
Bordeaux Graph Workshop 2016
Enseirb–Matmeca & LaBRI, Bordeaux, France
November 7 – 10, 2016

Program committee
Maria Chudnovsky (Columbia University, New York City, USA)

Paul Dorbec (LaBRI - University of Bordeaux, France)
Hammamache Keddouci (LIRIS - University Claude Bernard, Lyon, France)

Gary MacGillivray (University of Victoria, Canada)
Arnaud Pêcher (LaBRI - University of Bordeaux, France)

Alexandre Pinlou (LIRMM - University of Montpellier, France)
André Raspaud (LaBRI - University of Bordeaux, France)

Oriol Serra (Universitat Politècnica de Catalunya, Barcelona, Spain)
Olivier Togni (Le2i - University of Bourgogne, Dijon, France)

Margit Voigt (Hochschule für Technik und Wirtschaft, Dresden, Germany)
Annegret Wagler (LIMOS - University Blaise Pascal, Clermont-Ferrand, France)
Mariusz Woźniak (AGH University of Science and Technology, Kraków, Poland)

Gilles Zemor (IMB - University of Bordeaux, France)
Xuding Zhu (Department of Mathematics, Zhejiang Normal University, Jinhua, China)

Organizing committee
O. Baudon
T. Bellitto

M. Bonamy
N. Bonichon

O. Delmas
P. Dorbec
K. Guérin

H. Hocquard
F. Kardoš
R. Klasing

Ph. Moustrou
A. Pêcher

C. Pennarun
A. Raspaud
M. Senhaji
E. Sopena

Sponsors
LaBRI

Université de Bordeaux
CNRS

Bordeaux INP Aquitaine
Investissements d’avenir

Initiative d’excellence Université de Bordeaux
Programme financé par l’ANR n° ANR-10-IDEX-03-02

Région Nouvelle Aquitaine (Aquitaine, Limousin, Poitou-Charentes)

Permanent url • http://bgw.labri.fr

bg
w
.la
br
i.f
r

1



2



Contents

Invited talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Improper colorings of planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Maria Axenovich
Domination and transversal games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Csilla Bujtás
Structure and Algorithms for (Cap, Even Hole)-Free Graphs . . . . . . . . . . . . . . . . . . . . . 6
Kathie Cameron
Graph limits and extremal combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Daniel Král’
Interval-like Graphs and Digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pavol Hell
On disjoint and longest cycles in graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Alexandr Kostochka
Chords in longest cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Carsten Thomassen

Contributed talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Treelike snarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Marien Abreu, Domenico Labbate , Tomas Kaiser and Giuseppe Mazzuoccolo
Independent [1, 2]-domination of grids via min-plus algebra . . . . . . . . . . . . . . . . . . . . . 13
Sahar Aleid , José Cáceres and María Luz Puertas
Degree constrained 2-partitions of tournaments . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Jørgen Bang-Jensen and Tilde My Christiansen
The neighbour-sum-distinguishing edge-colouring game . . . . . . . . . . . . . . . . . . . . . . 21
Olivier Baudon, Jakub Przybyło, Elżbieta Sidorowicz, Éric Sopena, Mariusz Woźniak and
Mohammed Senhaji
On the list incidence chromatic number of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Brahim Benmedjdoub , Isma Bouchemakh and Éric Sopena
On a conjecture of Barát and Thomassen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Julien Bensmail, Ararat Harutyunyan , Tien Nam Le, Martin Merker and Stéphan Thomassé
Minimally LS+-imperfect claw-free graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Silvia Bianchi, Mariana Escalante, Graciela Nasini and Annegret Wagler
Homomorphisms from graphs to integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Jan Bok and Jaroslav Nešetřil
Packing coloring of circular ladders and generalised H−graphs . . . . . . . . . . . . . . . . . . 35
Isma Bouchemakh, Daouya Laïche and Éric Sopena
A Vizing-like theorem for union vertex-distinguishing edge coloring . . . . . . . . . . . . . . . . 39
Nicolas Bousquet, Antoine Dailly, Éric Duchêne, Hamamache Kheddouci and Aline Parreau
On the proper connection number and the 2-proper connection number of graphs . . . . . . . . 43
Christoph Brause, Trung Duy Doan and Ingo Schiermeyer
On upper bounds for the independent transversal domination number . . . . . . . . . . . . . . . 46
Christoph Brause , Michael A. Henning, Kenta Ozeki, Ingo Schiermeyer and Elkin Vumar
On the chromatic number of 2K2-free graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Christoph Brause, Bert Randerath, Ingo Schiermeyer and Elkin Vumar
The complexity of signed graph and edge-coloured graph homomorphisms . . . . . . . . . . . . 54
Richard Brewster , Florent Foucaud, Pavol Hell and Reza Naserasr
Strengthening a Theorem of Tutte on the Hamiltonicity of Polyhedra . . . . . . . . . . . . . . . 58

3



CONTENTS

Gunnar Brinkmann and Carol T. Zamfirescu
Toughness and hamiltonicity for special graph classes . . . . . . . . . . . . . . . . . . . . . . . . 61
Hajo Broersma, Adam Kabela , Hao Qi and Elkin Vumar
Limited broadcast domination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo and M.L. Puertas
Packing graphs of bounded codegree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Wouter Cames van Batenburg and Ross J. Kang
α-labellings of lobsters with maximum degree three . . . . . . . . . . . . . . . . . . . . . . . . . 70
C. N. Campos, Atílio G. Luiz and R. Bruce Richter
A Proof for a Conjecture of Gorgol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Victor Campos and Raul Lopes
Edge clique covers in graphs with independence number 2 . . . . . . . . . . . . . . . . . . . . . 78
Pierre Charbit, Geňa Hahn, Marcin Kamiński, Manuel Lafond, Nicolas Lichiardopol, Reza Naserasr,
Ben Seamone and Rezvan Sherkati
Partial cubes without Q−

3 minors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Victor Chepoi, Kolja Knauer and Tilen Marc
Steinberg’s Conjecture is false . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Vincent Cohen-Addad, Michael Hebdige, Daniel Král’, Zhentao Li and Esteban Salgado
Subdivisions of oriented cycles in digraphs with . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Nathann Cohen, Frédéric Havet, William Lochet and Nicolas Nisse
On the Spectra of Markov Matrices for Weighted Sierpiński Graphs . . . . . . . . . . . . . . . . 89
Francesc Comellas , Pinchen Xie and Zhongzhi Zhang
Class 0 Bounds for Graph Pebbling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Daniel W. Cranston, Luke Postle, Chenxiao Xue and Carl Yerger
Descriptions of generalized trees by logic and algebraic terms . . . . . . . . . . . . . . . . . . . . 95
Bruno Courcelle
Identifying codes for infinite triangular grids with a finite number of rows . . . . . . . . . . . . 97
Rennan Dantas, Frédéric Havet and Rudini M. Sampaio
Almost disjoint spanning trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Benoit Darties, Nicolas Gastineau and Olivier Togni
Characterization of Stable Equimatchable Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Zakirl Deniz and Tınaz Ekim
3-Flows with Large Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Matt DeVos, Jessica McDonald, Irene Pivotto, Edita Rollová and Robert Šámal
Power domination of triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Paul Dorbec, Antonio González and Claire Pennarun
Graph minor operations for the marking game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Paul Dorbec, Gabriela Paris and Éric Sopena
Partitioning sparse graphs into an independent set and a forest of bounded degree . . . . . . . . 120
François Dross , Mickaël Montassier and Alexandre Pinlou
A Study of k-dipath Colourings of Oriented Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 124
Christopher Duffy , Gary MacGillivray and Éric Sopena
Hamiltonian Anti-Path on Sparse Graph Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Pavel Dvořák, Dušan Knop and Tomáš Masařík
On Strategies of Online Ramsey Game on Planar Graphs . . . . . . . . . . . . . . . . . . . . . . 130
Pavel Dvořák and Tomáš Valla
Quadrangulations of the projective plane are t-perfect if and only if they are bipartite . . . . . . 134
Elke Fuchs and Laura Gellert
Sharp Bounds for the Complexity of Semi-Equitable Coloring of Cubic and Subcubic Graphs . . 138
Hanna Furmańczyk and Marek Kubale
The threshold for the appearance of a properly coloured spanning tree in an edge coloured

random graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Pu Gao, Carlos Hoppen and Juliana Sanches
Generation of hypohamiltonian graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Jan Goedgebeur and Carol T. Zamfirescu
Obstructions to bounded cutwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Archontia C. Giannopoulou, Dimitrios M. Thilikos, Michał Pilipczuk,
Jean-Florent Raymond and Marcin Wrochna

4



CONTENTS

Edge-Intersection Graphs of Boundary-Generated Paths in a Grid . . . . . . . . . . . . . . . . . 152
Martin Charles Golumbic , Gila Morgenstern and Deepak Rajendraprasad
Connectivity and Hamiltonicity of canonical colouring graphs of bipartite and complete multi-

partite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Ruth Haas and Gary MacGillivray
Bounds for the Sum Choice Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Jochen Harant, Arnfried Kemnitz, Massimiliano Marangio and Margit Voigt
Coloring uniform hypergraphs avoiding fixed rainbow subhypergraphs . . . . . . . . . . . . . . 161
Carlos Hoppen, Hanno Lefmann , Knut Odermann and Lucas de Oliveira Contiero
Structure of plane graphs with prescribed δ, ρ, w and w∗ . . . . . . . . . . . . . . . . . . . . . . 165
Peter Hudák, Mária Maceková , Tomáš Madaras and Pavol Široczki
On Girth of Minimal Counterexample to 5-Flow Conjecture . . . . . . . . . . . . . . . . . . . . . 168
Radek Hušek , Peter Korcsok and Robert Šámal
Group Connectivity: Z4 v. Z2

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Radek Hušek , Lucie Mohelníková and Robert Šámal
Collection of Codes for Tolerant Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Ville Junnila and Tero Laihonen
Coloring and L(2, 1)-labeling of unit disk intersection graphs . . . . . . . . . . . . . . . . . . . . 180
Konstanty Junosza-Szaniawski, Paweł Rza̧żewski, Joanna Sokół and Krzysztof Wȩsek
Short cycle covers of signed graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Tomáš Kaiser, Robert Lukot’ka , Edita Máčajová and Edita Rollová
Chromatic number of ISK4-free graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Ngoc Khang Le
List star edge coloring of sparse graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Samia Kerdjoudj and André Raspaud
Automorphism Groups of Comparability Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Pavel Klavík and Peter Zeman
Partitioning graphs into induced subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Dušan Knop
On a conjecture on k-Thue sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Borut Lužar, Martina Mockovčiaková, Pascal Ochem, Alexandre Pinlou and Roman Soták
Parameterized complexity of fair deletion problems . . . . . . . . . . . . . . . . . . . . . . . . . 205
Tomáš Masar̂ík and Tomáš Toufar
Covering signed eulerian graphs with signed circuits . . . . . . . . . . . . . . . . . . . . . . . . 208
Edita Máčajová, Edita Rollová and Martin Škoviera
Decomposition of eulerian graphs into odd closed trails . . . . . . . . . . . . . . . . . . . . . . . 212
Edita Máčajová and Martin Škoviera
Construction of permutation snarks of order 2 (mod 8) . . . . . . . . . . . . . . . . . . . . . . 216
Edita Máčajová and Martin Škoviera
Neighbour distinguishing graph colourings - distant generalizations . . . . . . . . . . . . . . . . 220
Jakub Przybyło
Strong Rainbow Connection in Digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Elżbieta Sidorowicz and Éric Sopena
On Group Divisible Designs GDD(m,n; 2, λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Panon Sinsap and Chariya Uiyyasathian
Tournament limits: score functions and degree distributions . . . . . . . . . . . . . . . . . . . . 231
Erik Thörnblad
Square-free graphs are multiplicative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Marcin Wrochna
First order and monadic second order logic of very sparse random graphs . . . . . . . . . . . . . 236
Maksim Zhukovskii

5



Invited talks

Maria Axenovich – Improper colorings of planar graphs

Karlsruher Institut für Technologie

What happens when the vertices of a planar graph are colored with less than four colors? We know that
the coloring might be improper, i.e., contain adjacent vertices of the same color. Can one nevertheless
make sure that the color classes induce simple enough graphs, such as vertex-disjoint unions of short
paths? We shall present the history of the problem and some recent progress towards its solution.
The talk is based on a joint work with T. Ueckerdt and P. Weiner.

Csilla Bujtás – Domination and transversal games

University of Pannonia

The notion of the domination game was introduced by Brešar, Klavžar and Rall only six years ago,
but already has a significant literature. This is a two-person competitive optimization game, where the
players, Dominator (Fast) and Staller (Slow), alternately select vertices of a graph G. Each vertex chosen
must dominate at least one vertex not dominated by the vertices previously selected, and the process
eventually produces a dominating set ofG. Dominator wishes to minimize the number of vertices chosen
in the game, while Staller wishes to maximize it. The game domination number of G is the number of
vertices chosen when Dominator starts the game and both players play optimally. We survey results on
the different versions of domination game and also consider the transversal game defined analogously on
hypergraphs.

Kathie Cameron – Structure and Algorithms for (Cap, Even Hole)-Free Graphs

Wilfrid Laurier University

A hole is a chordless cycle with at least 4 vertices, and is even if it has an even number of vertices. A
cap consists of a hole together with an additional vertex which is adjacent to exactly two vertices of the
hole, which themselves are adjacent. A graph is (cap, even hole)-free if it has no induced cap or even hole.

We give an explicit construction of (cap, even-hole)-free graphs. Using this, we prove that every such
graph G has a vertex of degree at most 3

2ω(G)− 1, and hence χ(G) ≤ 3
2ω(G), where ω(G) denotes the

size of the largest clique in G and χ(G) denotes the chromatic number of G.
We give an O(nm) algorithm for q-colouring these graphs for fixed q and an O(nm) combinato-

rial algorithm for maximum weight stable set. We also give a polynomial-time algorithm for minimum
colouring.

Our algorithms are based our results that (triangle, even hole)-free graphs have treewidth at most 5
and that (cap, even hole)-free graphs without clique cutsets have clique-width at most 48.

This is joint work with Murilo V. G. da Silva, Shenwei Huang and Kristina Vušković.
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Daniel Král’ – Graph limits and extremal combinatorics

University of Warwick

Theory of graph limits has opened new links between analysis, combinatorics, computer science, group
theory and probability theory. We start with presenting a connection between dense graph limits and the
flag algebra method of Razborov, which has been used to solve many long-standing open problems in
extremal combinatorics. We then focus on the structure of graphons, analytic objects representing large
dense graphs. Motivated by problems from extremal graph theory, we will focus on graphons that are
uniquely determined by finitely many density constraints, so-called finitely forcible graphons, and present
counterexamples to several conjectures on the structure of such graphons.

Pavol Hell – Interval-like Graphs and Digraphs

Simon Fraser University

In this talk I will focus on forbidden structure characterizations of geometrically defined graph (and
digraph) classes. These include interval graphs and digraphs, and circular arc-graphs. I will propose
a general class of digraphs that encompasses many of these classes, and present a forbidden structure
characterization for it. I will also present a separate forbidden structure characterization for the class of
circular-arc graphs. This gives an answer to questions of Klee, and of Hadwiger and Debrunner, from
the early 1960’s. This is joint with T. Feder, J. Huang, and A. Rafiey for the interval graphs and their
generalizations, and with M. Francis and J. Stacho for the circular arc graphs.

Alexandr Kostochka – On disjoint and longest cycles in graphs

University of Illinois

We discuss and refine some results on cycle structure of graphs from the sixties. Some results of Dirac
and Erdős from 1963 are related to the well-known Corrádi-Hajnal Theorem. Let V≥t(G) (respectively,
V≤t(G)) denote the set of vertices in G of degree at least (respectively, at most) t. The Corrádi-Hajnal
Theorem says that for every positive integer k, if |V (G)| ≥ 3k andV≥2k(G) = V (G), thenG has k disjoint
cycles. Dirac and Erdős proved that if k ≥ 3 andG is a graphwith |V≥2k(G)|−|V≤2k−2(G)| ≥ k2+2k−4,
then G also has k disjoint cycles. They weakened the restriction on |V≥2k(G)| − |V≤2k−2(G)| to 5k − 7
for planar graphs, and showed graphs G with |V≥2k(G)| − |V≤2k−2(G)| = 2k − 1 that do not have k
disjoint cycles.

We present refinements of the Dirac–Erdős results. In particular, we show that each graph G with
|V≥2k(G)| − |V≤2k−2(G)| ≥ 3k has k disjoint cycles. This is sharp if we do not impose restrictions on
|V (G)|. This is joint work with Kierstead and McConvey.

The Turán-type theorems of Erdős and Gallai from 1959 on the most edges in n-vertex graphs that
do not have paths/cycles with at least k vertices were sharpened later by Faudree and Schelp, Woodall,
and Kopylov. Let h(n, k, a) =

(
k−a
2

)
+ a(n − k + a). The strongest result (by Kopylov) was: if t ≥ 2,

k ∈ {2t+1, 2t+2}, n ≥ k, andG is ann-vertex 2-connected graphwith at leastmax{h(n, k, 2), h(n, k, t)}
edges, thenG contains a cycle of length at least k unlessG = Hn,k,t := Kn−E(Kn−t). We prove stability
versions of these results. In particular, if n ≥ k and the number of edges in an n-vertex 3-connected graph
G with no cycle of length at least k is greater than max{h(n, k, 3, h(n, k, t − 1)}, then G is a subgraph
of Hn,k,t or of H(n, k, 2). The restriction on |E(G)| is tight. This is joint work with Füredi, Luo and
Verstraëte.

Carsten Thomassen – Chords in longest cycles

Technical University of Denmark

In 1975 John Sheehanmade the conjecture that every 4-regular Hamiltonian cycle has a second Hamil-
tonian cycle. Around the same time I made the conjecture that every longest cycle in every 3-connected
graph has a chord. In this talk I will discuss connections between the two conjectures and to the chromatic
polynomial, and also report on recent progress on the chord conjecture.
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Treelike snarks

Marien Abreu 1∗, Tomas Kaiser 2†, Domenico Labbate 1∗ and Giuseppe Mazzuoccolo 3,
1 Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della

Basilicata � Potenza, Italy
2 Department of Mathematics, Institute for Theoretical Computer Science and the
European Centre of Excellence NTIS, University of West Bohemia, Czech Republic.

