List Homomorphisms and Interval Digraphs

Pavol Hell, Simon Fraser University

Bordeaux Graph Workshop, November 19, 2010

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

A ▶

- ⊒ →

List Homomorphisms and Interval Digraphs

Joint with Arash Rafiey

currently at IDSIA, University of Lugano

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Given digraphs G and H

A homomorphism $f : G \to H$ is a mapping $f : V(G) \to V(H)$ such that $xy \in E(G) \implies f(x)f(y) \in E(H)$

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

ヘロン 人間 とくほ とくほ とう

Given digraphs G and H

A homomorphism $f : G \to H$ is a mapping $f : V(G) \to V(H)$ such that $xy \in E(G) \implies f(x)f(y) \in E(H)$

Undirected graphs are viewed as symmetric digraphs

・ 同 ト ・ ヨ ト ・ ヨ ト …

Does an input digraph G admit a homomorphism to H?

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Does an input digraph G admit a homomorphism to H?

Example: $H = K_t$

Does G admit a t-colouring?

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

ヘロト ヘアト ヘビト ヘビト

ъ

Does an input digraph G admit a homomorphism to H?

Example: $H = K_t$

Does G admit a t-colouring?

Polynomial if $t \leq 2$, otherwise NP-complete

ヘロト ヘアト ヘビト ヘビト

æ

Does an input digraph G admit a homomorphism to H?

Example: $H = K_t$

Does G admit a t-colouring?

Polynomial if $t \leq 2$, otherwise NP-complete

G admits a 2-colouring if and only if it contains no odd cycle

(4回) (日) (日)

Constraint Satisfaction Problems

CSP with fixed template H

H with V(H) and relations $R_1(H), \ldots, R_k(H)$

Constraint Satisfaction Problems

CSP with fixed template H

H with V(H) and relations $R_1(H), \ldots, R_k(H)$ Does an input *G* admit a homomorphism to *H*?

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

CSP with fixed template H

H with V(H) and relations $R_1(H), \ldots, R_k(H)$ Does an input *G* admit a homomorphism to *H*?

G has corresponding relations $R_1(G), \ldots, R_k(G)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

CSP with fixed template H

H with V(H) and relations $R_1(H), \ldots, R_k(H)$ Does an input *G* admit a homomorphism to *H*?

G has corresponding relations $R_1(G), \ldots, R_k(G)$ Homomorphisms preserve all relations

・ 同 ト ・ ヨ ト ・ ヨ ト …

Feder - Vardi, 1993, conjectured for any template H

The CSP problem for H is polynomial or is NP-complete

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Feder - Vardi, 1993, conjectured for any template H

The CSP problem for H is polynomial or is NP-complete

Still open, very active

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

The homomorphism problem for H is polynomial if H is bipartite or contains a loop; otherwise it is NP-complete

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The homomorphism problem for H is polynomial if H is bipartite or contains a loop; otherwise it is NP-complete

H+Nešetřil 1990

く 同 と く ヨ と く ヨ と

æ

The homomorphism problem for H is polynomial if H is bipartite or contains a loop; otherwise it is NP-complete

H+Nešetřil 1990

If *H* is a digraph

If dichotomy holds for all digraph templates *H* then the dichotomy conjecture holds for all CSP

くロト (過) (目) (日)

The homomorphism problem for H is polynomial if H is bipartite or contains a loop; otherwise it is NP-complete

H+Nešetřil 1990

If *H* is a digraph

If dichotomy holds for all digraph templates *H* then the dichotomy conjecture holds for all CSP

Feder-Vardi 1993

ヘロト 人間 ト ヘヨト ヘヨト

Each vertex *x* of the input digraph *G* has a *list* $L(x) \subseteq V(H)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Each vertex *x* of the input digraph *G* has a *list* $L(x) \subseteq V(H)$ Is there a homomorphism $f : G \to H$ for which all $f(x) \in L(x)$?

