelian colourings

@ Given an abelian group A, an A-colouring of a cubic graph is a proper
colouring by elements of A — 0 such that around each vertex the
colours sum to zero.

Abelian colourings are local Tait colourings:
@ Let A be an abelian group. Define C(A) to be the partial STS where
points ... A—0

blocks ... triples {x,y,z} with x+y+2z=0

Clearly, A-colouring = C(A)-colouring
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2. Abelian colourings

2. Abelian colourings

@ Given an abelian group A, an A-colouring of a cubic graph is a proper
colouring by elements of A — 0 such that around each vertex the
colours sum to zero.

Abelian colourings are local Tait colourings:

@ Let A be an abelian group. Define C(A) to be the partial STS where

points ... A—0
blocks ... triples {x,y,z} with x+y+2z=0

Clearly, A-colouring = C(A)-colouring

Remark.
A-colouring «» n.-z. A-flow on a cubic graph with antibalanced bidirection
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2. Abelian colourings

2. Abelian colourings
o If Ais one of Zy, Z3, Z4, and Zs, then C(A) =0 = no A-colouring

o If Aisone of Zy X Zo, Ze, Z7, Zg, and Zg, then
A-colouring < 3-edge-colouring
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2. Abelian colourings

2. Abelian colourings

o If Ais one of Zy, Z3, Z4, and Zs, then C(A) =0 = no A-colouring
o If Aisone of Zy X Zo, Ze, Z7, Zg, and Zg, then
A-colouring < 3-edge-colouring

Theorem (Macajovd, Raspaud & S., 2005)

If A=17p X7y xZy or |A| >12 = every bridgeless cubic graph is
A-colourable.
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2. Abelian colourings

2. Abelian colourings

o If Ais one of Zy, Z3, Z4, and Zs, then C(A) =0 = no A-colouring
o If Aisone of Zy X Zo, Ze, Z7, Zg, and Zg, then
A-colouring < 3-edge-colouring

Theorem (Macajovd, Raspaud & S., 2005)

If A=17p X7y xZy or |A| >12 = every bridgeless cubic graph is
A-colourable.

Proof.

Each of 7, Dy, or Dg colours all bridgeless cubic graphs (Holroyd & S.):

f

A
L

Fr Dy Ds
Martin Skoviera (Bratislava)
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2. Abelian colourings

The four remaining groups

Remaining groups:

Z4 X Zz, Z3 X Z3, Zlo, and le = 7
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2. Abelian colourings

The four remaining groups

Remaining groups:

Z4 X Zz, Z3 X Z3, Zlo, and le = 7

@ For each A € {Z4 X Zp,Z3 X Z3,Z10,Z11} we have F4 C C(A)
= 4-Line-Conjecture implies A-colouring
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2. Abelian colourings

The four remaining groups

Remaining groups:

Z4 X Zz, Z3 X Z3, Zlo, and le = 7
@ For each A € {Z4 X Zp,Z3 X Z3,Z10,Z11} we have F4 C C(A)

= 4-Line-Conjecture implies A-colouring
[} C(Z4 X Z2) = F5
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2. Abelian colourings

The four remaining groups

Remaining groups:

Z4 X Zz, Z3 X Z3, Zlo, and le = 7

@ For each A € {Z4 X Zp,Z3 X Z3,Z10,Z11} we have F4 C C(A)
= 4-Line-Conjecture implies A-colouring

[} C(Z4 X Z2) = F5
o f5 Z C(A) for the other three groups
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2. Abelian colourings

The four remaining groups

Remaining groups:

Z4 X Zg, Z3 X Z3, ZIO. and le = 777

@ For each A € {Z4 X Zp,Z3 X Z3,Z10,Z11} we have F4 C C(A)
= 4-Line-Conjecture implies A-colouring

[} C(Z4 X Zg) = F5
o f5 Z C(A) for the other three groups

Theorem (Kral', Ma&ajova, Pangrac, Raspaud, Sereni & S., 2008)

The 5-Line Conjecture implies the existence of an A-colouring of every
bridgeless cubic graph for each A € {Za X Zo,73 X Z3,Z10, 7211}
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2. Abelian colourings

Equivalence of colourings by Fano plane and by affine plane

Theorem (Kral', Ma&ajova, Pangrac, Raspaud, Sereni & S., 2008)

There exist i-line configurations A; C AG(2,3) and F; C PG(2,2),
4 <j<6,s t acubic graph has an F;-colouring < has an A;-colouring.

(0,1,1)

(1L.L1) (0.0,1) (1,1,0)  (1,1,1) (0,0,1) (1,1,0)  (1,1,1) 0,0,1) (1,1,0)
Fy Fs
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3. Integer colourings

3. Integer colourings

@ An integer k-colouring of a cubic graph is a proper Z-colouring o
satisfying the condition 0 < |o(e)| < k for each edge e.
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3. Integer colourings

3. Integer colourings

@ An integer k-colouring of a cubic graph is a proper Z-colouring o
satisfying the condition 0 < |o(e)| < k for each edge e.