3 Dipartimento di Informatica, Università degli Studi di Verona, Italy.

Extended Abstract

A snark (cf. e.g. [11]) is de�ned as a bridgeless cubic graph with edge chromatic number
equal to four that contains no circuits of length at most four and no non-trivial 3-edge cuts.

Following the terminology introduced in [1], the excessive index of G, denoted by χ′e(G),
is the least integer k such that the edge-set of G can be covered by k perfect matchings. Note
that the excessive index is sometimes also called perfect matching index (see [6]).

The main source of motivation for the above notion is the conjecture of Berge which
asserts that the excessive index of any cubic bridgeless graph is at most 5. As proved recently
by the third author [13], this conjecture is equivalent to the famous conjecture of Berge and
Fulkerson [7] that the edge-set of every bridgeless cubic graph can be covered by six perfect
matchings, such that each edge is covered precisely twice.

As for cubic bridgeless graphs G with χ′e(G) ≥ 5, it was asked by Fouquet and Vanherpe [6]
whether the Petersen graph was the only such graph that is cyclically 4-edge-connected.
Hägglund [9] constructed another example (of order 34) and asked for a characterisation of
such graphs [9, Problem 3]. Esperet and Mazzuoccolo [4] generalised Hägglund's example to
an in�nite family.

We construct another in�nite family of graphs, arising from a generalization in a di�erent
direction, called treelike snarks. We need some preliminary de�nitions and remarks before
de�ning this family of snarks.

For a given graph G, the vertex set of G is denoted by V (G), and its edge set by E(G).
Each edge is viewed as composed of two half-edges (that s are associated to each other) and
we let E(v) denote the set of half-edges incident with a vertex v.

A join in a graph G is a set J ⊆ E(G) such that the degree of every vertex in G has the
same parity as its degree in the graph (V (G), J). In the literature, the terms postman join
or parity subgraph have essentially the same meaning. We will be dealing with cubic graphs,
so joins will be spanning subgraphs where each vertex has degree 1 or 3.

As usual, e.g., in the theory of nowhere-zero �ows, we de�ne a cycle in a graph G to be
any subgraph H ⊆ G such that each vertex of H has even degree in H. Thus, a cycle need
not be connected. A circuit is a connected 2-regular graph. In a cubic graph, a cycle is a
disjoint union of circuits and isolated vertices. Note that a subgraph H ⊆ G is a cycle in G
if and only if E(G)− E(H) is a join.

A cover (or covering) of a graph G is a family F of subgraphs of G, not necessarily
edge-disjoint, such that

⋃
F∈F E(F ) = E(G).

We view each edge of a graph as composed of two half-edges. We now extend the notion
of a graph by allowing for loose half-edges that do not form part of any edge; the resulting
structures will be called generalised graphs. A generalised graph is cubic if each vertex is
incident with three half-edges.

We de�ne a fragment F as a generalised cubic graph with exactly �ve loose half-edges,
ordered in a sequence (see Figure 1). The Petersen fragment F0 is the fragment with loose
half-edges (a1, . . . , a5) obtained from the Petersen graph (see Figure 2b) as follows:

∗The �rst and third author were partially supported by a grant of the group GNSAGA of INdAM and by the

Italian Ministry Research Project PRIN 2012 �Geometric Structures, Combinatorics and their Applications�.
†The second author was supported by project 14-19503S of the Czech Science Foundation.
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• in the Petersen graph, remove a vertex x, keeping the half-edges a3, a4, a5 incident with
its neighbours y, z, t, respectively,

• subdivide the two edges incident with y,

• and add half edges a1, a2 to the new vertices of the subdivision (see Figures 2a, 2b) in
any one of the two ways.

F

a1

a2

a3

a4

a5

1

Figure 1: A fragment.

z

t

yx

(a) The Petersen graph.

a1

a2
a3

a4

a5

(b) The Petersen fragment F0.
Figure 2: Constructing the Petersen fragment.

A Halin graph is a plane graph consisting of a planar representation of a tree without
degree 2 vertices, and a circuit on the set of its leaves. (cf., e.g., [10, 3]).

Let H0 be a cubic Halin graph consisting of the tree T0 and the circuit C0. The treelike
snark G(T0, C0) is obtained by the following procedure:

• for each leaf ` of T0, we add a copy F `
0 of the Petersen fragment F0 with loose half-edges

(a1, . . . , a5) and attach the half-edge a3 to `,

• for each leaf ` of T0 and its successor `′ with respect to a �xed direction of C0, if F `
0

has loose half-edges (a1, . . . , a5) and F `′

0 has loose half-edges (a′1, . . . , a
′
5), then we join

a4 to a′2 and a5 to a′1, obtaining new edges.

If there is no danger of a confusion, we abbreviate G(T0, C0) to G(T0).
Some small examples of treelike snarks are shown in Figure 3.

We prove that they are indeed snarks and that their excessive index is greater than or
equal to �ve.

Proposition 1 Treelike snarks are snarks.

Theorem 2 Treelike snarks have excessive index at least 5.

Hence, as mentioned above, we expand the known family of snarks of excessive index ≥ 5,
with a di�erent generalization of Hägglund's example than the one found by Esperet and
Mazzuoccolo in [4].
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(a) Windmill 1 [4, Figure 7]. (b) Blowup(Prism,C4) [9, Figure 7].

Figure 3: Small treelike snarks.

We recall the notion of circular nowhere-zero r-�ow, �rst introduced in [8].
Let G = (V,E) be a graph. Given a real number r ≥ 2, a circular nowhere-zero r-�ow

(r-CNZF for short) in G is an assignment f : E → [1, r− 1] and an orientation D of G, such
that f is a �ow in D. That is, for every vertex x ∈ V ,

∑
e∈E+(x) f(e) =

∑
e∈E−(x) f(e), where

E+(x), respectively E−(x), are the sets of edges directed from, respectively toward, x in D.
The circular �ow number φc(G) of G is the in�mum of the set of numbers r for which

G admits an r-CNZF. If G has a bridge then no r-CNZF exists for any r, and we de�ne
φc(G) =∞.

A circular nowhere-zero modular-r-�ow (r-MCNZF), is an analogue of an r-CNZF, where
the additive group of real numbers is replaced by R/rZ. We would like to stress that, given
an r-MCNZF f , the direction of an edge e can be always reversed and f transformed into
another r-MCNZF, where f(e) ∈ R/rZ is replaced by −f(e) ∈ R/rZ.

The following result is well-known and implicitly proved also in Tutte's original work on
integer �ows [15].

Proposition 3 ([15]) The existence of a circular nowhere-zero r-�ow in a graph G is equiv-
alent to that of an r-MCNZF.

The outstanding 5-Flow Conjecture is equivalent to the statement that the circular �ow
number of no bridgeless graph is greater than 5. In [5], the authors present some general
methods for constructing graphs (in particular snarks) with circular �ow number at least 5.
By a direct application of the main results in [5], one can deduce that all (few) known snarks
with excessive index 5 have circular �ow number at least 5. In other words, if a snark is
�critical� with respect to Berge-Fulkerson's Conjecture, then it seems to be critical also for
the 5-�ow Conjecture. The converse is false, as shown by the snark G of order 28, found by
Má£ajová and Raspaud [12]: it has φC(G) = 5 and χ′e(G) = 4.

We furnish a further element in the direction of the previous observation, by proving that
also all treelike snarks have circular �ow number at least 5, i.e. treelike snarks are, in a sense,
also critical for this conjecture:

Theorem 4 Treelike snarks have circular �ow number at least 5.

Finally, since it is known that any cubic graph G that is a counterexample to the Cycle
Double Cover Conjecture satis�es χ′e(G) ≥ 5, it is natural to ask whether treelike snarks
admit cycle double covers. We show that this is indeed the case. In fact, using a new general
su�cient condition for the existence of a 5-cycle double cover, we show that treelike snarks
satisfy the 5-Cycle Double Cover Conjecture of Preissmann [14] and Celmins [2].

Indeed, we introduce a new general su�cient condition for a cubic graph to admit a 5-cycle
double cover (Theorem 5) and we show how it can be easily used to prove the existence of a
5-cycle double cover for every treelike snark (Theorem 7).
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Theorem 5 Let G be a cubic graph. If G admits a connected join with a congruent 3-edge-
colouring, then it has a 5-cycle double cover.

Corollary 6 Let G be a cubic graph. If G admits a 3-edge-colourable connected join J with
a connected complement in G, then G has a 5-cycle double cover.

Theorem 7 Treelike snarks admit a 5-cycle double cover.

We conclude this section by pointing out a reformulation of Theorem 5 in terms of nowhere-
zero �ows:

Corollary 8 Let G be a cubic graph admitting a connected join J . Let G′ be the graph
obtained from G by contracting each circuit of the complement of J to a vertex. If G′ admits
a nowhere-zero 4-�ow, then G admits a 5-cycle double cover.
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Extended Abstract

Domination of grids has been proved to be a demanding task and with the addition of inde-
pendence it becomes more challenging. It is known that no grid with m,n ≥ 5 has a perfect
code, that is an independent vertex set such that each vertex not in it has exactly one neigh-
bor in that set. So it is interesting to study the existence of an independent dominating set
for grids that allows at most two neighbors, such a set is called independent [1, 2]-set. In this
paper we develop a dynamic programming algorithm using min-plus algebra that computes
the minimum cardinality of an independent [1, 2]-set for the grid Pm�Pn.

Keywords: Domination, independence, grids, min-plus algebra.

1 Introduction

Let G = (V,E) be a simple graph. A subset S ⊆ V is called a dominating set of G if
every v ∈ V \S has at least one neighbor in S. Recall that the grid Pm�Pn is the cartesian
product of paths Pm and Pn. Domination in grids has been extensively studied and the
problem of determining the domination number γ(Pm�Pn), which is the minimum size of a
dominating set of Pm�Pn was opened for almost 30 years, since it was �rst studied in [?]. In
his 1992 Ph.D thesis Chang [?] proved that the domination number in grids is bounded by
γ(Pm�Pn) ≤ b (n+2)(m+2)

5 c − 4, for m,n ≥ 8. Chang also conjectured that equality holds for
16 ≤ m ≤ n. In 1998 γ(Pm�Pn) was computed for m ≤ 19 and every n (see [?]). Finally in
2011, the problem was completely solved in [?] as authors were able to adapt the ideas in [?]
to con�rm Chang′s conjecture.

Independence is a property closely related to domination. A set S of vertices is called
independent if no two vertices in S are adjacent. The independent domination number is
denoted by ı̇(G), which is the minimum cardinality of an independent dominating set for
the graph G. Recently in [?] the independent domination number has been computed for all
grids.

A perfect code is an independent dominating set such that every vertex not in it has
a unique neighbor in the set. It was proved in [?] that there exists no perfect code for
grids Pm�Pn, except in cases m = n = 4 and m = 2, n = 2k + 1. This leads us to work
with independent [1, 2]-sets, that is an independent vertex set S such that every v ∈ V \S is
adjacent to at least one but not more than 2 vertices in S (see [?]). We solve the open problem
proposed in [?] about the existence of independent [1, 2]-set in grids and we also compute the
independent [1, 2]-number ı̇[1,2](Pm�Pn) which is the minimum cardinality of such a set.

2 Algorithm

We present a dynamic programming algorithm to obtain ı̇[1,2](Pm�Pn), following the ideas
in [?, ?]. Consider Pm�Pn as an array with m rows, n columns and vertex set {vij : 1 ≤ i ≤
m, 1 ≤ j ≤ n}. Let S be an independent [1, 2]-set of Pm�Pn. We de�ne a labeling of vertices
of Pm�Pn associated to S as follows

l(vij) =


0 if vij ∈ S
1 if vij /∈ S and |{vi(j−1), v(i−1)j , v(i+1)j} ∩ S| = 1
2 if vij /∈ S and |{vi(j−1), v(i−1)j , v(i+1)j} ∩ S| = 2
3 if vij /∈ S and |{vi(j−1), v(i−1)j , v(i+1)j} ∩ S| = 0
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Given an independent [1, 2]-set, we can identify each vertex with its label so we obtain
an array of labels with m rows and n columns. Hereinafter, given an independent [1, 2]-set
of Pm�Pn, the columns of the grid are words of length m in the alphabet {0, 1, 2, 3} and the
number of zeros in the array is the cardinality of the independent [1, 2]-set. The algorithm
considers all the arrays of words (as columns) that come from some independent [1, 2]-set of
Pm�Pn and it calculates the minimum among the number of 0′s of each array. This minimum
is equal to i[1,2](Pm�Pn).

It is clear that not every word of length m can belong to such labeling, for instance there
can not be consecutive 0′s in a word, because of independence. The �rst objective is to
identify the words that belong to the labeling associated to some independent [1, 2]-set, that
we will call suitable words.

We need to have in mind the not every suitable word can be in the �rst column nor in the
last one. For instance a word with the sequence 120 can not be in the �rst column, because
the vertex labeled with 2 does not follow the labeling rules, in the absence of a previous
column. Also in the last column can not be vertices with label 3, because they would not be
dominated. The second task is to identify those words that can be in the �rst column and
those words that can be in the last one.

It is also clear that not any two suitable words can follow each other in a labeling associated
to some independent [1, 2]-set, for instance if a word has 3 in the rth position, then the
following word must have 0 in the rth position, to preserve domination. The last objective
regarding to words is to identify which of them can follow a given one.

The �nal part of the algorithm calculates the minimum number of zeros in an array, among
all possible arrays of labels associated to an independent [1, 2]-set. This can be done by the
successive addition of columns, beginning with just one and ending with n.

2.1 The suitable words

Let S be an independent [1, 2]-set of Pm�Pn and consider the associated labeling. It is
clear that a column can not contain two consecutive 0′s because of independence, nor two
consecutive 2′s because in the previous column should be two consecutive 0′s, also it can
not contain two consecutive 3′s because in the following column will be two consecutive
0′s. Moreover a column can not contain any of the sequences 03, 30, 010 by de�nition of the
labeling. If a column contains the sequence 11 then the previous label or the following label
in the column (or both) must be 0, because in other case would be two consecutive 0′s in the
previous column. If a column contains the sequence 32 then the other label next to 2 in the
column must be 0, by de�nition of the labeling.

Similarly sequence 23 must be preceded by 0 and both sequences 21 ,12 must be placed
between two 0′s. Words satisfying all those rules are called suitable. We denote the cardinal of
the set of all suitable words by k, so every suitable word can be identi�ed with p ∈ {1, . . . , k}.

2.2 The �rst column, the last column and the initial vector

Let S be an independent [1, 2]-set of Pm�Pn and consider the associated labeling. Note that
the �rst column is a suitable word such that every 2 is placed between two 0′s and every 1 is
preceded or followed (but not both) by 0, because in other case the labeling would not follow
the de�nition. A suitable word that satis�es these properties is called initial.

Similarly a word can be placed in the last column if it does not contain any 3, because in
other case one vertex would be not dominated. We call this word �nal.

De�ntion 1 A suitable word is called initial if every vertex labeled as 2 is placed between two
0′s and every vertex labeled as 1 is preceded or followed (but not both) by 0 and it is called
�nal if it has no vertex labeled as 3.
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The initial vector X1 is a column vector of size k such that for every suitable word
p ∈ {1, 2, . . . , k}, the pth entry of the vector is

X1(p) =

{
number of zeros of word p . . . if p is an initial word
∞ . . . if p is not an initial word

Finally we de�ne the initial vector X1 = (X1(1), X1(2), . . . , X1(k)) which is a vector of size
k such that for every word p ∈ {1, 2, . . . , k}, X1(p) is number of zeros of p, if it is an initial
word, and X1(p) =∞ in other case.

If qi = 0 then



(if i = 1)

{
p1 = 1, p2 6= 0 or
p1 = 2, p2 = 0

(if 1 < i < m)


pi = 1, pi+1 6= 0, pi−1 6= 0 or
pi = 2, pi+1 6= 0, pi−1 = 0
pi = 2, pi+1 = 0, pi−1 6= 0

(if i = m)

{
pm = 1, pm−1 6= 0 or
pm = 2, pm−1 = 0

Conditions can be de�ned similarly for cases qi = 1, qi = 2 and qi = 3.
The transition matrix is the square matrix A of size k such that, for every pair p, q ∈

{1, 2, . . . , k}, the entry Apq in row p and column q is de�ned to be the number of zeros of the
word p if p can follow q, and Apq =∞ otherwise.

2.3 Adding many columns via the min-plus multiplication

Using the particular matrix multiplication in (min,+)-algebra see [?] ,we can successively
obtain vectors X2 = A�X1, . . . , Xn = A�X(n−1). These vectors allows us to characterize
grids having an independent [1, 2]-set.

For every word p ∈ {1, . . . k}, the entry Xn(p) is the minimum number of zeros in an
independent vertex subset of Pm�Pn, which has word p in the nth-column and [1, 2]-dominates
the graph, except for may be some vertices in the last column with label 3.

Now we can characterize grids having an independent [1, 2]-set, using the vectors obtained
by means of the (min,+) matrix multiplication.

Theorem 2

1. There exists an independent [1, 2]-set in Pm�Pn if an only if there exists a �nal word
p such that Xn(p) <∞.

2. ı̇[1,2](Pm�Pn) = min{Xn(p) : p is a �nal word}.

2.4 The recursion rule to calculate i[1,2](Pm�Pn)

The above procedure allows us to obtain the value of i[1,2](Pm�Pn) for �xedm and n. However
a recurrence argument gives a formula for i[1,2](Pm�Pn) for �xed m and any n ≥ m. We use
the following result which is similar to Theorem 2.2 in [?].

Theorem 3 Suppose that there exist integers n0, c, d > 0 satisfying the equation Xn0+d(p) =
Xn0(p) + c, for every suitable word p. If Pm�Pr has an independent [1, 2]-set for n0 ≤ r ≤
n0 + d− 1, then

1. Pm�Pn has an independent [1, 2]-set, for all n ≥ n0,

2. ı̇[1,2](Pm�Pn+d) = ı̇[1,2](Pm�Pn) + c, for all n ≥ n0.