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

・ 同 ト ・ ヨ ト ・ ヨ ト

Fixed graph H

Processors and connections

프 🖌 🛪 프 🛌

Input graph G

Tasks and communications

프 🖌 🛪 프 🛌

★ Ξ → ★ Ξ →

Another Example Application

ヨトーヨ

Another Example Application

Lists

Lists of allowed decisions

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

æ

André

Pavol Hell, Simon Fraser University

List Homomorphisms and Interval Digraphs

æ –

ъ

Reflexive Undirected Graphs

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

Interval graph

Vertices correspond to intervals and adjacency to intersection

프 🖌 🛪 프 🛌

э

Interval graph

Vertices correspond to intervals and adjacency to intersection

List Homomorphism Problem for Graphs

For a reflexive graph H

If H is an interval graph, then the problem for H is polynomial

ъ

伺 とくき とくき とう

List Homomorphism Problem for Graphs

For a reflexive graph H

If H is an interval graph, then the problem for H is polynomial Otherwise the problem is NP-complete

個 とく ヨ とく ヨ とう

List Homomorphism Problem for Graphs

For a reflexive graph H

If H is an interval graph, then the problem for H is polynomial Otherwise the problem is NP-complete

Feder+H 1998

・ 同 ト ・ ヨ ト ・ ヨ ト

Min Ordering

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

<ロト <回 > < 注 > < 注 > 、

A min ordering < of V(H)

$$uv, u'v' \in E(H) \implies \min(u, u')\min(v, v') \in E(H)$$

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

・ロット (雪) () () () ()

æ

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

A min ordering < of V(H)

 $uv, u'v' \in E(H) \implies \min(u, u')\min(v, v') \in E(H)$

Theorem

If H admits a min ordering, then the list homomorphism problem for H is polynomial

Gutjahr, Welzl, Woeginger 1992

・ロト ・ 理 ト ・ ヨ ト ・

3

Local Consistency Algorithm

► < E >

æ

Local Consistency Algorithm

Min ordering

Each reflexive interval graph H admits a min ordering

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

프 🖌 🛪 프 🕨

ъ

Local Consistency Algorithm

Min ordering

Each reflexive interval graph H admits a min ordering

Reflexive interval graph H

The list homomorphism problem for H can be solved by a local consistency algorithm of width 1.

Lekkerkerker, Boland

H is an interval graph \iff *H* has no AT and no hole

・ロト ・ 理 ト ・ ヨ ト ・

E DQC

Lekkerkerker, Boland

H is an interval graph \iff *H* has no AT and no hole

AT = Asteroidal Triple

u, v, w, any pair joined by a path avoiding the neighbourhood of the third

Hole

Induced cycle of length at least four

・ロト ・ 理 ト ・ ヨ ト ・

1

Lekkerkerker, Boland

H is an interval graph \iff *H* has no AT and no hole

AT = Asteroidal Triple

u, v, w, any pair joined by a path avoiding the neighbourhood of the third

ヘロア 人間 アメヨア 人口 ア

Hole

Induced cycle of length at least four

For a reflexive graph H

If H is an interval graph, then the problem for H is polynomial Otherwise the problem is NP-complete

Feder+H 1998

ヘロト 人間 ト ヘヨト ヘヨト

æ

For a reflexive graph H

If H is an interval graph, then the problem for H is polynomial Otherwise the problem is NP-complete

Feder+H 1998

For an irreflexive graph H

If H is a bipartite graph whose complement is a circular arc graph, then the problem for H is polynomial Otherwise the problem is NP-complete

Feder+H+Huang 1999

くロト (過) (目) (日)

A *k*-ary polymorphism on *H*

A homomorphism $\phi: H^k \to H$

ヘロト 人間 とくほとくほとう

ъ

A k-ary polymorphism on H

A homomorphism $\phi: H^k \to H$

A conservative polymorphism f

A polymorphism $\phi: H^k \to H$ with $\phi(u_1, \ldots, u_k) \in \{u_1, \ldots, u_k\}$