Integer k-colourings are local Tait colourings:
o Define 7, to be the partial STS where
points ... all integers n with |n| < k

blocks ... triples {x,y,z} with x+y+2z=0

Clearly, integer k-colouring = Z,-colouring
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3. Integer colourings

3. Integer colourings

Theorem (Kral', Ma&ajova, Pangrac, Raspaud, Sereni & S., 2008)
Let G be a bridgeless cubic graph.

(1) If G admits an Fj-colouring, i € {4,5,6}, then it also admits an
integer (i + 2)-colouring.
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3. Integer colourings

3. Integer colourings

Theorem (Kral', Ma&ajova, Pangrac, Raspaud, Sereni & S., 2008)
Let G be a bridgeless cubic graph.

(1) If G admits an F;-colouring, i € {4,5,6}, then it also admits an
integer (i + 2)-colouring.

(2) If G admits an integer 6-colouring, then it admits both a Zo-colouring
and a 7Z11-colouring.
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3. Integer colourings

3. Integer colourings

Theorem (Kral', Ma&ajova, Pangrac, Raspaud, Sereni & S., 2008)
Let G be a bridgeless cubic graph.

(1) If G admits an F;-colouring, i € {4,5,6}, then it also admits an
integer (i + 2)-colouring.

(2) If G admits an integer 6-colouring, then it admits both a Zo-colouring
and a 7Z11-colouring.

Every bridgeless cubic graph has an integer 8-colouring.
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3. Integer colourings

3. Integer colourings

Theorem (Kral', Ma&ajova, Pangrac, Raspaud, Sereni & S., 2008)

Let G be a bridgeless cubic graph.

(1) If G admits an F;-colouring, i € {4,5,6}, then it also admits an
integer (i + 2)-colouring.

(2) If G admits an integer 6-colouring, then it admits both a Zo-colouring
and a 7Z11-colouring.

Every bridgeless cubic graph has an integer 8-colouring.

Every bridgeless cubic graph admits an integer 6-colouring.
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4. Colourings by symmetric configurations

4. Colourings by symmetric configurations

Definition. Symmetric configuration n3 ... partial STS which has
@ n points and n blocks

@ each point contained in exactly three blocks
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4. Colourings by symmetric configurations

4. Colourings by symmetric configurations

Definition. Symmetric configuration n3 ... partial STS which has
@ n points and n blocks

@ each point contained in exactly three blocks

Examples:

73 = Fano plane (Class 2)

83 = Moebius-Kantor configuration = AG(2,3)—pt (Class 2)
93 = Pappus configuration (Class 1)

103 = Desargues configuration (Class 2)

155 = Cremona-Richmond configuration (Class 2)
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4. Colourings by symmetric configurations

Desargues configuration 103

{12

{35}

(23 (25
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4. Colourings by symmetric configurations

Desargues colouring and 5-CDC

5-Cycle-Double-Cover Conjecture. Every bridgeless graph contains a

collection of <5 cycles (even subgraphs) s.t. each edge belongs to
exactly two of them.

A cubic graph has a Desargues colouring < it has a 5-CDC.
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4. Colourings by symmetric configurations

Cremona-Richmond configuration 153

{15}

{1.4}
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4. Colourings by symmetric configurations

Cremona-Richmond colouring and Fulkerson's conjecture

Fulkerson’s Conjecture. Every bridgeless cubic graph contains
a collection of six perfect matchings s.t. each edge is contained in
exactly two of them.

A cubic graph has a Cremona-Richmond colouring < it has
a double covering of its edges by six perfect matchings.
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4. Colourings by symmetric configurations

Cremona-Richmond configuration and Petersen colourings

Petersen colouring conjecture

The edges of every bridgeless cubic graph G can be mapped into the edges
of the Petersen graph in such a way that any three mutually incident edges
of G are mapped to three mutually incident edges of the Petersen graph.

Definition. Such a mapping is called a Petersen colouring of G.
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4. Colourings by symmetric configurations

Cremona-Richmond configuration and Petersen colourings

Petersen colouring conjecture

The edges of every bridgeless cubic graph G can be mapped into the edges
of the Petersen graph in such a way that any three mutually incident edges
of G are mapped to three mutually incident edges of the Petersen graph.

Definition. Such a mapping is called a Petersen colouring of G.
@ A Petersen colouring is a local Tait colouring.

Define P to be the partial STS where
points ... edges of the Petersen graph
blocks ... triples {x,y, z} incident to the same vertex
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4. Colourings by symmetric configurations

Cremona-Richmond configuration and Petersen colourings

Petersen colouring conjecture

The edges of every bridgeless cubic graph G can be mapped into the edges
of the Petersen graph in such a way that any three mutually incident edges
of G are mapped to three mutually incident edges of the Petersen graph.

Definition. Such a mapping is called a Petersen colouring of G.
@ A Petersen colouring is a local Tait colouring.

Define P to be the partial STS where
points ... edges of the Petersen graph
blocks ... triples {x,y, z} incident to the same vertex

‘P = depleted Cremona-Richmond configuration
= 153 — {parallel class of blocks}.
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111. Conclusion

PART Il

Conclusion
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111. Conclusion

II1. Conclusion: hierarchy of conjectures

Ig Fe

T T

Fa }%‘ Mitre }—

i ‘ 5-CDC ‘

‘ Fulkerson Con

Petersen Conj.
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