Now let m be �xed and consider the suitable words of length m and the initial vector
X1. Then apply the operation � to calculate vectors Xi, until obtaining a natural number
n0 such that Xn0+d = c �Xn0 . Using the above theorem we get the �nite di�erence equa-
tion i[1,2](Pm�Pn0+d)− i[1,2](Pm�Pn0

) = c. The unique solution obtained from solving this
equation for n ≥ n0, is the desired formula for i[1,2](Pm�Pn).
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2.5 Results

Applying the construction described in the previous section we have obtained that the inde-
pendent [1, 2]-number agrees with the independent dominating number in almost every grid
of small size 1 ≤ m ≤ 13,m ≤ n

i[1,2](Pm�Pn) =

{
i(Pm�Pn) + 1 . . . m = 12, n ≡ 10(mod 13)
i(Pm�Pn) . . . otherwise

We would like to point out that applying the algorithm for large values of m,n is possible
but the running time needed is extremely long. However the calculation of i[1,2](Pm�Pn) for
14 ≤ m ≤ n can be solved using a constructive regular pattern, following the ideas in [?, ?].
We have obtained in these cases

i[1,2](Pm�Pn) =

{
i(Pm�Pn) . . . m = 14, 15, m ≤ n
γ(Pm�Pn) . . . 16 ≤ m ≤ n
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Extended Abstract

1 Introduction
A 2-partition (V1, V2) of a digraph D = (V,A) is a partition of V into disjoint sets V1, V2
such that V = V1 ∪ V2. We will consider problems of deciding whether a given digraph has a
2-partition (V1, V2) such that Vi induces a digraph with some specified property. In [1] and
[2] Bang-Jensen, Cohen and Havet determined the complexity of 120 such problems. Several
of these problems are NP complete for general digraphs and it is natural to ask whether this
is still the case for tournaments. This is the topic of this note. More specifically we consider
2-partitions where each partition induces a digraph with minimum out/in/semidegree at least
k for some integer k.

We consider directed simple digraphs. Notation follows [3]. Let a1, a2 be graph properties,
then (V1, V2) is an (a1, a2)-partition if Vi induces a digraph with property ai for i ∈ [2]. While
N+(v) denote the set of out-neighbours of a vertex v, given a set X ⊆ V , N+[X] is the closed
out-neighbourhood of X containing X and all out-neighbours of the vertices of X.

Proofs left out in this note will appear in the full version of the note together with more
detailed descriptions of algorithms that also finds partitions when they exist.

2 (δ+ ≥ k1, δ
+ ≥ k2)-partition

In [8] Thomassen showed that δ+(D) ≥ 3 is sufficient for the existence of a (δ+ ≥ 1, δ+ ≥ 1)-
partition of D. Furthermore there exist a polynomial algorithm to check if a general digraph
has a (δ+ ≥ 1, δ+ ≥ 1)-partition. This is true if and only if D contains two disjoint cycles
and deciding if D has two disjoint cycles is polynomial by McCuaig[6].

Theorem 1 It is NP complete to decide whether a digraph D = (V,A) has a (δ+ ≥ k1, δ+ ≥
k2)-partition, for k1, k2 natural numbers with k1 + k2 ≥ 3.

For tournaments this is another story. In [5] Lichadopol showed that every tournament
with out-degree at least k2

1+3k1+2
2 + k2 has a (δ+ ≥ k1, δ+ ≥ k2)-partition. By modifying the

proof of Lichadopol we describe a polynomial algorithm that decides if such a partition exist
for any tournament. For simplicity we will assume that k1 = k2 = k in the following but the
result can easily be generalized.

A vertex v ∈ V (T ) is said to be k-out-dangerous if d+(v) ≤ 2k − 2. Furthermore let
X ⊆ V , then an X-out-critical set X ′ is a set containing X which is critical in the sense
that no subset of X ′−X can be removed from X ′ without decreasing the out-degree of T 〈X ′〉.

Lemma 2 Let k be a fixed integer and let T be a tournament with minimum out-degree at
least k. Then the number of k-out-dangerous vertices of T is at most 4k − 3.

Proof: Let X be the set of out-dangerous vertices of T . Then the number of arcs in the
subtournament T 〈X〉 is at most |X|(2k − 2). Hence |X|(|X|−1)2 ≤ |X|(2k − 2), implying that
|X| ≤ 4k − 3.

1Former Tilde My Larsen
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Lemma 3 Let T be a tournament with minimum out-degree at least k and let X ⊆ V (T ).
Then T contains an X-out-critical set X ′ with |X ′| ≤ k2+3k+2

2 + |X|.

Proof: We will prove the theorem by induction over |V (T )|. Let X be a fixed set in V (T ).
If |V (T )| ≤ k2+3k+2

2 + |X| we are done, so assume |V (T )| > k2+3k+2
2 + |X|. Let M be the set

of vertices that have out-degree k in T and let m = |M |.
As each v ∈M has d+(v) = k and T 〈M〉 is a tournament we have

|N+[M ]| ≤ m+mk − m(m− 1)

2
= −m

2

2
+

(
3

2
+ k

)
m =: P (m).

Now P (m) has global maximum at (3/2 + k) and maximum for m integer at k + 1 and
k + 2 with P (k + 1) = P (k + 2) = k2+3k+2

2 . Hence as |V (D)| > k2+3k+2
2 + |X| there exist a

vertex u ∈ V −(N+[M ]∪X)) such that δ+(T 〈V − u〉) ≥ k and the result follows by induction.

We are now ready to prove the existence of a polynomial algorithm for tournaments.

Theorem 4 Let k be a fixed integer. Then there exists a polynomial algorithm that either
constructs a (δ+ ≥ k, δ+ ≥ k)-partition of a tournament or correctly conclude that none
exists.

Proof: The idea is to consider all possible partitions (O1, O2) of the out-dangerous vertices
and for each such partition and for all O1-critical sets X of bounded size, check whether
there is a (δ+ ≥ k, δ+ ≥ k)-partition with X ⊆ V1 and O2 ⊆ V2. Starting with the partition
(V1, V2) = (X,V − X) this subalgorithm will repeatedly move a vertex v ∈ V2 − O2 with
d+
T 〈V2〉

(v) < k to V1. If at any time there is a vertex u ∈ O2 such that d+
T 〈V2〉

(u) < k there

is no good partition with X ⊆ V and O2 ⊆ V2, so the subalgorithm terminates. Otherwise
it terminates after moving all low degree vertices of V2 − O2 and if V2 6= ∅ it has found a
(δ+ ≥ k, δ+ ≥ k)-partition.

Correctness follows as we only move vertices from V2 to V1 that are not out-dangerous
and hence have k out-neighbours in the (current) V1. Hence δ+(T 〈V1〉) ≥ k throughout the
algorithm.

Clearly the subalgorithm is polynomial as vertices are only moved from V2 to V1 and in
at most n steps V2 is empty. Furthermore, as the number of out-dangerous vertices and the
size of O1-critical sets are bounded by Lemma 2 and Lemma 3, it follows that there are only
a polynomial number of calls to the subalgorithm.

We can replace ’tournament’ by ’semicomplete digraph’ in all of the above, as the presence
of 2-cycles will only decrease the number of out-dangerous vertices and the size of an X-out-
critical set.

On the other hand if we have a semicomplete digraph and want the partition to also induce
tournaments, this problem becomes NP complete even for k = 1.

Theorem 5 It is NP complete to decide if a semicomplete digraph has a (δ+ ≥ 1, δ+ ≥ 1)-
partition such that each partition also induces a tournament.

3 (δ+ ≥ k, δ− ≥ k)- and (δ0 ≥ k, δ0 ≥ k)-partitions
Both (δ+ ≥ 1, δ+ ≥ 1)-partition and (δ0 ≥ 1, δ0 ≥ 1)-partition were proved to be NP complete
for general digraphs by Bang-Jensen, Cohen and Havet in [1]. Unfortunately we cannot use
the same approach as in Section 2 to find a polynomial algorithm for tournaments. This is
because there is no longer a nice way to define dangerous vertices; In a partition (V1, V2) we
may have a vertex v that has neither k out-neighbours in V1 nor k in-neighbours in V2.
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Using known results on cycles and complementary cycles in tournaments we can find a
polynomial algorithm in the case where k = 1. Clearly in both problems the existence of
cycles are necessary, for the first it is also sufficient.

Theorem 6 A tournament T has a (δ+ ≥ 1, δ− ≥ 1)-partition if and only if it has two
disjoint cycles.

Proof: By the above we may assume that T has a pair of disjoint cycles. LetD1, . . . , Ds be the
strong components of T (if D is strong then s = 1). Notice that if we find a (δ+ ≥ 1, δ− ≥ 1)-
partition (V ′1 , V

′
2) for the subdigraph induced by V (Di) ∪ · · · ∪ V (Dj) for i, j ∈ [s] and i ≤ j,

then letting V1 = V ′1 ∪ V (D1) ∪ · · · ∪ V (Di−1) and V2 = V − V1, we have a (δ+ ≥ 1, δ− ≥ 1)-
partition for T .

Assume that there are two non-trivial strong components Di and Dj with i < j. Then
letting V ′1 = V (Di+1) ∪ · · · ∪ V (Dj) and V ′2 = V (Di), (V ′1 , V ′2) is a (δ+ ≥ 1, δ− ≥ 1)-partition
for T 〈V (Di) ∪ . . . V (Dj)〉 and we are done. Hence there is only one non-trivial component
Di. By the assumption Di contains two disjoint cycles C1 and C2. Now for j ∈ [2], if Tj =
Di〈V (Di)− V (Cj)〉 has minimum in-degree at least 1, then clearly (V (Cj), V (Di)− V (Cj))
is a (δ+ ≥ 1, δ− ≥ 1)-partition so suppose xj is a vertex in V (Di) − Cj with in-degree 0 in
Tj . As xj must have an in-neighbour on Cj for j ∈ [2] we have that x1 6= x2. But xj /∈ Cj

for j ∈ [2] and hence there is an arc between x1 and x2, contradicting that d−Tj
(xj) = 0 for

j ∈ [2].

Theorem 7 There exists a polynomial algorithm that given a semicomplete digraph S =
(V,A) decides if it contains a (δ0 ≥ 1, δ0 ≥ 1)-partition.

Proof: Assume first that S is not strong and let D1, . . . , Dr be the strong components. If
D1 or Dr is a trivial component, then clearly there is no (δ0 ≥ 1, δ0 ≥ 1)-partition. On the
other hand if D1, Dr and Di for some i ∈ [r − 1]2 are all non-trivial, then (Di, V −Di) is a
(δ0 ≥ 1, δ0 ≥ 1)-partition. Hence we may assume that all but D1 and Dr are trivial. Now
it is easy to see that there is a (δ0 ≥ 1, δ0 ≥ 1)-partition if and only if D1 or Dr has such a
partition.

Assume now that S is strong. If n < 8 all possible partitions is checked. Otherwise it
is first checked if S has disjoint cycles using the algorithm of McCuaig [6] and if these exist
checked whether it has complementary cycles, using the algorithm of Bang-Jensen and Nielsen
[4]. Hence we may now assume that S contains disjoint cycles but not complementary cycles
and that is not 2-strong by Reid [7].

Let x be a separator of S and let D1, . . . , Dr be the strong components of S − x.
The following follows as there are no complementary cycles in S: If r ≥ 3 then |Di| = 1

(denote di from now on) for all i ∈ [r−1]2. If D1 is non-trivial, then d2x ∈ A (unless r = 2), x
only dominates vertices y of D1 that are separators of D1 and only the first strong component
of D1 − y (denoted D11) can be non-trivial. Similarly if Dr is non-trivial, then xdr−1 ∈ A,
x is only dominated be vertices z of Dr that are separators of Dr and only the last strong
component of Dr − z (denoted Drs) can be non-trivial.

Case 1) r = 2 and |D1|, |D2| ≥ 3.
If Di ∪ x is strong for i ∈ [2] then we have complementary cycles. So x must dominate all
vertices of D1 and all vertices of D2 must dominate x. Now as n ≥ 8 then for some i ∈ [2]
there exists a vertex v ∈ Di such that Di − v is strong. Again contradicting that there are
no complementary cycles.

Case 2b) r ≥ 2, min{|D1|, |D2|} = 1 and max{|D1|, |Dr|} ≥ 3.
We may assume |D1| = 1 and |Dr| ≥ 3. Assume that (V1, V2) is a (δ0 ≥ 1, δ0 ≥ 1)-partition
of S with x ∈ V1. Then as x is the only in-neighbour of d1, d1 also belongs to V1. Continuing
this way we see that {x, d1, . . . , dr−1} = V ′1 ⊆ V1. As xdr−1 ∈ A any (δ0 ≥ 1, δ0 ≥ 1)-partition
(V1, V2) will have vertices of Dr in both V1 and V2, and V2 ⊂ Dr. Indeed it is not hard to see
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that the semicomplete digraph S′ obtained by deleting d1, . . . , dr−1 and adding an arc from
x to each vertex of Dr will have a (δ0 ≥ 1, δ0 ≥ 1)-partition if and only if S does.

Thus we can solve the problem by calling the algorithm on S′.
Case 3) r > 2 and |D1|, |Dr| ≥ 3.

We have the 3-cycles C3 = {x, y, d2} and C ′3 = {x, dr−1, z} in S. If |D11| ≥ 3 we have
the (δ0 ≥ 1, δ0 ≥ 1)-partition (V (C3), V − V (C3)). Similarly if |Drs| ≥ 3 we have a
(δ0 ≥ 1, δ0 ≥ 1)-partition (V (C ′3), V −V (C ′3)). So assume |D11| = |Drs| = 1. Now {x, y, z} is
a feedback vertex set of S and there is only a (δ0 ≥ 1, δ0 ≥ 1)-partition if x, y and z belongs to
disjoint cycles and the x-cycle does not use any vertices of D1 and Dr. The latter follows from
the fact that {x, y′, z′} is a feedback vertex set for every choice of y′, z′ as out-neighbours of
x in D1 respectively in-neighbour of x in Dr. Such an x-cycle exits if and only if xdi, djx ∈ A
for some i, j ∈ [r − 1]2 and i < j.

For S strong clearly all but Case 2b can be done in polynomial time. Furthermore for
Case 2b, notice that the recursive call will be on a semicomplete digraph which has at least
2 vertices less. Hence in at most n calls the algorithm we will terminate and we have a
polynomial time algorithm. Now the polynomial algorithm for S not strong follows directly.

The following can be proved in a similar manner as Theorem 5.

Theorem 8 It is NP complete to decide if a semicomplete digraph omits a partition such
that each partition is strong and a tournament.
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Extended Abstract

Let γ : E(G) −→ N∗ be an edge colouring of a graph G and σγ : V (G) −→ N∗
the vertex colouring given by σγ(v) =

∑
e3v γ(e) for every v ∈ V (G). A neighbour-sum-

distinguishing edge-colouring of G is an edge colouring γ such that for every edge uv in G,
σγ(u) 6= σγ(v). The study of neighbour-sum-distinguishing edge-colouring of graphs was ini-
tiated by Karoński, Łuczak and Thomason [8]. They conjectured that every graph with no
isolated edge admits a neighbour-sum-distinguishing edge-colouring with three colours.

We consider a game version of neighbour-sum-distinguishing edge-colouring. The neighbour-
sum-distinguishing edge-colouring game on a graphG is a 2-player game where the two players,
called Alice and Bob, alternately colour an uncoloured edge of G. Alice wins the game if,
when all edges are coloured, the so-obtained edge colouring is a neighbour-sum-distinguishing
edge-colouring of G. Therefore, Bob’s goal is to produce an edge colouring such that two
neighbouring vertices get the same sum, while Alice’s goal is to prevent him from doing so.
The neighbour-sum-distinguishing edge-colouring game on G with Alice having the first move
will be referred to as the A-game on G. The neighbour-sum-distinguishing edge-colouring
game on G with Bob having the first move will be referred to as the B-game on G.

We study the neighbour-sum-distinguishing edge-colouring game on various classes of
graphs. In particular, we prove that Bob wins the game on the complete graph Kn, n ≥ 3,
whoever starts the game, except when n = 4. In that case, Bob wins the game on K4 if and
only if he starts the game.

General results
A balanced edge in a graph G is an edge uv ∈ E(G) with degG(u) = degG(v).

Lemma 1 Let G be a graph containing a balanced edge.

1. If |E(G)| is even then Bob wins the A-game on G.

2. If |E(G)| is odd then Bob wins the B-game on G.

For a graph G, for every vertex v ∈ V (G), we denote by degpG(v) the number of pendant
neighbours of v. An internal vertex in G is a vertex with degG(v) > 1.

Theorem 2 Let G be a graph such that degpG(v) ≥
1
2degG(v) + 1 for every internal vertex

v ∈ V (G).

(1) If |E(G)| is odd then Alice wins the A-game on G.

(2) If |E(G)| is even then Alice wins the B-game on G.

Theorem 2 allows us to prove that Alice wins the A-game or the B-game on some special
trees. A caterpillar is a tree T whose set of internal vertices induces a path, called the central
path of T . We then have:
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Corollary 3 (Special caterpillars) Let T be a caterpillar, with central path v1v2 . . . vk,
such that degT (v1) ≥ 4, degT (vk) ≥ 4 and degT (vi) ≥ 6 for every i, 2 ≤ i ≤ k − 1. We then
have:

(1) If |E(G)| is odd then Alice wins the A-game on G.

(2) If |E(G)| is even then Alice wins the B-game on G.

Graphs families
The double-star DSm,n, m ≥ n ≥ 1, is obtained from the two stars K1,m and K1,n by adding
an edge joining their two centers. We prove the following:

Theorem 4 (Double-stars)

1. For every integer n ≥ 1, Bob wins the B-game on DSn,n.

2. For every integer n ≥ 1, Alice wins the A-game on DSn,n.

3. For every integer m > n ≥ 1, Alice wins the A-game on DSm,n.

4. For every integer m > n ≥ 1, Alice wins the B-game on DSm,n.

Theorem 5 (Complete graphs)

1. For every integer n ≥ 3, Bob wins the A-game on Kn.

2. For every integer n ≥ 3, Bob wins the B-game on Kn if and only if n 6= 4.

Theorem 6 (Complete bipartite graphs)

1. For every integer n ≥ 2, Bob wins the A-game on K2,n.

2. For every integer n ≥ 2, Alice wins the B-game on K2,n.

We leave as an open problem the question of determining who wins the A-game or the
B-game on general complete bipartite graphs Km,n, 3 ≤ m ≤ n.
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Extended Abstract

In this paper, we introduce and study the list version of incidence colourings. All the
graphs we consider in this paper are simple and loopless undirected graphs. We denote by
V (G) and E(G) the set of vertices and the set of edges of a graph G, respectively, and by
∆(G) the maximum degree of G.