・ロト ・ 理 ト ・ ヨ ト ・

A k-ary polymorphism on H

A homomorphism $\phi: H^k \to H$

A conservative polymorphism f

A polymorphism $\phi: H^k \to H$ with $\phi(u_1, \ldots, u_k) \in \{u_1, \ldots, u_k\}$

Heredity property

The restriction of a conservative polymorphism is a polymorphism

ヘロア 人間 アメヨア 人口 ア

A conservative semi-lattice on H

A conservative binary polymorphism $f: H^2 \rightarrow H$ which is commutative and associative

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

A conservative semi-lattice on H

A conservative binary polymorphism $f: H^2 \rightarrow H$ which is commutative and associative

Min ordering

f is a conservative semi-lattice on *H* if and only if $f(u, v) = \min(u, v)$ for some linear ordering of V(H)

・ 同 ト ・ ヨ ト ・ ヨ ト

A conservative majority on H

A conservative ternary polymorphism $g: H^3 \rightarrow H$ such that

• g(u, u, v) = g(u, v, u) = g(v, u, u) = u

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

1

A conservative majority on H

A conservative ternary polymorphism $g: H^3 \rightarrow H$ such that

• g(u, u, v) = g(u, v, u) = g(v, u, u) = u

Theorem

If H admits a conservative majority, then the list homomorphism problem for H is polynomial

Feder+Vardi 1993; Jeavons 1998

・ロト ・ 理 ト ・ ヨ ト ・

A conservative Maltsev on H

A conservative ternary polymorphism $h: H^3 \to H$ such that h(u, u, v) = h(v, u, u) = v

通 とう ほう うちょう

A conservative Maltsev on H

A conservative ternary polymorphism $h: H^3 \to H$ such that h(u, u, v) = h(v, u, u) = v

Theorem

If H admits a conservative Maltsev, then the list homomorphism problem for H is polynomial

Jeavons, Cohen, Gyssens 1997

・ 同 ト ・ ヨ ト ・ ヨ ト

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

・ 同 ト ・ ヨ ト ・ ヨ ト

2

For reflexive graphs

If H is an interval graph, then H admits a min ordering and a conservative majority

A 1

- ⊒ →

If *H* is an interval graph, then *H* admits a min ordering and a conservative majority Otherwise *H* contains an asteroidal triple or a chordless cycle > 3, and admits neither a min ordering nor a conservative majority

Brewster+Feder+H+Huang+MacGillivray 2007

Rafiey+H 2008

・聞き ・ヨト ・ヨト

If H is a bipartite graph whose complement is a circular arc graph, then H admits a min ordering and a conservative majority

Otherwise H contains an edge-asteroid or a chordless cycle > 4, and admits neither a min ordering nor a conservative majority

Feder+H+Huang 1999

If H is a bipartite graph whose complement is a circular arc graph, then H admits a min ordering and a conservative majority

Otherwise H contains an edge-asteroid or a chordless cycle > 4, and admits neither a min ordering nor a conservative majority

Feder+H+Huang 1999

The list homomorphism problem for a graph H

If H has nice polymorphism, then the problem is polynomial

米間を そほと そほと

If H is a bipartite graph whose complement is a circular arc graph, then H admits a min ordering and a conservative majority

Otherwise H contains an edge-asteroid or a chordless cycle > 4, and admits neither a min ordering nor a conservative majority

Feder+H+Huang 1999

The list homomorphism problem for a graph H

If H has nice polymorphism, then the problem is polynomial If H has no nice polymorphism, then there is an obstruction, and the problem is NP-complete

イロト イポト イヨト イヨト

If H is a bipartite graph whose complement is a circular arc graph, then H admits a min ordering and a conservative majority

Otherwise H contains an edge-asteroid or a chordless cycle > 4, and admits neither a min ordering nor a conservative majority