Recall that a graph G is k-list colourable (or k-choosable) if, whenever each vertex v of
G is given a list L(v) of k colours, G admits a proper colouring in which each vertex receives
a colour from its own list. The list chromatic number of G is then defined as the smallest
integer k such that G is k-choosable. This type of colouring was independently introduced
by Vizing [9] and Erdös, Rubin and Taylor [3] (see the surveys by Alon [1] and Tuza [8]).

An incidence of a graph G is a pair (v, e) where v is a vertex of G and e is an edge of G
incident with v. We denote by Inc(G) the set of incidences of G. Two incidences (v, e) and
(w, f) of Inc(G) are adjacent whenever (i) v = w, or (ii) e = f , or (iii) vw = e or f . An
incidence k-colouring of G is a mapping from Inc(G) to the set of colours {1, . . . , k} such that
every two adjacent incidences receive distinct colours. The smallest k for which G admits
an incidence k-colouring is the incidence chromatic number of G, denoted χi(G). Incidence
colourings were first introduced and studied by Brualdi and Massey [2]. This problem has
attracted much interest in recent years, see for instance [6, 5, 10, 11].

The list version of incidence colouring is defined in a way similar to the case of ordinary
proper vertex colourings. We thus say that a graphG is k-list incidence colourable if, whenever
each incidence (v, e) of G is given a list L(v, e) of k colours, G admits an incidence colouring in
which each incidence receives a colour from its own list. The list incidence chromatic number
of G, denoted χ`

i(G), is then the smallest integer k such that G is k-list incidence colourable.
We clearly have χ`

i(G) ≥ χi(G) and χi(G) ≥ ∆(G)+1 for every graph G. Moreover, since
every incidence (v, e) in a graph G has at most 3∆(G)− 2 adjacent incidences, we get:

Proposition 1 For any graph G, ∆(G) + 1 ≤ χi(G) ≤ χ`
i(G) ≤ 3∆(G)− 1.

Observe also that an incidence k-colouring of a graphG can be viewed as a proper colouring
of the square of its line graph. Since the line graph of an n-cycle is an n-cycle, by a result of
Erdös, Rubin and Taylor [3], we get:

Proposition 2 For every cycle G, χ`
i(G) = χi(G).

Recall that a graph G is d-degenerated if every subgraph of G contains a vertex of degree
at most d. In [5], Hosseini Dolama and Sopena proved the following:

Theorem 3 (Hosseini Dolama and Sopena [5]) For every d-degenerated graph G, χi(G) ≤
∆(G) + 2d− 1.

We prove that the same result holds for the list incidence chromatic number:

Theorem 4 For every d-degenerated graph G, χ`
i(G) ≤ ∆(G) + 2d− 1.

Since every tree is 1-degenerated, every K4-minor free graph (and thus every outerpla-
nar graph) is 2-degenerated, and every planar graph is 5-degenerated, Theorem 4 gives the
following:
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Corollary 5 For every graph G,

1. if G is a tree then χ`
i(G) = ∆(G) + 1,

2. if G is a K4−minor free graphs (and thus, if G is an outerplanar graph) then χ`
i(G) ≤

∆(G) + 3,

3. if G is a planar graph then χ`
i(G) ≤ ∆(G) + 9.

The square grid G(m,n) is the graph defined as the Cartesian product of two paths, that
is, G(m,n) = Pm �Pn, where Pn denotes the path on n vertices. Since every square grid is
2-degenerated, we get χ`

i(G(m,n)) ≤ ∆(G(m,n)) + 3 ≤ 7 for every square grid G(m,n) by
Theorem 4. We can decrease this bound to 6:

Theorem 6 For every integers m,n ≥ 1, χ`
i(G(m,n)) ≤ 6.

A Halin graph is a planar graph obtained from a tree with no vertex of degree 2 by adding
a cycle connecting all its leaves. Wang, Chen and Pang proved that χi(G) = ∆(G) + 1 for
every Halin graph G with ∆(G) ≥ 5 [10] and Meng, Guo and Su that χi(G) ≤ ∆(G) + 2 for
every Halin graph G with ∆(G) = 4 [7] (it is known, by a result of Maydanskiy [6], that if G
is subcubic, then χi(G) ≤ ∆(G) + 2).

For this class of graph, we prove the following results:

Lemma 7 If G is a Halin graph then χ`
i(G) ≤ max{∆(G) + 1, 7}.

Lemma 8 If G is a Halin graph then χ`
i(G) ≤ max{∆(G) + 2, 6}.

By Lemmas 7 and 8, we thus get:

Theorem 9 If G is a Halin graph then χ`
i(G) ≤ 6, if ∆(G) ∈ {3, 4},
χ`
i(G) ≤ 7, if ∆(G) = 5,
χ`
i(G) = ∆(G) + 1, otherwise.

A cactus is a (planar) graph such that every vertex belongs to at most one cycle. We
prove the following:

Theorem 10 If G is a cactus then χ`
i(G) ≤ max{∆(G) + 1, 8}. Moreover, if ∆(G) ∈ {3, 4}

then χ`
i(G) ≤ ∆(G) + 2.

Apart from improving, if possible, some of the above given bounds, we propose the fol-
lowing open questions:

1. What is the best upper bound on the list incidence chromatic number of subcubic
graphs? (By Theorem 4, we know that this bound is at most 8.)

2. What is the value of χ`
i(Kn)? (By Proposition 1, we know that this value is at most

3n− 4.)

3. Which classes of graphs satisfy the incidence version of the list colouring conjecture, that
is, for which graphs G do we have χ`

i(G) = χi(G)? (By Proposition 1 and Theorem 4,
we know that this equality holds for every tree.)
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Extended Abstract

Given a graph H, we say that G has an H-decomposition if there exists a partition of E(G)
into parts isomorphic to H. One necessary condition for the existence of an H-decomposition
is of course that |E(H)| divides |E(G)|. Since this condition is obviously not sufficient in
general, it is a natural question to ask what additional conditions guarantee the existence of
an H-decomposition. In 2006, Barát and Thomassen [2] considered decompositions of graphs
into trees and conjectured that sufficiently large edge-connectivity may be one such additional
sufficient condition. More precisely, they conjectured the following.

Conjecture 1 [2] For any tree T on m edges, there exists an integer kT such that every
kT -edge-connected graph with size divisible by m has a T -decomposition.

Conjecture 1 has attracted growing attention since its introduction, and was mainly ver-
ified for T being among particular families of trees. These families include stars [9], some
bistars [1, 11], and paths of particular length [5, 7, 8, 10]. Very recently, some breakthrough
results were obtained by Merker [6], who proved the conjecture for T being any tree of di-
ameter at most 4 (hence covering some of the results above), and by Botler, Mota, Oshiro,
and Wakabayashi [4], who proved the conjecture for T being any path. The latter result was
recently improved by Bensmail, Harutyunyan, Le, and Thomassé [3], who showed that, for
path-decompositions, large minimum degree is a sufficient condition provided the graph is
24-edge-connected.

We verify Conjecture 1 for every tree T , hence settling the conjecture in the affirmative.

Theorem 2 (Bensmail, Harutyunyan, Merker, Le, Thomassé ’16+ ) The Barát-Thomassen
conjecture is true.

Our proof uses a mixture of structural and probabilistic techniques.
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Extended Abstrat

Context The ontext of this work is the study of the stable set polytope, some of its linear

and semi-de�nite relaxations, and graph lasses for whih ertain relaxations are tight. The

stable set polytope STAB(G) of a graph G = (V,E) is de�ned as the onvex hull of the

inidene vetors of all stable sets of G. Two anonial relaxations of STAB(G) are the edge
onstraint stable set polytope

ESTAB(G) = {x ∈ [0, 1]V : xi + xj ≤ 1, ij ∈ E},

and the lique onstraint stable set polytope

QSTAB(G) = {x ∈ [0, 1]V : x(Q) =
∑

i∈Q

xi ≤ 1, Q ⊆ V lique}.

We have STAB(G) ⊆ QSTAB(G) ⊆ ESTAB(G) for any graph, where STAB(G) equals

ESTAB(G) for bipartite graphs, and QSTAB(G) for perfet graphs only [5℄.

Aording to a famous haraterization ahieved by Chudnovsky et al. [4℄, perfet graphs

are preisely the graphs without hordless odd yles C2k+1 with k ≥ 2, termed odd holes, or

their omplements, the odd antiholes C2k+1. This shows that odd holes and odd antiholes

are the only minimally imperfet graphs.

As ommon generalization of liques and odd (anti)holes, an antiweb Ak
n is a graph with

n nodes 0, . . . , n − 1 and edges ij if and only if k ≤ |i − j| ≤ n − k and i 6= j. Inequalities

assoiated with the join of some antiwebs A1, . . . , Ak and a lique Q

∑

i≤k

1

α(Ai)
x(Ai) + x(Q) ≤ 1,

are alled joined antiweb onstraints (where α(G) denotes the stability number of G and the

inequality is saled to have right hand side 1). We denote the linear relaxation of STAB(G)
obtained by all joined antiweb onstraints by ASTAB∗(G). By onstrution, we see that

STAB(G) ⊆ ASTAB∗(G) ⊆ QSTAB(G) ⊆ ESTAB(G).

Lovász and Shrijver introdued in [11℄ the PSD-operator LS+ whih, applied to ESTAB(G),
generates a positive semi-de�nite relaxation LS+(G) of STAB(G) satisfying

STAB(G) ⊆ LS+(G) ⊆ ASTAB∗(G).

Graphs G with STAB(G) = LS+(G) are alled LS+-perfet, and all other graphs LS+-

imperfet. A onjeture has been reently proposed in [2℄, whih an be equivalently refor-

mulated as follows [9℄:

Conjeture 1 (LS+-Perfet Graph Conjeture) A graph G is LS+-perfet if and only

if LS+(G) = ASTAB∗(G).
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Figure 1: The graphs GLT (on the left) and GEMN (on the right).

Minimally LS+-imperfet graphs One way to verify Conjeture 1 for a lass G of graphs

is to show that all faet-induing graphs G in G di�erent from liques, antiwebs, and their

omplete joins are LS+-imperfet, i.e., ontain a minimally LS+-imperfet subgraph. The

two smallest suh graphs, found by [7℄ and [10℄, are depited in Figure 1.

Further LS+-imperfet graphs an be obtained by applying operations preserving LS+-

imperfetion.

In [10℄, the strething of a node v is introdued as follows: Partition its neighborhood

N(v) into two nonempty, disjoint sets A1 and A2 (so A1 ∪ A2 = N(v), and A1 ∩ A2 = ∅).
A strething of v is obtained by replaing v by two adjaent nodes v1 and v2, joining vi

with every node in Ai for i ∈ {1, 2}, and either subdividing the edge v1v2 by one node w

(S0-strething) or subdividing every edge between v2 and A2 with one node (δ-strething).

In [10℄ it is shown that both node strethings preserve LS+-imperfetion. Hene, all

strethings of GLT and GEMN are LS+-imperfet, see Figure 2 for some examples.

Figure 2: Some S0-strethings (v1, w, v2 in blak) of GLT and GEMN .

In order to verify Conjeture 1 for line graphs, a haraterization of minimally LS+-

imperfet line graphs is given in [9℄. The proof relies on a result of Edmonds & Pulleyblank [6℄

who showed that a line graph L(H) is faet-de�ning if and only if H is a 2-onneted hy-

pomathable graph (that is, for all nodes v of H, H − v admits a perfet mathing). Suh

graphs H have an ear deomposition H0,H1, . . . ,Hk = H where H0 is an odd hole and Hi is

obtained from Hi−1 by adding an odd path (ear) between distint nodes of Hi−1. In [9℄, it is

shown that the line graph L(H1) of any ear deomposition equals GLT , GEMN or one of its

S0-strethings and that these graphs are the only minimally LS+-imperfet line graphs.

In order to verify Conjeture 1 for webs W k
n = A

k

n, it is shown in [8℄ that all imperfet not

minimally imperfet webs with stability number 2 ontain GEMN and all webs W 2
n di�erent

from W 2
7 ,W 2

10, some strething of GLT . Furthermore, all other webs ontain some LS+-

imperfet W 2
n′ . Hene, the only minimally LS+-imperfet web is W 2

10.

Moreover, GLT and GEMN are generalized in a di�erent way by [1℄ who studied graphs

G with α(G) = 2 suh that G − v is an odd antihole for some node v and showed that G is

minimally LS+-imperfet if and only if v is not ompletely joined to G − v.

Minimally LS+-imperfet law-free graphs Note that all 3 previously mentioned graph

lasses, i.e. line graphs, webs and graphs G with α(G) = 2, are sublasses of law-free graphs.
In [3℄, Conjeture 1 has been veri�ed for law-free graphs. Here, we exhibit that the proofs

presented in [3℄ imply also a haraterization of the minimally LS+-imperfet law-free graphs.

For that, we �rstly onsider quasi-line graphs (i.e., graphs where the neighborhood of

any node splits into two liques). Quasi-line graphs learly onstitute an intermediate lass
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between line graphs and law-free graphs. In addition, they ontain all webs, but no omplete

joins of odd (anti)holes with a further node. With the help of the results in [3℄, one an prove:

Theorem 2 Every LS+-imperfet quasi-line graph ontains the web W 2
10 or an LS+-imperfet

line graph.

For law-free but not quasi-line graphs, it turns out that webs do not play a role, but

instead the minimally LS+-imperfet graphs G with α(G) = 2. Here, one an prove with the

help of the results in [3℄:

Theorem 3 Any LS+-imperfet law-free but not quasi-line graph ontains an LS+-imperfet

graph G with α(G) = 2 or an LS+-imperfet line graph.

Therefore, taking all the previous results into aount, we obtain the following harater-

ization of minimally LS+-imperfet law-free graphs:

Theorem 4 A law-free graph G is minimally LS+-imperfet if and only if

• G has α(G) = 2 suh that G − v is an odd antihole for some node v, not ompletely

joined to G − v,

• G is the web W 2
10,

• G is an LS+-imperfet line graph (i.e., GLT , GEMN or one of its S0-strethings).

Conlusions and future lines of researh The above results imply partiularly that all

other minimally LS+-imperfet graphs ontain a law. The smallest suh graph GBENW is

depited in Figure 3(a). In fat, we have:

Theorem 5 GBENW is the only minimally LS+-imperfet graph with 7 nodes.

v2
v2

v1v2
v1v1

(b)(a) (c)

Figure 3: Some strethings of K4: (a) a δ-strething, (b) an S0-strething, () an S1-strething

(in all three ases, blak-�lled nodes belong to A1, squared nodes belong to A2).

Note that GBENW an be obtained as δ-strething of K4 (Figure 3(a)). Hene, GBENW

is an example of a graph where this operation reates a minimally LS+-imperfet graph,

starting from an LS+-perfet graph. Similarly, GLT an be obtained as S0-strething of K4

(Figure 3(b)), and GEMN by applying a more general operation1, the S1-strething, to K4

(Figure 3()).

Hene, we shall investigate under whih onditions minimally LS+-imperfet graphs an

be generated by one of several possible operations preserving LS+-imperfetion, but also when

suh operations reate new minimally LS+-imperfet graphs starting from a faet-de�ning

LS+-perfet graph. The study of minimally LS+-imperfet graphs an, in turn, open new

perspetives towards verifying or falsifying Conjeture 1.

1In [2℄, the Si-strething of a node was introdued as generalization of the S0-strething where the two
node subsets A1 and A2 interset in a lique of size i.
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Homomorphisms from graphs to integers
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Extended Abstract

Our work deals with homomorphisms from graphs (simple, connected, rooted and finite)
to integers and its generalizations. More precisely, we use the following definition:

A Lipschitz mapping of graph G = (V,E) with root v0 ∈ V is a mapping of V to Z, such
that f(v0) = 0 and for every edge (u, v) ∈ E holds that |f(u)− f(v)| ≤ 1.

This definition was motivated by papers [3] and [4] and was introduced in mentioned form
by Loebl, Nešetřil and Reed [1].

One can view such mapping as a homomorphism from graph to an infinite path with a
loop added to each vertex. This definition generalizes the concept of random walk on path
into graph-indexed random walk and its slightly different version was originally motivated by
a problem in statistical physics [3].

We will be interested in two parameters regarding the Lipschitz mappings. A range of
Lipschitz mapping f of the graph G is the size of set {x|x = f(v) for some v ∈ V }. An
average range of the graph G is an arithmetic average of ranges of all Lipschitz mappings of
G.

We would like to point out that neither a range nor an average range depend on the choice
of the root. Also, the reason for using the rooted graphs is purely technical since we would
otherwise get an infinitely many mappings. The mappings f with f(v0) 6= 0 would then be
just shifted mappings.

Main conjecture on an average range states that paths are extremal with regard to this
parameter. Formally:

Conjecture 1 (Loebl, Nešetřil, Reed 2003 [1]) The maximum value of an average range
over all n-vertex graphs G is achieved by Pn.

A new result was published recently in this direction with the theorem partially solving
the conjecture:

Theorem 2 (Wu, Yaokun and Xu, Zeying and Zhu, Yinfeng [2]) The maximum value
of a(T ) over all trees T on n vertices is achieved by Pn.

Our main result is the generalization of this theorem to all pseudotrees – graphs with at
most one cycle.

Theorem 3 The maximum value of an average range over all pseudotrees on n vertices is
achieved by Pn.

We prove this theorem by introducing the operation which transforms a unicyclic graph
into dragon graph in finitely many steps. A dragon graph is a graph obtained by joining a
cycle graph to a path graph by an edge. We show that this operation does not decrease an
average range. We then prove that an average range for the dragon graph D on n vertices is
lesser or equal to an average range of Pn.

We prove an explicit formula for an average range of cycles as a by-product:

Theorem 4 An average range of the cycle graph Cn is 3n+(−1)n

2·(n0)2
, where

(
n
0

)
2
stands for the

central trinomial coefficient.
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We also show some technical lemmas that can be useful in strengthening our result to
cacti – graphs with each edge contained in at most one cycle.

The second part of our talk is aimed on issues concerning the M -Lipschitz mappings
which are the natural generalization of our main definition. A M -Lipschitz mapping of graph
G = (V,E) with root v0 ∈ V is a mapping of V to Z, such that f(v0) = 0 and for every edge
(u, v) ∈ E holds that |f(u)− f(v)| ≤M .

The first problem deals with the maximum range parameter. That is the maximum of
ranges over all M -Lipschitz mappings. We show that it is tightly connected to a diameter.

Theorem 5 For every graph G with diameter d, maximum range over all M -Lipschitz map-
pings of G is equal to M · (d+ 1).

The last topic of our talk is the problem of partial M -Lipschitz mapping extension – M-
LipExt. M-LipExt gets as an input a graph G and some subset H of the vertices of G
together with the function fH : H → Z. Our task is to determine if there is an M -Lipschitz
mapping f of G such that fH ⊆ f .

We show the quadratic-time algorithm for M-LipExt assuming that the input graph is
a tree.

We acknowledge the support of the Grant Agency of Charles University by project GAUK
1158216. The authors were also supported by the grant CE-ITI P202/12/G061 and by the
grant SVV–2016–260332.
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Packing coloring of circular ladders and generalised H−graphs
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Extended Abstract

All the graphs we consider are simple and loopless undirected graphs. We denote by V (G)
and E(G) the set of vertices and the set of edges of a graph G, respectively. The distance
dG(u, v) between vertices u and v in G is the length (number of edges) of a shortest path
joining u and v. We denote by Pn, n ≥ 1, the path of order n and by Cn, n ≥ 3, the cycle of
order n.

A packing k-coloring of G is a mapping π : V (G) → {1, . . . , k} such that, for every two
distinct vertices u and v, π(u) = π(v) = i implies dG(u, v) > i. The packing chromatic number
χρ(G) of G is then the smallest k such that G admits a packing k-coloring. In other words,
χρ(G) is the smallest integer k such that V (G) can be partitioned into k disjoint subsets
V1, . . . , Vk, in such a way that every two vertices in Vi are at distance greater than i in G
for every i, 1 ≤ i ≤ k. This type of coloring has been introduced by Goddard, Hedetniemi,
Hedetniemi, Harris and Rall [6, 7] under the name broadcast coloring and has been studied
by several authors in recent years (see for instance [1, 2, 3, 4, 5, 9, 10, 11]).

In this work, we determine some exact values, or upper and lower bounds, of the packing
chromatic number of some families of graphs, namely circular ladder graphs, H-graphs and
generalized H-graphs.

We first recall a few known results. The following proposition, which states that having
packing chromatic number at most k is a hereditary property, will be useful in the sequel:

Proposition 1 (Goddard, Hedetniemi, Hedetniemi, Harris and Rall [7]) If H is a
subgraph of G, then χρ(H) ≤ χρ(G).

The packing chromatic numbers of paths and cycles have been determined by Goddard et
al. [7]:

Theorem 2 (Goddard, Hedetniemi, Hedetniemi, Harris and Rall [7])

• χρ(Pn) = 2 if n ∈ {2, 3},

• χρ(Pn) = 3 if n ≥ 4,

• χρ(Cn) = 3 if n = 3 or n ≡ 0 (mod 4),

• χρ(Cn) = 4 if n ≥ 5 and n ≡ 1, 2, 3 (mod 4).

The corona G �K1 of a graph G is the graph obtained from G by adding a degree-one
neighbor to every vertex of G. We call such a degree-one neighbor a pendant vertex or a
pendant neighbor. In [8], we have determined in particular the packing chromatic number of
coronae of cycles:

Theorem 3 (Laïche, Bouchemakh, Sopena [8]) The packing chromatic number of the
corona graph Cn �K1 is given by:

χρ(Cn �K1) =

{
4 if n ∈ {3, 4},
5 if n ≥ 5.
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Figure 1: The circular ladder CL7
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Figure 2: The H-graph H(4)

Recall that the Cartesian product G�H of two graphs G and H is the graph with vertex
set V (G) × V (H), two vertices (u, u′) and (v, v′) being adjacent if and only if either u = v
and u′v′ ∈ E(H) or u′ = v′ and uv ∈ E(G).

The circular ladder CLn of length n ≥ 3 is the Cartesian product CLn = Cn�K2.
Figure 1 depicts the circular ladder CL7. Note that the circular ladder CLn contains the
corona graph Cn �K1. Therefore, by Proposition 1, Theorem 3 provides a lower bound for
the packing chromatic number of circular ladders.

William and Roy [12] proved that the packing chromatic number of a circular ladder of
length n = 6q, q ≥ 1, is at most 5. Our following result determines the packing chromatic
number of any circular ladder:

Theorem 4 For every integer n ≥ 3,

χρ(CLn) =

{
5 if n is even and n ≥ 16, or n ∈ {6, 10, 12},
6 otherwise.

The H-graph H(r), is the 3-regular graph of order 3n, n = 2r, with vertex set

V (H(r)) = {xi : 1 ≤ i ≤ n} ∪ {yi : 1 ≤ i ≤ n} ∪ {zi : 1 ≤ i ≤ n},

and edge set

E(H(r)) = {(xi, xi+1), (zi, zi+1) : 1 ≤ i ≤ n− 1} ∪ {(xn, x1), (zn, z1)}
∪ {(y2i−1, y2i) : 1 ≤ i ≤ r} ∪ {((xi, yi), (yi, zi) : 1 ≤ i ≤ n}.

Figure 2 depicts the H-graph H(4).
William and Roy [12] proved that the packing chromatic number of any H-graph H(r)

with r ≥ 4, r even, is at most 5. Again, we complete their result as follows:
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Theorem 5 For every integer r ≥ 2, χρ(H(r)) = 5 if r is even and 6 ≤ χρ(H(r)) ≤ 7 if n
is odd.

We know consider a natural extension of H-graphs. The generalized H-graph H`(r) with
` levels, ` ≥ 1, is the 3-regular graph of order n(`+ 2), n = 2r, with vertex set

V (H`(r)) = {xij : 0 ≤ i ≤ `+ 1, 1 ≤ j ≤ n}

and edge set

E(H(r)) = {(x0j , x0j+1), (x
`+1
j , x`+1

j+1) : 1 ≤ j ≤ n− 1} ∪ {(x0n, x01), (x`+1
n , x`+1

1 )}
∪ {(xi2j−1, xi2j) : 1 ≤ i ≤ `, 1 ≤ j ≤ r}
∪ {(xij , x

i+1
j ) : 0 ≤ i ≤ `, 1 ≤ j ≤ n}.

Figure 3 depicts the generalized H-graph with three levels H3(4).
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Figure 3: The generalized H-graph H3(4)

Observe that any H-graph is a generalized H-graph with one level. For generalized H-
graphs with two levels, we have the following:

Theorem 6 For every integer r ≥ 2,

χρ(H
2(r)) =

{
7 if r ∈ {2, 4, 7, 8, 11},
6 otherwise.

Finally, for generalized H-graphs with more than two levels, we have the following:

Theorem 7 For every integers r ≥ 2 and ` ≥ 3,

χρ(H
`(r)) =

{
5 if r is even,
6 otherwise.

Finally, we propose the following directions for future research:

1. In Theorem 5, we proved that 6 ≤ χρ(H(r)) ≤ 7, for every odd r. What is the exact
value of χρ(H(r)) in this case?

2. It would be interesting to study the packing coloring of some other classes of graphs
such as, for instance, cactuses, triangulated graphs, outerplanar or planar graphs...
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Extended Abstract

A vertex-distinguishing coloring of a graph G consists in an edge or a vertex coloring (not
necessarily proper) of G leading to a labeling of the vertices of G, where all the vertices are
distinguished by their labels.

There are several possible rules for both the coloring and the labeling. For instance, in a
set irregular edge coloring [5], the label of a vertex is the union of the colors of its adjacent
edges. Other rules for the labeling of a vertex from an edge coloring have been studied: the
multiset of its adjacent colors [1], their sum [3], product or difference [6] (for those three rules,
the colors must be integers)... The variant where the edge coloring is proper has also been
studied [2]. If the vertices are colored, we can define the identifying coloring [4], in which
each vertex is assigned a label corresponding to the union of its closed neighbourhood colors.

Motivated by a generalization of the set irregular edge coloring problem, we introduce a
variant of the problem: to each edge is associated a nonempty set of colors. Given a simple
graph G, a k-coloring of G is a function f : E(G) → 2{1...,k} where every edge is labeled using
a non-empty subset of {1, . . . , k}. For any k-coloring f of G, we define, for every vertex u,
the set idf (u) as follows:

idf (u) =
∪

v s.t. uv∈E

f(uv).

If the context is clear, we will simply write id(u) for idf (u). A k-coloring f is union vertex-
distinguishing if, for all distinct u, v in V (G), id(u) ̸= id(v). Figure 1 shows an example of
such a 4-coloring. For a given graph G, we denote by χ∪(G) the smallest integer such that
there exists a union vertex-distinguishing coloring of G. The union vertex-distinguishing edge
coloring being defined only on graphs without any connected component of size 1 or 2, we
will only consider such graphs. It is easy to notice that such graphs admit a valid union
vertex-distinguishing edge coloring.

{1,2}

{1,4}

{2}

{2}

{3,4}

{2,3,4}

{2}

{3,4}

{4}

{1}

{1,4}

{1,2,4} {1,2}

{1,3,4}

{2,3,4}

{3,4}
{2}

{1}

{1,2,3,4}

Figure 1: An example of a vertex-distinguishing edge coloring.

We have both lower and upper bounds for χ∪:

Proposition 1. For any graph G with no connected component of size 1 or 2, we have the
following inequalities:

⌈log2(|V (G)|+ 1)⌉ ≤ χ∪(G) ≤ min(χS(G), χid(G))
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where χS(G) is the set irregular edge coloring number of G, and χid(G) is the identifying
number of G.

The lower bound comes from the fact that, from k colors, one can have at most 2k − 1
labels, since labels are nonempty subsets of {1, . . . , k}. The upper bound comes from the
relationship between our parameter χ∪ and other vertex-distinguishing parameters: a set
irregular edge coloring is a union vertex-distinguishing edge coloring where only singletons
are allowed, and any identifying coloring induces a valid union vertex-distinguishing edge
coloring.

We say that a graph G is optimally colored if χ∪(G) = ⌈log2(|V |+ 1)⌉. For example, the
graph shown on Figure 1 is optimally colored, since it has 8 vertices and the coloring uses
4 colors. We will see that some classes of graphs can be optimally colored, and that any
graph with no connected component of size 1 or 2 admits a union vertex-distinguighing edge
coloring with at most 2 more colors than the optimal bound. This is the main result of our
paper.

Theorem 2. For any graph G, we have the following property:

⌈log2(|V (G)|+ 1)⌉ ≤ χ∪(G) ≤ ⌈log2(|V (G)|+ 1)⌉+ 2

Sketch of proof. For any graph G, if H is a graph such that V (H) = V (G) and E(H) ⊆ E(G),
then we call H an edge− subgraph of G.

Our proof follows the following schema:

1. We prove that for any edge-subgraph H of a graph G, we have χ∪(G) ≤ χ∪(H) + 1.

2. We then prove that any graph G admits an edge-subgraph isomorphic to a disjoint
union of stars subdivided at most once.

3. We now prove that stars subdivided at most once can be optimally colored.

4. Finally, we prove that a disjoint union of graphs that can be separately optimally colored
can be colored together using at most the optimal number of colors plus one.

Thus, Theorem 2 is proved.
We will present sketches of proofs for each item:
The first point is easily proved: if we assign to each edge of E(G)\E(H) a color that has not

been used in the coloring of H, then the resulting coloring will be union vertex-distinguishing.
The second point is proved by contradiction. We study the smallest graph G which

does not admit a disjoint union of stars subdivided at most once as an edge-subgraph. By
minimality, if we take u a vertex of maximum degree, then for every neighbour v of u, the
component of v in G \ (u, v) is reduced to a single vertex or an edge. This implies that the
component of v in G\(u, v), as well as in G, is a star subdivided at most once, a contradiction.

The third point is proved by finding a valid union vertex-distinguishing edge coloring of
any star subdivided at most once. There are two cases according to there are 2k − 1 vertices
of degree 2 in the neighbourhood of the central vertex or not. In both cases, such a coloring
can be constructed.

The fourth point is a generalization of a smaller result: let H1 and H2 be two graphs
such that 2k ≤ |V (H1)|, |V (H2)| ≤ 2k+1 − 1. If both H1 and H2 can be optimally colored,
then their disjoint union H1 ∪H2 can be optimally colored. Indeed, we only need to add the
color k+1 to each edge of H2. The resulting coloring will be union vertex-distinguishing and
optimal for H1 ∪H2.

Thus, if we have a family of graphs that can be separately optimally colored, we begin by
grouping the graphs Hi,Hj verifying 2k ≤ |V (Hi)|, |V (Hj)| ≤ 2k+1 − 1 for a certain k until
no graph satisfies this anymore. We then use induction to join the remaining graphs, again
by using a color that was not used in any of the graphs that we join. The plus one comes
from the fact that if we have two graphs Hi and Hj such that 2ki ≤ |V (Hi)| ≤ 2ki+1 − 1 <
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2kj ≤ |V (Hj)| ≤ 2kj+1 − 1 and verify |V (Hi)| + |V (Hj)| < 2kj+1, then we use kj + 1 colors
and thus the coloring is not optimal.

As seen in the proof of Theorem 2, we actually "lose" a value on the bound by proving
the second point. We thus conjecture that the upper bound can be improved:

Conjecture 3. For any graph G with no connected component of size 1 or 2, we have:

⌈log2(|V (G)|+ 1)⌉ ≤ χ∪(G) ≤ ⌈log2(|V (G)|+ 1)⌉+ 1

There are several possibilities to try and prove or disprove this conjecture: a first idea
would be to study the exact value of χ∪ for trees or stars subdivided at most once. If graphs
from one of these two classes are optimally colorable, then the conjecture is true.

In addition, we proved that paths, cycles and complete binary trees can be optimally
colored, which validates the above conjecture for these classes and all the graphs that contain
a graph of one of these classes as an edge subgraph (e.g. Hamiltonian graphs).

Theorem 4. We have χ∪(G) = ⌈log2(|V (G)|+1)⌉ if G belongs to one of the following classes
of graphs:

1. Paths of length greater than 2;

2. Cycles of length greater than 3 and different from 7;

3. Complete binary trees.

We have χ∪(G) = ⌈log2(|V (G)|+ 1)⌉+ 1 for the following classes of graphs:

4. Cycles of length 3 and 7;

5. The complete graphs of order 2k − 1.

Sketch of proof. For the first point, we actually prove a slightly larger statement: for n ≥ 3,
there exists an optimal union vertex-distinguishing m-coloring for a path Pn = (u1, . . . , un)
such that id(u1) = {1}, id(un) = {m} and the only vertex that satisfies id(uj) = {1,m} is
un−1. This is proved by induction on n. If n = 2k + ℓ where 0 ≤ ℓ ≤ 2k − 1, we use the
optimal colorings of P2k−1 and Pℓ to create an optimal coloring of Pn.

For the second point, we have two cases: either n = 2k − 1 or not. In the latter case, we
connect the first and last vertices of the path Pn to create an optimal coloring of Cn. The
former case is proved by induction on k.

For the third point, we use induction on the height of the complete binary tree.
For the fourth point, it is easily seen that both C3 and C7 can not be optimally colored, but

using respectively 3 and 4 colors a valid vertex-distinguishing edge coloring can be obtained.
The fifth point is proven by contradiction: if complete graphs of order 2k − 1 could be

optimally colored, then two vertices u and v would be identified each by a different singleton
{i} and {j}. This is contradictory, since the edge uv would have to be colored with both the
singleton {i} and the singleton {j}.
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Extended Abstract

1 Introduction
We use [4] for terminology and notation not defined here and consider simple and undirected
graphs only.

The concept of proper connections in graphs is an extension of proper colourings and is
motivated by rainbow connections of graphs. Andrews et al. [1] and, independently, Borozan
et al. [3] introduced the concept as follows:

An edge-coloured graph G is called k-properly connected if every two vertices u, v ∈ V (G)
are connected by k internally vertex disjoint paths whose edges are properly coloured. The
proper connection number pck(G) is the smallest number of colours needed to colour a k-
connected graph G k-properly connected. Simplifying notion, we say a 1-properly connected
graph is properly connected and we write pc(G) instead of pc1(G).

Further we say, an edge-colouring c has the strong property if for every two vertices u, v ∈
V (G) there exists two properly coloured paths P1 : u = w1w2 . . . wk = v and P2 : u =
z1z2 . . . zl = v such that c(w1w2) 6= c(z1z2) and c(wk−1wk) 6= c(zl−1zl). We note that
pc(G) = 1 if and only if G is complete [3].

For example, colouring the edges of a cycle C alternatingly by two colours makes C
properly connected. If m(C) is even, then this colouring has the strong property as well
as it makes C 2-properly connected, while if m(C) is odd, then there exists two vertices in
C such that there exists exactly one properly coloured path between them. On the other
hand, if m(C) is odd uv is any edge, then colouring the edges of C − uv alternatingly by
two colours and uv by a third one, makes G properly 2-connected and the colouring has the
strong property. Therefore, pc(C) = 2, pc2(C) = 2 + (m(C) mod 2).

For simplifying notation, let [k] be the set {1, 2, . . . , k} for some positive integer k. Fol-
lowing common notation, we say G contains an induced subgraph F if there is a vertex subset
U ⊆ V (G) such that G[U ] ∼= F . Therefore, G is F -free (F-free) if and only if G contains
F (all graphs of F) not as an induced subgraph. Let Si,j,k be the graph consisting of three
induced paths of lengths i,j, and k with a common initial vertex, and S be the set of graphs
whose every component is of the form Si,j,k for some 0 ≤ i ≤ j ≤ k.