Feder+H+Huang 1999

The list homomorphism problem for a graph H

If H has nice polymorphism, then the problem is polynomial If H has no nice polymorphism, then there is an obstruction, and the problem is NP-complete

Obstruction detected in polynomial time

André

Pavol Hell, Simon Fraser University Lis

List Homomorphisms and Interval Digraphs

List Homomorphism Problem for Digraphs

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

If a list homomorphism problem for digraph H admits a conservative semi-lattice, majority, or Maltsev, then the list CSP for H is polynomial

・ 同 ト ・ ヨ ト ・ ヨ ト …

If a list homomorphism problem for digraph H admits a conservative semi-lattice, majority, or Maltsev, then the list CSP for H is polynomial

List homomorphism problem for digraph *H*

If each pair $u, v \in V(H)$ admits a conservative polymorphism f of H such that $f|\{u, v\}$ is semi-lattice, majority, or Maltsev, then the problem is polynomial.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

If a list homomorphism problem for digraph H admits a conservative semi-lattice, majority, or Maltsev, then the list CSP for H is polynomial

List homomorphism problem for digraph *H*

If each pair $u, v \in V(H)$ admits a conservative polymorphism f of H such that $f|\{u, v\}$ is semi-lattice, majority, or Maltsev, then the problem is polynomial. Otherwise the problem is NP-complete

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ...

If a list homomorphism problem for digraph H admits a conservative semi-lattice, majority, or Maltsev, then the list CSP for H is polynomial

List homomorphism problem for digraph *H*

If each pair $u, v \in V(H)$ admits a conservative polymorphism f of H such that $f|\{u, v\}$ is semi-lattice, majority, or Maltsev, then the problem is polynomial. Otherwise the problem is NP-complete

Bulatov 2003

くロト (過) (目) (日)

Reflexive 4-cycle does not have a min ordering

Reflexive 4-cycle does not have a min ordering

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

Reflexive 4-cycle does not have a min ordering

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

프 > 프

For reflexive digraphs

A min ordering exists if and only if H has no invertible pair

Feder+H+Huang+Rafiey 2009

프 🖌 🖌 프 🕨

For reflexive graphs

H is an interval graph if and only if it has no invertible pair

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

For reflexive graphs

H is an interval graph if and only if it has no invertible pair

The following statements are equivalent for a reflexive graph H

- H has no asteroidal triple and no hole
- *H* has a consecutive clique enumeration
- H has no invertible pair

For reflexive graphs

H is an interval graph if and only if it has no invertible pair

The following statements are equivalent for a reflexive graph H

- H has no asteroidal triple and no hole
- *H* has a consecutive clique enumeration
- H has no invertible pair

Implies the theorems of Lekkerkerker-Boland and Fulkerson-Gross.

→ Ξ → < Ξ →</p>

André

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

Majority H+Rafiey 2010

A digraph *H* admits a conservative majority if and only if it has no *permutable triple*

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Majority H+Rafiey 2010

A digraph *H* admits a conservative majority if and only if it has no *permutable triple*

u is not the result of *u*, *v*, *w*

Majority H+Rafiey 2010

A digraph *H* admits a conservative majority if and only if it has no *permutable triple*

Permutable triple (in each permutation of u, v, w)

Majority

A digraph *H* admits a conservative majority **if** it has no permutable triple

ヘロン ヘアン ヘビン ヘビン

ъ

Majority

A digraph *H* admits a conservative majority **if** it has no permutable triple

Proof

g(u, v, w) is the first x in u, v, w without walks to s(x), b(x)

Proof

g(u, v, w) is the first x in u, v, w without walks to s(x), b(x)

・ロット (雪) () () () ()

ъ

Proof

g(u, v, w) is the first x in u, v, w without walks to s(x), b(x)

표 🖌 🖉 🕨

Maltsev H+Rafiey 2010

A digraph *H* admits a conservative Maltsev if and only if it has no end triple

End triple

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

э

André

Pavol Hell, Simon Fraser University

List Homomorphisms and Interval Digraphs

E 990

Pair Digraph H⁺

- Vertices: Pairs (u, v) with $u \neq v$
- Edges: From (*u*, *v*) to (*u*', *v*') if
 - $uu' \in E(H), vv' \in E(H), uv' \notin E(H)$
 - $u'u \in E(H), v'v \in E(H), u'v \notin E(H)$

ヘロン 人間 とくほ とくほ とう

э.

Pair Digraph H⁺

- Vertices: Pairs (u, v) with $u \neq v$
- Edges: From (*u*, *v*) to (*u*', *v*') if
 - $uu' \in E(H), vv' \in E(H), uv' \notin E(H)$
 - $u'u \in E(H), v'v \in E(H), u'v \notin E(H)$

Skew-symmetry

$$(u, v) \rightarrow (u', v') \iff (v', u') \rightarrow (v, u)$$

ヘロト ヘアト ヘビト ヘビト

1

Pair Digraph H⁺

- Vertices: Pairs (u, v) with $u \neq v$
- Edges: From (*u*, *v*) to (*u*', *v*') if
 - $uu' \in E(H), vv' \in E(H), uv' \notin E(H)$
 - $u'u \in E(H), v'v \in E(H), u'v \notin E(H)$

Skew-symmetry

$$(u, v) \rightarrow (u', v') \iff (v', u') \rightarrow (v, u)$$

Each strong component *C* of H^+ has a *coupled* strong component *C*' consisting of all (b, a) with $(a, b) \in C$

ヘロト ヘアト ヘビト ヘビト

æ

All conditions expressible in terms of H^+

・ 同 ト ・ ヨ ト ・ ヨ ト

3

All conditions expressible in terms of H^+ , e.g.,

Invertible pair

H contains an invertible pair if and only if H^+ has a self-coupled strong component.

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Digraph Asteroidal Triples

DAT

A permutable triple u, v, w with each pair (s(u), b(u)), (s(v), b(v)), (s(w), b(w)) being invertible

Recall permutable triple

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

・ロット (雪) () () () ()

э

DATs make it hard

If H has a DAT then the list homomorphism problem for H is NP-complete

ヘロン 人間 とくほ とくほ とう

E DQC

DATs make it hard

If H has a DAT then the list homomorphism problem for H is NP-complete

(s(u), b(u)) does not admit semi-lattice, majority, or Maltsev

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

DATs make it hard

If H has a DAT then the list homomorphism problem for H is NP-complete

(s(u), b(u)) does not admit semi-lattice, majority, or Maltsev or

a direct proof, using the structure of a DAT

H+Rafiey 2010

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

If *H* has no DAT, then there exist polymorphisms f (binary) and g (ternary), such that

- $f|\{u, v\}$ is semi-lattice whenever (u, v) is not invertible
- $g|\{u, v\}$ is majority whenever (u, v) is invertible

H+Rafiey 2010

ヘロン 人間 とくほ とくほ とう

э.

If *H* has no DAT, then there exist polymorphisms f (binary) and g (ternary), such that

- $f|\{u, v\}$ is semi-lattice whenever (u, v) is not invertible
- $g|\{u, v\}$ is majority whenever (u, v) is invertible

H+Rafiey 2010

Corollary

If H is DAT-free, then the list homomorphism for H is polynomial

ヘロン 人間 とくほ とくほ とう

1

If H has no DAT, then there exists a polymorphism f (binary), such that

• $f|\{u, v\}$ is semi-lattice whenever (u, v) is not invertible

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

If H has no DAT, then there exists a polymorphism f (binary), such that

• $f|\{u, v\}$ is semi-lattice whenever (u, v) is not invertible

Proof

Decide which f(x, y) = x and which f(x, y) = y, so that for non-invertible pairs we have f(x, y) = f(y, x)If $(x, y) \rightarrow (x', y')$ in H^+ , then $f(x, y) = x \implies f(x', y') = x'$