In many fields of graph theory, forbidden subgraphs and the connectivity of a graph play an
important role. In [2], Bedrossian characterized pairs of forbidden subgraphs for 2-connected
graphs implying hamiltonicity. Thus, since every noncomplete, hamiltonian graph has proper
connection number 2 [3], his characterization is the starting point for our work to find sufficient
conditions in terms of connectivity and forbidden subgraphs such that pc(G) = 2 holds for
a graph G. We note that all pairs in Bedrossian’s characterization contain the claw. Our
first result improves the above observation on the proper connection number of a graph by
forbidding the claw only.

Theorem 1 Let G be a connected, claw-free, and noncomplete graph. Then pc(G) = 2.

Next, we focus on necessary conditions on forbidden subgraphs, implying a 2-connected
graph to have proper connection number 2.
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Proposition 2

1. Let F be a finite set of graphs. If F ∩ S = ∅, then there exists a 2-connected, F-free
graph G such that pc(G) = 3.

2. Let 0 ≤ i ≤ j ≤ k. If i ≥ 3 or j + k ≥ 15, then there exists a 2-connected, Si,j,k-free
graph G such that pc(G) = 3.

Using this characterization, it is natural to forbid Si,j,k with small i,j, and k, for example
P5, S1,1,2, or S1,1,6.

Theorem 3 If G is a noncomplete, 2-connected, P5-free graph, then pc(G) = 2.

Theorem 4 If G is a noncomplete, 2-connected, S1,1,2-free graph, then pc(G) = 2.

Theorem 5 If G is a noncomplete, 2-connected, S1,1,6-free graph of minimum degree at least
3, then pc(G) = 2.

Some basic results, which are important for our proofs, make only use of the connectivity
of a graph.

Theorem 6 (Borozan et al. [3]) If G is a 2-connected graph, then there exists an edge-
colouring c : E(G)→ [3] having the strong property.

Theorem 7 (Borozan et al. [3]) If G is a 2-connected bipartite graph, then there exists
an edge-colouring c : E(G)→ [2] having the strong property.

The authors claim that their results still hold if one replaces 2-connectivity by 2-edge-
connectivity. As a further consequence, by a result of Paulraja in [5], every 3-connected
graph G has a 2-connected bipartite spanning graph. Therefore, Borozan et al. deduced the
following result.

Theorem 8 (Borozan et al. [3]) If G is a 3-connected graph, then there exists an edge-
colouring c : E(G)→ [2] having the strong property.

Figure 1: Graph B

There are 2-connected graphs having proper connection number 3, for example graph B
in Figure 1 [3]. Since all known graphs have a 3-cut, we study the proper connection number
of 3-edge-connected graphs.

Theorem 9 If G is a 3-edge-connected and noncomplete graph, then pc(G) = 2.
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We note that Theorem 9 closes the gap in transforming Theorems 6, 7, and 8 to their
edge-connected version.

By the results of Borozan et al. [3], one can bound pc(G) for any 2-connected graph by 3
from above. Further it is known that pc(G) = 1 if and only if G is complete [3]. Therefore, our
results contribute to a full characterization in terms of forbidden subgraphs of 2-connected
graphs of proper connecting number 2.

Clearly, it makes only sense to consider the 2-proper connection number pc2(G) in graphs
of connectivity 2 or larger. Therefore, one can readily observe that any proper edge-colouring
in a 2-connected graph G makes G 2-properly connected. Thus, pc2(G) ≤ χ′(G) and, by
Vizing’s Theorem [6], pc2(G) ≤ ∆(G) + 1. Using our next result, we can characterize graphs
achiving equality pc2(G) = ∆(G) + 1. Further, our result shows that, differently to the
proper connection number, there does not exist a constant C such that pc2(G) ≤ C for all
2-connected graphs G.

Theorem 10 If G is a 2-connected graph, different from an odd cycle, then pc2(G) ≤ ∆(G)
and, for every integer ∆ ≥ 2, there exists an infinite class of graphs of maximum degree
∆(G) = ∆ with 2-proper connection number ∆(G).

As shown above, the 2-proper connection number of an odd cycle C is 3 but ∆(C) = 2.
Therefore, the next corollary follows from Theorem 10.

Lemma 11 If G is a 2-connected graph of 2-proper connection number ∆(G) + 1, then it is
an odd cycle.

Although, there exist graphs having equal 2-proper connection number and maximum
degree, the difference ∆(G) − pc2(G) can be arbitrarily large, as one can observe from our
next result. Let G1�G2 be the cartesian product of G1 and G2.

Theorem 12 If G1 and G2 are two traceble graphs of order at least 2, then pc2(G1�G2) = 2.

Therefore, ∆(Kn�Kn) = 2(n− 1), pc2(Kn�Kn) = 2, and ∆(Kn�Kn)− pc2(Kn�Kn) =
2(n− 2).
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Extended Abstract

We use [1] for terminology and notation not de�ned here and consider �nite and simple
graphs only.

A set D ⊆ V (G) is dominating if D∩N [v] 6= ∅ for all vertices v ∈ V (G). The cardinality of
a smallest dominating set is the domination number, γ(G), and such a set is called a minimum

dominating set of G, which we refer to as a γ(G)-set (for example, the set of black vertices
in Figure 1 is a γ(C5)-set).

A set I ⊆ V (G) is independent if every two vertices of I are non-adjacent. The set I is
maximal if there exists no independent set I ′ such that I ⊂ I ′. Further, the cardinality of a
largest independent set in G is the independence number α(G) of G and an independent set
having cardinality α(G) in G is called a maximum independent set. We refer to a maximum
independent set in G as an α(G)-set (for example, the set of black vertices in Figure 2 is an
α(C5)-set). We say that a graph G is well-covered if every maximal independent set in G is
maximum. Clearly, a set C ⊆ V (G) is independent in G if and only if it is a clique in G.
Therefore, maximal and maximum cliques in G are maximal and maximum independent sets
in G, respectively.

Problems on dominating sets as well as on independent sets have a long history in graph
theory, see [1, 6, 7]. Combining the properties of domination and independence, we have the
concept of an independent dominating set in G, which is a set that is both dominating and
independent in G. The cardinality of a minimum independent dominating set in G is the
independent domination number of G, denoted i(G) (for example, the set of black vertices in
Figure 2 is a i(C5)-set). We refer to [5] for a recent survey on independent dominating sets
in graphs.

As a new concept combining independent and dominating sets, Hamid introduced inde-
pendent transversal dominating sets in [4]. An independent transversal dominating set in G,
abbreviated by ITD-set, is a dominating set that intersects every maximum independent set
in G. Thus, if D is an ITD-set of G, then D is a dominating set of G and α(G) > α(G−D).
The independent transversal domination number, denoted by γit(G), of G is the smallest car-
dinality of an ITD-set in G. An ITD-set of cardinality γit(G) is called a minimum independent

transversal dominating set, and is referred to as an γit(G)-set (for example, the set of black
vertices in Figure 3 is a γit(C5)-set).

Figure 1: a γ(C5)-set Figure 2: an i(C5)-set and α(C5)-set Figure 3: a γit(C5)-set

We will see, that sets intersecting all cliques will play an important role for our results.
Therefore, let us introduce the concept of clique transversals. More precisely, a clique transver-
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sal is a set T ⊆ V (G) which intersects every maximal clique in at least one vertex. The car-
dinality of a smallest clique transversal in a graph G, denoted by τC(G), is called the clique
transversal number and any clique transversal of cardinality τC(G) is called a τC(G)-set. Since
every maximal independent set in G is a maximal clique in G, every τC(G)-set intersects every
maximal independent set in G. As an immediate consequence of this observation, we have
the following result.

Lemma 1 If G is a well-covered graph, then γit(G) ≥ τC(G).

The eccentricity of a vertex v in G, denoted by eccG(v) or simply ecc(v) if G is clear from
context, is the maximum distance of a vertex from v in G.

The following classic result due to Ore [10] states that every graph without isolated vertices
has a dominating set of cardinality at most one-half its order.

Theorem 1 (Ore [10]) If G is a graph without isolated vertices, then γ(G) ≤ n(G)
2 .

The corona cor(G) of a graph G, also denoted by G ◦K1 in the literature, is the graph
obtained from G by adding a pendant edge to each vertex of G. Payan and Xuong [11]
characterized those graphs with no isolated vertex and with domination number exactly half
their order.

Theorem 2 (Payan, Xuong [11]) If G is a graph with no isolated vertex, then γ(G) =
n(G)
2 if and only if the components of G are C4 or cor(H) for some connected graph H.

We note that the graphs G given in Theorem 2 that achieve equality in Ore's Theorem 1,
all have the property that there exists a γ(G)-set which is also an ITD-set. A natural question
is to establish an upper bound on the independent transversal domination number of a graph
without isolated vertices. As observed by Hamid [4], every vertex in a complete graph Kn

forms a maximum independent set in the graph, implying that γit(Kn) = n for all n ≥ 1.
Hamid [4] posed the following conjecture.

Conjecture 1 (Hamid [4]) If G is a connected non-complete graph, then γit(G) ≤
⌈
n(G)
2

⌉
.

Since every ITD-set in a graph G is by de�nition a dominating set in G, we observe that
γ(G) ≤ γit(G) always holds. Hamid observed in [4] the following upper bound on γit(G) in
terms of γ(G) and the minimum degree δ(G) of G.

Theorem 3 (Hamid [4]) If G is a graph, then γit(G) ≤ γ(G) + δ(G).

By Theorem 3, one can bound γit(G) from above by γ(G) + 1 for all graphs G having a
vertex of degree 1. In particular, if G is a tree, then γit(G) ≤ γ(G) + 1. However, Hamid
believed that the same upper bound holds for a larger class of graphs.

Conjecture 2 (Hamid [4]) If G is a connected bipartite graph, then γit(G) ≤ γ(G) + 1.

Motivated by Conjectures 1 and 2, our two immediate aims are �rst to disprove Conjec-
ture 1 and second to prove Conjecture 2. Our third aim is to strengthen the upper bound of
Theorem 3, and establish improved upper bounds on γit(G) for a connected graph G.

In this talk we present four in�nite classes of graphs that disprove Conjecture 1. In
particular, two of our classes are de�ned as follows:

Let k ≥ 3 be an integer and let H(k) be the graph obtained from the disjoint union of
two cliques, Kk, on k vertices by adding an edge joining the two cliques.

Example 1 For k ≥ 3, the graph G ∼= H(k) of order n(G) = 2k satis�es γit(G) = k + 1 =
n(G)
2 + 1.
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Figure 4: H(5)

Figure 5: C5[K3]

Let H be a graph vertex disjoint from G. Therefore, the graph G[H] is obtained by
replacing vertices v ∈ V (G) by disjoint sets S(v) such that the graph induced by S(v) is
isomorphic to H and all vertices of S(w) are adjacent to all vertices of S(z) if and only if
wz ∈ E(G).

Example 2 For k ≥ 1, the graph G ∼= C5[Kk] of order n(G) = 5k satis�es γit(G) = 3k =
3
5n(G).

Furthermore, by using Kim's result on the Ramsey number R(3, t) [8] and some results
on clique transversals of Erd®s, Gallai, and Tuza [2], we can prove the following result.

Theorem 4 There do not exist positive constants C < 1 and k ≥ 2 that guarantee that

γit(G) ≤ C · n(G) whenever α(G) ≥ k.

Our examples inspired us to study upper bounds on the independent transversal domina-
tion number of a general graph. The following result strengthens the result of Theorem 3 and
establishes an improved upper bound on γit(G) for connected graphs G. A proof of Theorem 5
is presented in this talk.

Theorem 5 If G is a connected graph and u is a vertex of minimum degree in G, then

γit(G) ≤

{
δ(G) + 1 if eccG(u) ≤ 2,
n(G)
2 + 1 if eccG(u) ≥ 3,

and these bounds are tight.

Theorem 5 implies that for graphs of large diameter the independent transversal domi-
nation number is bounded from above by nearly one-half the order of the graph. However,
when the minimum degree is large, the diameter is small and, as our examples show, the
independent transversal domination number increases.

In this talk we prove that if a graph has independence number at least one-half its or-
der, then the independent transversal domination number is bounded from above by the
domination number plus one.
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Theorem 6 If G is a graph with α(G) ≥ n(G)
2 , then γit(G) ≤ γ(G) + 1, and this bound is

tight.

As a special case of Theorem 6, we remark that Conjecture 2 is proven, since every bipartite
graph has independence number at least one-half its order.

In order to prove Theorem 6, we use the concept of crown decomposition. In particular,
we say that G admits a crown decomposition (C,H,R) if (C,H,R) is a partition of V (G)
such that

1. C is an independent set,

2. there is a maximum matching in G[C,H] covering all vertices of H, and

3. there is no edge in G between a vertex of C and a vertex of R.

Using Hall's marriage Theorem [3], we prove that every graph with independence number

at least n(G)
2 admits a crown decomposition (C,H,R). Furthermore, we show that a set

intersecting all α(G[C,H])-sets intersects all α(G)-sets. By K®nig's Theorem [9], we prove
that if |C| = |H|, then there exists a γ(G)-set D and a vertex v ∈ (C ∪ H) \ D such that
D ∪ {v} is an ITD-set of G, and, if |C| > |H|, then there exists a vertex v in C which is
contained in every α(G[C,H])-set. Therefore, γit(G) ≤ γ(G) + 1 follows.
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Extended Abstract

1 Introduction
We consider finite, simple, and undirected graphs, and use standard terminology and notation.

Let G be a graph. An induced subgraph of G is a graph H such that V (H) ⊆ V (G), and
uv ∈ E(H) if and only if uv ∈ E(G) for all u, v ∈ V (H). Given graphs G and F we say that G
contains F if F is isomorphic to an induced subgraph of G. We say that a graph G is F -free,
if it does not contain F. For two graphs G,H we denote by G+H the disjoint union and by
G ∨H the join of G and H, respectively.

A graph G is called k-colourable, if its vertices can be coloured with k colours so that
adjacent vertices obtain distinct colours. The smallest k such that a given graph G is k-
colourable is called its chromatic number, denoted by χ(G). It is well-known that ω(G) ≤
χ(G) ≤ ∆(G) + 1 for any graph G, where ω(G) denotes its clique number and ∆(G) its
maximum degree. A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G.
A hole in a graph is an induced cycle of length at least four, and an antihole is the complement
of a hole.

A family G of graphs is called χ-bound with binding function f if χ(G′) ≤ f(ω(G′)) holds
whenever G ∈ G and G′ is an induced subgraph of G. For a fixed graph H let G(H) denote
the family of graphs which are H-free.

The following theorems are well known in chromatic graph theory.

Theorem 1 (Erdős) [9]
For any positive integers k, l ≥ 3 there exists a graph G with girth g(G) ≥ l and chromatic
number χ(G) ≥ k.

Theorem 2 The Strong Perfect Graph Theorem [5]
A graph is perfect if and only if it contains neither an odd hole of length at least five nor its
complement.

In this paper we study the chromatic number of 2K2-free graphs. Our work was motivated
by the following problem posed by Gyárfás.

Problem 3 (Gyárfás [11])
What is the order of magnitude of the smallest χ-binding function for G(2K2)?

One of the earliest results is due to Wagon, who has considered graphs without induced
matchings.

Theorem 4 [16] Let G be a 2K2-free graph with clique number ω(G). Then χ(G) ≤
(
ω(G)+1

2

)
.

Theorem 5 [16] The family G(pK2) has an O(ω2p−2) χ-binding function for all p ≥ 1.
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Figure 1: The graphs House, C4, Diamond, and Gem.
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Figure 2: The graphs Claw, Paw, Hammer, and Butterfly.

2 Results for (2K2, H)-free graphs
For (2K2, C4)-free graphs and (2K2, Diamond)-free graphs the following results are known.

Theorem 6 [3] Let G be a (2K2, C4)-free graph of order n and clique number ω(G). Then
χ(G) ≤ ω(G) + 1. Here equality holds if and only if G is not a split graph.

Theorem 7 [2] Let G be a (2K2, Diamond)-free graph of order n and clique number ω(G).
Then χ(G) ≤ ω(G) + 1.

Our first two results are for (2K2, House)-free graphs and (2K2, Gem)-free graphs.

Theorem 8 Let G be a (2K2, House)-free graph of order n and clique number ω(G). Then
χ(G) ≤ 3

2ω(G).

The graph Kk[C5] shows that the bound 3
2ω(G) is sharp.

Theorem 9 Let G be a (2K2, Gem)-free graph of order n and clique number ω(G). Then
χ(G) ≤ 2ω(G).

Next we consider claw-free graphs, which have been studied by Chudnovsky and Seymour.

Theorem 10 [6] Let G be a Claw-free graph with independence number α(G) ≥ 3. Then
χ(G) ≤ 2ω(G).

If G is a claw-free graph with independence number α(G) = 2, then χ(G) ≥ |V (G)|
2 . But

ω(G) maybe of order
√
|V (G)| · log|V (G)| due to Kim [12].

For the class of (2K2, Claw)-free graphs we have shown the following results.

Theorem 11 Let G be a (2K2, Claw)-free graph with independence number α(G) ≥ 3. Then
G is perfect.
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For the proof we will make use of Ben Rebea’s Lemma.

Ben Rebea’s Lemma [7]. Let G be a connected claw-free graph with α(G) ≥ 3. If G contains
an odd antihole then it contains a hole of length five.

Now we turn to (2K2, Claw)-free graphs with independence number α(G) = 2. Surpris-
ingly we can show that there is no linear binding function.

For this purpose we consider the complement G of a graph G, which is (K1 + K3)-free
and C4-free. Suppose, G is K3-free. Hence g(G) ≥ 5. Now we apply a result due to Bollobás
[1] about the independence ratio of graphs with given girth. Using this, for every natural
number ∆, there is a graph G with ω(G)/n < 2(log∆)/∆. However, χ(G) ≥ n

2 implying
χ(G) > ∆

4log∆ · ω(G).

Theorem 12 Let G be the class of (2K2, Claw, 3K1)-free graphs. Then G contains no linear
binding function.

The proof given above admits an immediate generalization as follows.

Theorem 13 Let H be a graph with independence number α(H) ≥ 3, and let G be the class
of (2K2, H, 3K1)-free graphs. Then G contains no linear binding function.

If we add an edge to a claw, we obtain the Paw. Paw-free graphs have been characterized.

Theorem 14 [13] Let G be a connected Paw-free graph. Then G is K3-free or multipartite.

Using this characterization we can show the following result.

Theorem 15 [13] Let G be a connected (2K2, Paw)-free graph. Then G is perfect or G ∼=
C5[n1K1, n2K1, n3K1, n4K4, n5K1]. In the later case, ω(G) = 2 and χ(G) = 3.

Here C5[n1K1, n2K1, n3K1, n4K4, n5K1] denotes the composition of a C5 = v1v2v3v4v5,
where each vertex vi is replaced by niK1 for 1 ≤ i ≤ 5.

3 Superclasses of 2K2-free graphs
A structural characterization of 2K2-free graphs has been shown recently in [8].

Theorem 16 A connected graph is 2K2-free if and only if it forbids P5, Butterfly and
Hammer as induced subgraphs.

This characterization evokes the two graph classes of (P5, Butterfly)-free graphs and of
(P5, Hammer)-free graphs, which are both superclasses of 2K2-free graphs and subclasses of
P5-free graphs. The class of (P5, Butterfly)-free graphs has been considered in [15].

Theorem 17 Let H be a graph such that G(H) has an O(ωt) χ-binding function for some
t ≥ 1, and let G be a connected (P5,K1 ∨ H)-free graph with clique number ω(G). Then G
has an O(ωt+1) χ-binding function.

So we can apply Theorem 5 and Theorem 17 to obtain the following result for (P5, Butterfly)-
free graphs.

Theorem 18 Let G be a (P5, Butterfly)-free graph, then χ(G) ≤ c · ω3 for a constant c.

Next we consider the class of (P5, Hammer)-free graphs. Here we can show the following
binding function.

Theorem 19 Let G be a (P5, Hammer)-free graph with clique number ω = ω(G). Then
χ(G) ≤ ω2.
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Extended Abstract

Graph homomorphisms and their variants play a fundamental role in the study of compu-
tational complexity. For example, the celebrated CSP Dichotomy Conjecture of Feder and
Vardi [6] can be reformulated in terms of digraph homomorphisms or graph retractions. On
the other hand, the dichotomy theorem of Hell and Nešetřil [10] shows that there are no
NP-intermediate graph homomorphism problems. We study two natural types of homomor-
phism problems on signed graphs, one with switching and one without. For one, we prove
a dichotomy theorem for a large class of signed graphs, while for the other we prove that a
dichotomy theorem is equivalent to the CSP Dichotomy Conjecture.

A signed graph is a graph G together with a signing function σ : E(G) → {+,−}. By
setting Σ = σ−1(−), we use the notation (G,Σ) to denote this signed graph. The set Σ of
negative edges is referred to as the signature of (G,Σ). Signed graphs were introduced by
Harary in [8], and studied in depth by Zaslavsky (see for example [16, 17, 18, 19, 20]). The
notion of distinguishing a set Σ of edges can also be found in the work of König [12]. On the
one hand, signed graphs may be viewed as 2-edge-coloured graphs. On the other hand, the
choice of {+,−} to distinguish the edges leads to two natural concepts for (and which are
fundamental to the development of) signed graphs: the sign of a cycle and the operation of
switching.

A cycle or closed walk of (G,Σ) is said to be negative if the product of signs of all edges
is the negative sign, and positive otherwise. A (signed) subgraph of (G,Σ) is called balanced
if it contains no negative cycle. A cycle of length 2 is a digon. We only consider negative
digons.

To switch at a vertex v means to multiply the signs of all edges incident to v by −, that
is, to switch the sign of each of these edges. (In the case of a loop at v, its sign is multiplied
twice and hence it is invariant under switching.) Given signatures Σ and Σ′ on a graph G, the
signature Σ′ is said to be switching equivalent to Σ, denoted Σ ≡ Σ′, if it can be obtained from
Σ by a sequence of switches. Testing if Σ ≡ Σ′ can be done in polynomial time. Zaslavsky
proved that two signatures are equivalent if and only if they induce the same cycle signs [17].

Given two graphs G and H, a homomorphism ϕ of G to H is a mapping of the vertices
ϕ : V (G) → V (H) such that xy ∈ E(G) implies ϕ(x)ϕ(y) ∈ E(H). We write G → H to
denote the existence of a homomorphism. One natural extension of this idea to signed graphs
is to additionally require that homomorphisms preserve the sign of edges.

Definition 1 Let (G,Σ) and (H,Π) be two signed graphs. An edge-coloured homomorphism
of (G,Σ) to (H,Π) is a (graph) homomorphism ϕ : G → H such that for any two adjacent
vertices x and y of G, the signs of the edges xy in (G,Σ) and ϕ(x)ϕ(y) in (H,Π) are the
same. When there is such a homomorphism, we write (G,Σ)

ec−→ (H,Π).

For classical undirected graphs, the complexity of homomorphism testing is completely
determined by the dichotomy theorem of Hell and Nešetřil. Let H be a fixed graph. The
decision problem Hom(H), also known as H-Colouring, has as an instance a graph G, and
asks the question does G→ H?

Theorem 2 (Hell and Nešetřil [10]) If a graph H is bipartite or contains a loop, then
Hom(H) is polynomial-time solvable; otherwise, it is NP-complete.
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Our main focus is a possible extension of Theorem 2 for homomorphism problems for
signed graphs. To this end, let (H,Π) be a fixed signed graph. We define the following
decision problem.

ec-Hom(H,Π)
INSTANCE: A signed graph (G,Σ).
QUESTION: Does (G,Σ)

ec−→ (H,Π)?

The notion of edge-coloured homomorphisms of signed graphs (and graphs with any num-
ber of edge-colours) was studied in [1, 9, 13] from a non-computational point of view. See
also [2, 3, 5] for studies of the computational complexity of edge-coloured homomorphism
problems.

As discussed in [14], it is natural to study signed graph homomorphisms incorporating
switching.

Definition 3 Let (G,Σ) and (H,Π) be signed graphs. A signed homomorphism of (G,Σ) to
(H,Π) is a mapping ϕ : V (G) → V (H) such that there exist a switching (G,Σ′) of (G,Σ)

and a switching (H,Π′) of (H,Π), such that ϕ : (G,Σ′)
ec−→ (H,Π′) is an edge-coloured

homomorphism. When there is such a homomorphism, we write (G,Σ)
s−→ (H,Π).

In this work we have adopted a “one-object, two-homomormophisms” point of view. Work
exclusively on edge-coloured graphs (resp. signed graphs) would simply use the term homo-
morphism of edge-coloured graphs (resp. homomorphism of signed graphs). In particular, our
term signed homomorphism refers to the latter. It does not indicate a signing of the mapping.

Given signed graphs (G,Σ) and (H,Π) together with a graph homomorphism ϕ : G→ H,
an associated edge-mapping is a function ϕ# : E(G)→ E(H) such that for each edge e in G
with edge-points {u, v} the image ϕ#(e) is an edge in H with edge-points {ϕ(u), ϕ(v)}. If e
and ϕ#(e) have the same sign for all e ∈ E(G), then ϕ is an edge-coloured homomorphism.
By definition, if there exists a resiging Σ′ of G, so that ϕ preserves edge signs, then ϕ is a
signed homomorphism. Alternatively the following theorem shows signed homomorphisms
may be viewed as mappings that preserve the important structures in signed graphs: the
adjacency of vertices and the signs of cycles.

Theorem 4 Let (G,Σ) and (H,Π) be signed graphs. Then ϕ : V (G) → V (H), with a given
associated mapping ϕ# : E(G)→ E(H), is a signed homomorphism (G,Σ)

s−→ (H,Π) if and
only if ϕ : G→ H is a homomorphism of the underlying graphs and, for every cycle C of G,
the sign of C in (G,Σ) is the same as the sign of the closed walk ϕ#(C) in (H,Π).

Let (H,Π) be a fixed signed graph. We define the signed homomorphism decision problem
for (H,Π) analogously as in the edge-coloured case.

s-Hom(H,Π)
INSTANCE: A signed graph (G,Σ).
QUESTION: Does (G,Σ)

s−→ (H,Π)?

A primary concern in this work is the computational complexity of the s-Hom(H,Π)
problem. Note that when Π is switching equivalent to E(H) or to ∅, then s-Hom(H,Π)
has the same complexity as Hom(H). Then, the computational complexity of the problem
is decided by Theorem 2. Prior to this work, the only other known case of the problem’s
complexity is the study of [7] about signed cycles, where it is proved that s-Hom(C2k,Π) is
NP-complete if Π has an odd number of elements, and polynomial-time solvable otherwise.
(Note that s-Hom(C2k+1,Π) for k ≥ 1 is always NP-complete.) Here, we give a full dichotomy
characterization in the case where (H,Π) is a simple signed graph. Indeed we prove something
even stronger. We require the following definition: a signed graph (H,Π) is an s-core if for
every endomorphism ϕ : (H,Π)

s−→ (H,Π), ϕ is an automorphism. Every signed graph
(H,Π) contains (as a subgraph) an s-core that is unique up to isomorphism and switching.
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Theorem 5 Let (H,Π) be a connected signed graph that does not contain all three of a
negative digon, a negative loop, and a positive loop. Then, s-Hom(H,Π) is polynomial-time
solvable if the s-core of (H,Π) has at most two edges; it is NP-complete otherwise.

We believe that a full dichotomy holds for signed graph homomorphisms. In fact, we
conjecture that all cases not covered in Theorem 5 are NP-complete.

Conjecture 6 Let (H,Π) be a connected signed graph. Then, s-Hom(H,Π) is polynomial-
time solvable if the s-core of (H,Π) has at most two edges; it is NP-complete otherwise.

Note that the polynomial half of Conjecture 6 is proved in the proof of Theorem 5, that
is, the polynomial case holds for all signed graphs.

The fundamental tool in our work is to reduce signed homomorphism problems to edge-
colour homomophism problems.

Definition 7 Let (G,Σ) be a signed graph. The switching graph of (G,Σ) is a signed graph,
denoted P (G,Σ), constructed as follows.

(i) For each vertex u in V (G) we have two vertices u0 and u1 in P (G,Σ).

(ii) For each edge uv in G we have four edges uivj for i, j ∈ {0, 1} in P (G,Σ), with uivi
having the same sign as uv (for i ∈ {0, 1}) and uiv1−i having the opposite sign as uv.
(In particular, loops do not change sign.)

Edge-coloured switching graphs were defined by Brewster and Graves [4] in a more general
setting related to permutations. This construction is also used by Ochem, Pinlou, and Sen
in [15]. See Klostermeyer and MacGillivray [11] for a similar definition in the context of
digraphs. In the context of signed graphs, Zaslavsky used a construction similar (but different)
to that of switching graphs [18]. The following proposition allows us to transform questions
about signed homomorphisms to the setting of edge-coloured homomorphisms.

Proposition 8 Let (G,Σ) and (H,Π) be two signed graphs. The following are equivalent.

(a) (G,Σ)
s−→ (H,Π),

(b) (G,Σ)
ec−→ P (H,Π),

(c) P (G,Σ)
ec−→ P (H,Π).

Hence Theorem 5 may be viewed as a dichotomy result for edge-coloured homomorphism
for targets of the form P (H,Π). This class of targets is rich enough to express vertex-
colourings of signed graphs (as studied [18, 19, 20]) as homomorphisms. By contrast we
prove that a dichotomy theorem for all edge-coloured homomoprhisms would settle the CSP
Dichotomy Conjecture.

Theorem 9 For each CSP template T , there is a signed graph (H,Π) such that ec-Hom(H,Π)
and Csp(T ) are polynomially equivalent. Moreover, (H,Π) can be chosen to be bipartite and
homomorphic to a path whose signs alternate + and −.
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Extended Abstract

A classic result in graph theory is Whitney’s theorem from 1931 that 4-connected triangu-
lations of the plane are hamiltonian [9]. This result was generalised by Tutte in 1956. He
showed that all 4-connected planar graphs are hamiltonian [8]. In the past decades, stronger
versions of Whitney’s theorem have appeared, with one of the most far-reaching results being
a theorem of Jackson and Yu that a hamiltonian cycle exists even if there are up to three
3-cuts in a plane triangulation [4]. (Henceforth, all triangulations considered here are plane.)

Although Tutte’s seminal theorem has been generalised in several ways as well—see for
instance Sanders’ result that in a 4-connected plane graph a hamiltonian cycle through any
two edges exists [5]—the aforementioned theorem by Jackson and Yu was not generalised to
all 3-connected plane graphs with at most three 3-cuts. We have done so in [1], and this will
be the focal point of our talk. We shall provide context and present an essential stepping stone
leading to the result. Let us emphasise that the theorem of Jackson and Yu does not only
concern the number of 3-cuts, but also their relative position, encoded by a decomposition
tree. Such decomposition trees, which are unique for triangulations, are not defined for general
plane graphs, so only the part about the number of 3-cuts can be generalised.

In this talk, with Steinitz’ theorem in mind [6], the word polyhedron will be used for 3-
connected plane graphs. All cuts here are vertex cuts, and a cut of cardinality k shall be
called a k-cut. Let G be a polyhedron and X = {u, v, w} a 3-cut in G. If (V ′, E′) is a
component of G−X, then G[V ′ ∪X] is called a closed component of G−X. If (V ′′, E′′) is a
closed component of G−X, then (V ′′, E′′ ∪ {uv, vw,wu}) is called an edge closed component
of G −X. In the talk, we shall outline the main idea behind these closed components, and
emphasise the differences between triangulations and polyhedra with respect to hamiltonian
properties and the way we can use or not use certain techniques to achieve our goals.

But there are also significant structural similarities between triangulations and polyhedra;
an example of such a similarity presents itself as follows. While in triangulations 3-cuts are
separating triangles that lie properly inside each other, the relative position in polyhedra can
be more complicated: in a polyhedron, vertices of a 3-cut X may end up in different edge
closed components of a 3-cut X ′. (This makes translating the decomposition tree concept so
difficult.) Thus, it is worthwhile to explicitly state the following result, which is trivial for
triangulations.

Proposition 1 Let G be a polyhedron with k ≥ 1 3-cuts. Then G contains a 3-cut X such
that at least one edge closed component of G−X has no 3-cuts, i.e. the edge closed component
is 4-connected or isomorphic to K4.

A graph G shall be called k-hamiltonian if for each set S of k vertices, the graph G − S
is hamiltonian. In 1994, Thomas and Yu proved the following result which was originally
conjectured by Plummer.

Theorem 2 (Thomas and Yu [7]) 4-connected polyhedra are 2-hamiltonian.

We present the following useful lemma.

Lemma 3 A polyhedron G with k 3-cuts contains a spanning subgraph that can be obtained
from a 4-connected polyhedron by deleting at most k vertices.

Together with this lemma, Theorem 2 implies:
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• Polyhedra with at most two 3-cuts are hamiltonian.

• Polyhedra with at most one 3-cut are 1-hamiltonian.

Theorem 2 can obviously not be strengthened to imply 3-hamiltonicity, so in order to
prove that polyhedra with at most three 3-cuts are hamiltonian, we need a different strategy.
In the talk we will present an important ingredient of the proof of our main theorem from [1],
which now follows.

Theorem 4 A polyhedron with at most three 3-cuts is hamiltonian.

Concerning the connection between the hamiltonicity and the traceability of a polyhedron,
we have the following.

Theorem 5 If all polyhedra with at most k 3-cuts are hamiltonian, then all polyhedra with
at most k + 1 3-cuts are traceable. In particular, all polyhedra with at most four 3-cuts are
traceable.

A natural question is how low we can go with the number of 3-cuts and still find non-
traceable or non-hamiltonian examples.

Proposition 6 (Brinkmann, Souffriau, and Van Cleemput [3]) For all d ≥ 6 there
exist non-hamiltonian triangulations with exactly d 3-cuts.

Proposition 7 For all d ≥ 8 there exist non-traceable triangulations with exactly d 3-cuts.

Combining the above conclusions, the obvious open questions are:

• Are polyhedra with four or five 3-cuts hamiltonian?

• Are polyhedra with five, six or seven 3-cuts traceable?

Unfortunately, the hope for an easy (i.e. structurally simple) answer to either question
is extinguished by the following result, which revolves around toughness and scattering
numbers—in the talk, a brief outline of the connection between these concepts and hamil-
tonicity will be given.

Theorem 8 Polyhedra with at most five 3-cuts are 1-tough, and polyhedra with at most seven
3-cuts have scattering number at most 1.

At the end of the presentation, we give an overview of results on hamiltonian properties
of polyhedra with few 3-cuts [2].

Acknowledgements. The second author is supported by a Postdoctoral Fellowship of the
Research Foundation Flanders (FWO). We thank Brendan McKay for helpful discussions on
this topic.
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Extended Abstract

1 Introduction

Much of the background for this work and references to related work can be found in [1] and
[5]. We consider only undirected graphs with no loops or multiple edges.

Let ω(G) denote the number of components of a graph G. A vertex cut of a connected
graph G = (V,E) is a set S ⊆ V with ω(G − S) > 1. A graph G is said to be t-tough if
|S| ≥ t · ω(G − S) for every vertex cut S of G. The toughness of G, denoted τ(G), is the
maximum value of t for which G is t-tough (taking τ(Kn) = ∞ for the complete graph Kn

on n ≥ 1 vertices). Hence if G is not a complete graph, τ(G) = min{|S|/ω(G − S)}, where
the minimum is taken over all vertex cuts S of G. Following Plummer [14], a vertex cut S
of G is called a tough set if τ(G) = |S|/ω(G − S), i.e. a tough set is a vertex cut S of G for
which this minimum is achieved. A graph G is hamiltonian if G contains a Hamilton cycle,
i.e. a cycle containing every vertex of G.

Historically, most of the research on toughness has been based on a number of conjectures
in [8]. The most challenging of these conjectures, which is still open, states that there is a
constant t such that every t-tough graph is hamiltonian. This conjecture is called Chvátal's
Conjecture and has been shown to be true when restricted to a number of graph classes,
including planar graphs, claw-free graphs, co-comparability graphs, and chordal graphs. In
order to keep this exposition short, we refer the interested reader to [1] or [5] for more
information and a survey of results, and more speci�cally to [7, 10, 2] for results on chordal
graphs.