ヘロン 人間 とくほ とくほ とう

1

If H has no DAT, then there exists a polymorphism f (binary), such that

• $f|\{u, v\}$ is semi-lattice whenever (u, v) is not invertible

ヘロト ヘアト ヘビト ヘビト

3

If H has no DAT, then there exists a polymorphism f (binary), such that

• $f|\{u, v\}$ is semi-lattice whenever (u, v) is not invertible

ヘロン 人間 とくほ とくほ とう

= 990

If H has no DAT, then there exists a polymorphism f (binary), such that

• $f|\{u, v\}$ is semi-lattice whenever (u, v) is not invertible

ヘロン 人間 とくほ とくほ とう

= 990

If *H* has no DAT

DAT-free digraphs

If H has no DAT, then there exists a polymorphism g (ternary), such that

• $g|\{u, v\}$ is majority whenever (u, v) is invertible

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

If H has no DAT

DAT-free digraphs

If H has no DAT, then there exists a polymorphism g (ternary), such that

• $g|\{u, v\}$ is majority whenever (u, v) is invertible

Proof

g(u, v, w) is the first x in u, v, w which occurs most frequently amongst f(u, v), f(v, u), f(v, w), f(w, v), f(u, w), f(u, w) and has no walks to an invertible pair s(x), b(x)

Polynomial Dichotomy Classification for Digraphs

For a digraph H

If H is DAT-free, the list homomorphism problem for H is polynomial

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Polynomial Dichotomy Classification for Digraphs

For a digraph H

If *H* is DAT-free, the list homomorphism problem for *H* is polynomial Otherwise, the problem is NP-complete

・ 同 ト ・ ヨ ト ・ ヨ ト …

Polynomial Dichotomy Classification for Digraphs

For a digraph H

If *H* is DAT-free, the list homomorphism problem for *H* is polynomial Otherwise, the problem is NP-complete

Testing for the existence of a DAT is polynomial

・ 同 ト ・ ヨ ト ・ ヨ ト

Simpler Polymorphism Charaterization

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

2
If *H* is DAT-free, then for every pair $u, v \in V(H)$ there is a conservative polymorphism *f* of *H* such that $f|\{u, v\}$ is semi-lattice or majority, and the list homomorphism problem for *H* is polynomial Otherwise the problem is NP-complete

・ 同 ト ・ ヨ ト ・ ヨ ト

If *H* is DAT-free, then for every pair $u, v \in V(H)$ there is a conservative polymorphism *f* of *H* such that $f|\{u, v\}$ is semi-lattice or majority, and the list homomorphism problem for *H* is polynomial Otherwise the problem is NP-complete

Maltsev not needed

通 とくほ とくほ とう

If *H* is DAT-free, then for every pair $u, v \in V(H)$ there is a conservative polymorphism *f* of *H* such that $f|\{u, v\}$ is semi-lattice or majority, and the list homomorphism problem for *H* is polynomial Otherwise the problem is NP-complete

Maltsev not needed

Solved by local consistency algorithms

Width two suffices

くロト (過) (目) (日)

If *H* is DAT-free, then for every pair $u, v \in V(H)$ there is a conservative polymorphism *f* of *H* such that $f|\{u, v\}$ is semi-lattice or majority, and the list homomorphism problem for *H* is polynomial Otherwise the problem is NP-complete

Maltsev not needed

Solved by local consistency algorithms

Width two suffices

Valeriote 2009 + Barto-Kozik 2009

ヘロト 人間 ト ヘヨト ヘヨト

André

Pavol Hell, Simon Fraser University

List Homomorphisms and Interval Digraphs

æ

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

For an irreflexive oriented cycle H

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

・ 同 ト ・ ヨ ト ・ ヨ ト …

For an irreflexive oriented cycle H

• The homomorphism problem enjoys dichotomy Feder 2001

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

For an irreflexive oriented cycle H

- The homomorphism problem enjoys dichotomy Feder 2001
- A DAT-free H admits a conservative majority H+Rafiey 2010

通 とくほ とくほ とう

For an irreflexive oriented cycle H

- The homomorphism problem enjoys dichotomy Feder 2001
- A DAT-free H admits a conservative majority H+Rafiey 2010
- If *H* has a conservative majority polymorphism, then the list homomorphism problem for *H* is polynomial Otherwise *H* contains a DAT and the problem is NP-complete

(문) (문)

For Special Classes of Digraphs - Reflexive Trees

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

For Special Classes of Digraphs - Reflexive Trees

< ∃⇒

For Special Classes of Digraphs - Reflexive Trees

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

For Special Classes of Digraphs - General Trees

For a tree H

A DAT-free tree H admits a min ordering H+Rafiey 2010

Pavol Hell, Simon Fraser University List Homomorphisms and Interval Digraphs

・ 同 ト ・ ヨ ト ・ ヨ ト …

For a tree H

- A DAT-free tree *H* admits a min ordering H+Rafiey 2010
- If H contains a DAT, the list homomorphism problem for H is NP-complete Otherwise H has a min ordering and the problem for H is polynomial

・ 同 ト ・ ヨ ト ・ ヨ ト …

Conjecture for reflexive digraphs H

If H has a min ordering, then list homomorphism problem for H is polynomial, and otherwise it is NP-complete

く 同 と く ヨ と く ヨ と

Conjecture for reflexive digraphs H

If H has a min ordering, then list homomorphism problem for H is polynomial, and otherwise it is NP-complete

Carvalho+H+Rafiey 20??

ヘロト ヘアト ヘビト ヘビト

æ

Conjecture for reflexive digraphs H

If H has a min ordering, then list homomorphism problem for H is polynomial, and otherwise it is NP-complete

Carvalho+H+Rafiey 20??

List homomorphism algorithm

Give a direct proof that if H is a DAT-free digraph, then 2-consistency checking solves the list homomorphism problem

ヘロト 人間 ト ヘヨト ヘヨト

Conjecture for reflexive digraphs H

If H has a min ordering, then list homomorphism problem for H is polynomial, and otherwise it is NP-complete

Carvalho+H+Rafiey 20??

List homomorphism algorithm

Give a direct proof that if H is a DAT-free digraph, then 2-consistency checking solves the list homomorphism problem

Semi-lattice existence

Find a polynomial algorithm to decide if a *general* digraph admits a min ordering

ヘロト 人間 ト ヘヨト ヘヨト

Conjecture for reflexive digraphs H

If H has a min ordering, then list homomorphism problem for H is polynomial, and otherwise it is NP-complete

Carvalho+H+Rafiey 20??

List homomorphism algorithm

Give a direct proof that if H is a DAT-free digraph, then 2-consistency checking solves the list homomorphism problem

Semi-lattice existence

Find a polynomial algorithm to decide if a *general* digraph admits a min ordering

Known for reflexive, symmetric, and bipartite digraphs

Feder+H+Huang+Rafiey 2009, H+Rafiey 2010

ヘロン ヘアン ヘビン ヘビン

Conjecture for reflexive digraphs H

If H has a min ordering, then list homomorphism problem for H is polynomial, and otherwise it is NP-complete

Carvalho+H+Rafiey 20??

List homomorphism algorithm

Give a direct proof that if H is a DAT-free digraph, then 2-consistency checking solves the list homomorphism problem

Semi-lattice existence

Find a polynomial algorithm to decide if a *general* digraph admits a min ordering

Known for reflexive, symmetric, and bipartite digraphs

Feder+H+Huang+Rafiey 2009, H+Rafiey 2010

NP-complete for two binary relations Bagan+Durand+Filiot+Gauwin 2010

André

Pavol Hell, Simon Fraser University

List Homomorphisms and Interval Digraphs

æ