For split graphs, a subclass of chordal graphs, it was shown in [13] that every 3/2-tough
split graph on at least three vertices is hamiltonian. Moreover, it was shown there that this
result is best possible, in the sense that there is a sequence {Gn}∞n=1 of split graphs with no
2-factor and τ(Gn) → 3/2. Similar toughness results on subclasses of chordal graphs were
obtained in [11] (for spider graphs) and in [12] (for interval graphs). Recently, the result
on split graphs was extended in [6], where it was shown that 25-tough 2K2-free graphs are
hamiltonian.

2 New results

In this presentation, we �rst consider an extension of the class of split graphs to the class of
multisplit graphs, motivated by bisplit graphs that were introduced in [4]. A graph G = (V,E)
is called a k-multisplit graph (k ≥ 2) if V can be partitioned into two disjoint sets S and T
such that S is an independent set in G and T induces a complete k-partite subgraph in G.
For k = 2, the class coincides with the class of bisplit graphs, and in the degenerate case that
each class in the k-partition consists of only one vertex, the k-multisplit graph is just a split
graph.

As a new contribution to the �eld, using matching and alternating path techniques, we
show that Chvátal's Conjecture holds for k-multisplit graphs by proving the following theorem.

Theorem 1 Every 2-tough k-multisplit graph on at least three vertices is hamiltonian.
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While this establishes Chvátal's Conjecture for a new graph class, we do not know whether
our bound on the toughness is best possible.

In contrast, as a second main result, we prove a best possible toughness result for a class of
graphs that extends the class of C∗5 -graphs. The latter class of graphs was recently introduced
and studied in [6] as a special subclass of 2K2-free graphs, in fact it is precisely the class of
triangle-free non-bipartite 2K2-free graphs.

For an integer p ≥ 3, a graph G = (V,E) is called a C∗p -graph if V consists of p non-empty
disjoint independent sets A1, A2, . . . , Ap such that, for all i = 1, 2, . . . , p− 1, the sets Ai and
Ai+1, as well as the sets Ap and A1 induce complete bipartite graphs in C∗p , so the edges of
these bipartite graphs are the only edges of E. Note that, in particular, C∗p -graphs are Pp-free
and triangle-free if p ≥ 4, so they have to be dealt with as special cases if one aims to prove
Chvátal's Conjecture for Pp-free or triangle-free graphs. In [6], it is proved that a C∗5 -graph
is hamiltonian if and only if it is 1-tough. Here, we extend this result by using the Max-Flow
Min-Cut Theorem due to Ford and Fulkerson [9] to prove the following result.

Theorem 2 A C∗p -graph (p ≥ 3) is hamiltonian if and only if it is 1-tough.

Our other results deal with the computational complexity of determining the toughness of
graphs in the above two classes. It was shown in [3] that the problem of recognizing t-tough
graphs is coNP-complete for every �xed positive rational t. This implies that it is NP-hard
to compute the toughness of a general input graph. On the other hand, toughness can be
computed e�ciently when the input graph is restricted to certain graph classes; see [1] and
[5] for more details. In particular, recognizing t-tough graphs is polynomially solvable within
the classes of claw-free graphs and split graphs [15]. This complexity question is still open for
many well-studied graph classes, e.g. for (maximal) planar graphs and for chordal graphs.

In contrast to the result of [15] on split graphs, we use a result of [13] to show that
determining the toughness of k-multisplit graphs is NP-hard.

Theorem 3 For any �xed integer k ≥ 2, determining the toughness of k-multisplit graphs
is an NP-hard problem.

Next to this, we prove that the toughness of C∗p -graphs can be determined in polynomial
time, using a direct approach to characterize and restrict the candidates for possible tough
sets.

Theorem 4 The toughness of a C∗p -graph (p ≥ 3) can be determined in polynomial time.

Theorems 2 and 4 together imply that it can be checked in polynomial time whether a
C∗p -graph is hamiltonian.
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Extended Abstract

Domination in graphs has shown as a extremely fruitful concept, since it was originally
de�ned in the late �fties [1] and named in the early sixties [7]. A dominating set of a graph G is
a vertex set S such that any vertex not in S has at least one neighbor in S. Multiple variants of
domination have been de�ned over the past �fty years, putting the focus on di�erent aspects.
One of them is the idea of broadcasting, �rstly introduced in [6] and taken up more recently
in [3]. This model re�ects the idea of several broadcast stations, with associated transmission
powers, that can broadcast messages to places at distance greater than one. We recall the
formal de�nition from [3].

De�nition 1 (Erwing'04 [3]) For a graph G any function f : V (G)→ {0, 1, . . . , diam(G)}
is called a broadcast on G. A vertex v ∈ V (G) with f(v) > 0 is a f -dominating vertex and

the set V +
f = {v ∈ V (G) : f(v) > 0} is the f -dominating set. An f -dominating vertex v is

said to f -dominate every vertex u with d(u, v) ≤ f(v). A dominating broadcast on G is a

broadcast f such that every vertex in G is f -dominated. The cost of a f -dominating broadcast

is σ(f) =
∑

v∈V +
f
f(v) and the dominating broadcast number γB(G) is the minimum value of

σ(f) over all dominating broadcast of G.

In this work we follow the suggestion posed in [4] as an open problem of considering the
broadcast dominating problem with limited broadcast power.

De�nition 2 (Dunbar et all.'06 [4]) Let G be a graph, let f : V (G)→ {0, 1, 2} be a func-

tion and let V +
f = {v ∈ V (G) : f(v) ≥ 1}. We say that f is a dominating 2-broadcast if for

every u ∈ V (G) there exists v ∈ V +
f such that d(u, v) ≤ f(v). The cost of a 2-dominating

broadcast f is ω(f) =
∑

v∈V +
f
f(v) and the 2-broadcast dominating number of G is

γ
B2

(G) = min{ω(f) : f is a 2-dominating broadcast of G}.

We study this parameter in [2]. Among other results, we have obtained a general upper
bound in terms of the order of the graph, which is reached for graphs of every order.

Theorem 3 For every graph G of order n,

γ
B2

(G) ≤ d4n/9e.

Moreover there are graphs of order as great as desired that attain this bound.

This upper bound is smaller in the particular case of the caterpillars. Recall that a
caterpillar C is a tree such that the graph obtained by removing all its leaves is a path. The
broadcast number has been studied in this graph class in [8]. In this case we have obtained
the following upper bound of the 2-broadcast domination number.

Theorem 4 Let C be a caterpillar of order n, then

γB2
(C) ≤ d2n/5e.

Moreover there are caterpillars of order as great as desired that attain this bound.
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There is a natural upper bound for the broadcast number in every graph [3]

γB(G) ≤ min{γ(G), rad(G)}

that provides the following classi�cation of graphs [4]

• Type I graphs: γB(G) = γ(G)

• Type II graphs, also called radial graphs: γB(G) = rad(G)

• Type III: γB(G) < min{γ(G), rad(G)}

In [8] author characterizes Type I caterpillars and radial trees are studies in [5]. The 2-
broadcast domination number is independent from the radius of the graph, however it keeps
the domination number as an upper bound. So the question of characterize graphs with
γ
B2

(G) = γ(G) arises. Following the ideas in [8] we have obtained a characterization of
caterpillars satisfying this condition.

References

[1] C. Berge. Theory of Graphs and its Applications. Collection Universitaire de Mathéma-
tiques, vol. 2. Dunod, Paris (1958).

[2] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas Upper Bounds on k-
Broadcast Domination. preprint

[3] D.J. Erwin. Dominating brodcast in graphs. In Bulletin of the ICA 42:89�105, 2004.

[4] J.E. Dunbar, D.J. Erwin, T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi. Broadcast in
graphs. In Discret. Appl. Math. 154:59�75, 2006.

[5] S. Herke, C.M. Mynhardt. Radial trees. In Discrete Math. 309(20):5950�5962, 2009.

[6] C.L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, New York, NY
(1968).

[7] O. Ore. Theory of Graphs. American Mathematical Society Publication, vol. 38. American
Mathematical Society, Providence, RI (1962).

[8] S.M. Seager. Dominating Broadcast of caterpillars. In Ars Combinatoria 88:307�319,
2008.

65



Packing graphs of bounded codegree

Wouter Cames van Batenburg1 and Ross J. Kang

Department of Mathematics, Radboud University Nijmegen, Netherlands

Extended Abstract

Let G1 and G2 be two graphs (with neither loops nor multiple edges) on n vertices. They
are said to pack if there exist injective mappings of their vertex sets into [n] = {1, . . . , n}
so that their edge sets have disjoint images. Equivalently, they pack if G1 is a subgraph of
the complement of G2. The maximum codegree ∆∧(G) of a graph G is the maximum over
all vertex pairs of their common degree. The maximum adjacent codegree ∆M(G) of G is the
maximum over all pairs of adjacent vertices of their common degree. Clearly, ∆M(G) ≤ ∆∧(G)
always. Let ∆1 and ∆2 denote the maximum degrees of G1 and G2, respectively, and ∆∧1 and
∆M

2 the corresponding maximum (adjacent) codegrees. Our aim is to obtain good su�cient
conditions for G1 and G2 to pack in terms of ∆1, ∆2, ∆∧1 , ∆M

2 and n.
The study of graph packing was initiated in the 1970s [2, 6, 7, 16] and has attracted

considerable attention over the years. The central question is the following.

Conjecture 1 (Bollobás and Eldridge [2] and Catlin [7]) If G1, G2 are as above, then
G1 and G2 pack provided (∆1 + 1)(∆2 + 1) ≤ n+ 1.

If true, the statement would be sharp and would signi�cantly generalise a celebrated result
of Hajnal and Szemerédi [11] on equitable colourings. Sauer and Spencer [16] showed that
2∆1∆2 < n is a su�cient condition for G1 and G2 to pack.

The Bollobás�Eldridge�Catlin (BEC) conjecture is a notorious problem in combinatorics.
Despite concerted e�orts, for instance with probabilistic and regularity methodology, the
BEC conjecture has been con�rmed in only the following special cases: ∆1 = 2 [1]; ∆1 = 3
and n su�ciently large [10]; G1 bipartite and n su�ciently large [9]; and G1 d-degenerate,
∆1 ≥ 40d and ∆2 ≥ 215 [4]. It has also been shown that an approximate BEC condition,
(∆1 + 1)(∆2 + 1) ≤ 3n/5 + 1, is su�cient for G1 and G2 to pack, provided that ∆1,∆2 ≥
300 [14].

It is intuitive to expect that additional sparsity conditions on G1 or G2 makes packing
with respect to the BEC conjecture easier. This has already borne out of two of the results
mentioned above [4, 9]. We continue in this vein by investigating when the maximum codegree
∆∧1 of G1 is bounded. Note that ∆∧1 < 2 is equivalent to having no 4-cycle as a subgraph in
G1. Our main result is the following.

Theorem 2 Let G1, G2 be as above. Let t ≥ 2 be an integer. Then G1 and G2 pack provided
∆1(∆2 + 1) ≤ n+ 1 and ∆∧1 < t and ∆1 > 17t ·∆2.

This immediately implies that, for t ≥ 2, the BEC conjecture holds under the additional
conditions that ∆∧1 < t and ∆1 > 17t · ∆2. By taking G2 to be a collection of (nearly)
equal-sized cliques, Theorem 2 also implies that, if G is a K2,t-free graph of maximum degree
∆ with ∆ ≥

√
17t · n, then its equitable chromatic number is at most ∆(G). (This is not a

direct corollary to the result of Hajnal and Szemerédi.)
We were unable to avoid the linear dependence on ∆2 in the lower bound condition on

∆1 in Theorem 2. Although we have not seriously attempted to optimise the factor 17t, we
can improve on it if we also assume that ∆M

2 is bounded, as exempli�ed by the following.

Theorem 3 Let G1, G2 be as above. Let t ≥ 2 be an integer. The BEC conjecture holds
under the additional conditions that ∆∧1 < t, G2 is triangle-free, and ∆1 > (4 +

√
5)t ·∆2.

1This author is supported by NWO grant 613.001.217.

66



We actually derive our main results from the following more general albeit more technical
statements. For integers t ≥ 2 and ∆2 ≥ 1, we de�ne

α∗(t,∆2) :=
1

2
(2 + γ +

√
4γ + γ2), where γ =

∆2

∆2 + 1
· t− 1

t
.

Note that α∗ satis�es (α∗ − 1)2 − γα∗ = 0 and 1
8 (9 +

√
17) ≤ α∗ ≤ 1

2 (3 +
√

5).

Theorem 4 Let G1, G2 be as above. Let t ≥ 2 be an integer and let α > α∗ = α∗(t,∆2)
and 0 < ε < 1/2 be reals. Then G1 and G2 pack if ∆∧1 < t and n is larger than each of the
following quantities: (

t+
α(α− 1)

(α− 1)2 − α

)
·∆2 + ∆1∆2, (1)

(2αt+ 2) ·∆2 + ((2α+ 1)t− 1) ·∆2
2 + (1− ε) ·∆1∆2, (2)

1 +

(
2 +

ε

1− 2ε

)
·∆2 + ∆1∆2, and (3)(

t+
3− ε

2

)
·∆2 +

3− ε
2

(t− 1) ·∆2
2 +

1 + ε

2
·∆1∆2. (4)

Theorem 5 Let G1, G2 be as above. Let s ≥ 1 and t ≥ 2 be integers and let α > α∗ =
α∗(t,∆2) be real. Then G1 and G2 pack if ∆∧1 < t, ∆M

2 < s, and n is larger than both of the
following quantities: (

t+
α(α− 1)

(α− 1)2 − α

)
·∆2 + ∆1∆2 and (5)

(2 + 2αt) ·∆2 + (s− 1) ·∆1 + ((2α+ 1)t− 1) ·∆2
2. (6)

The proofs of Theorems 4 and 5 proceed by considering a hypothetical edge-minimal
counterexample (G1, G2), meaning that there exist injective mappings of the vertex sets of
G1, G2 into [n] such that the images of their edge sets have exactly one common element.
Such a hypothetical counterexample has a rich structure. First, by de�nition it is not possible
to obtain a packing by relabelling the vertices in G1. In particular, this fact implies that there
is a �xed vertex u such that every other vertex is connected to u by an edge of G1 followed
by an edge of G2, or an edge of G2 followed by an edge of G1. This in itself already implies
the relatively crude bound 2∆1∆2. Second, the fact that G1 is K2,t-free implies that any
two vertices of G1 cannot have neighbourhoods that overlap too much. So, if one knows that
there is a vertex set A and at least q other vertices for each of which the intersection of their
neighbourhood with A is rather large, then one knows that either q or the size of A must be
rather small. This intuition is made precise with a lemma of Corrádi [8]. Last, bounds on the
maximum degrees immediately yield bounds on several neighbourhood sets. These are the
three main ingredients we use in a case analysis to show that the entire vertex set is covered
by several small (intersections of) (neighbourhoods of) neighbourhoods, ultimately leading
to a contradictory upper bound on n, thus proving the theorem. The precise details can be
found in the full version of the paper [5].

The BEC conjecture notwithstanding, naturally one might wonder whether Theorem 4,
or rather Theorem 2, could be improved according to a weaker form of the BEC condition, as
was the case for d-degenerate G1 [4]. In other words, it would be interesting to improve upon
the Ω(∆1∆2) terms appearing in each of (1)�(4). We leave this to further study, but point
out the following constructions where G1 has low maximum codegree, which mark boundaries
for this problem.

• When n is even, there are non-packable pairs (G1, G2) of graphs where G1 is a perfect
matching (so ∆∧1 = 0) and 2∆1∆2 = n, cf. [13].
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• Bollobás, Kostochka and Nakprasit [3] exhibited a family of non-packable pairs (G1, G2)
of graphs where G1 is a forest (so ∆∧1 = 1) and ∆1 ln ∆2 ≥ cn for some c > 0.

• If ∆∧(G) = 1, then the chromatic number of G satis�es χ(G) = O(∆(G)/ ln ∆(G)) as
∆(G) → ∞, and there are standard examples having arbitrarily large girth that show
this bound to be sharp up to a constant factor, cf. [15, Ex. 12.7]. Since the equitable
chromatic number is at least the chromatic number, these examples moreover yield
non-packable pairs (G1, G2) of graphs having ∆1

ln ∆1
(∆2 + 1) ≥ cn for some c > 0 and

∆∧1 = 1.

Since the examples can also have the maximum adjacent codegree ∆M
1 being zero, this

last remark hints at another natural line to pursue, which could signi�cantly extend both the
result of Csaba [9] and a result of Johansson [12]. If ∆1 is large enough and G1 is triangle-free,
is some condition of the form ∆1

ln ∆1
(∆2 + 1) = cn for some constant c > 0 su�cient for G1

and G2 to pack?
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Extended Abstract

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). A graceful

labelling of G is an injection f : V (G) → {0, . . . , |E(G)|} such that {|f(u) − f(v)| : uv ∈
E(G)} = {1, 2, . . . , |E(G)|}. A graceful labelling f of G is an α-labelling if, additionally,
there exists an integer k ∈ {1, 2, . . . , |E(G)|} such that, for each edge uv ∈ E(G), either
f(u) ≤ k < f(v) or f(v) ≤ k < f(u). If a graph G has a graceful labelling (α-labelling),
we say that G is graceful (α-labellable). A result that follows directly from the definition of
α-labelling is that if a graph G has an α-labelling, then G is bipartite. Therefore, the only
graphs which are expected to have such a labelling are bipartite graphs, such as trees.

In 1967, Rosa introduced four types of labellings of graphs, including graceful labellings
and α-labellings, and posed the Graceful Tree Conjecture which states that all trees are
graceful [6]. Rosa proved that the Graceful Tree Conjecture is a strenghtened version of
the well-known Ringel-Kotzig Conjecture which states that the complete graph K2m+1 has
a cyclic decomposition into subgraphs isomorphic to a given tree T with m edges. In his
seminal article, Rosa also proved that, for any positive integer p, if a graph G with m edges
has an α-labelling, then there exists a cyclic decomposition of the complete graph K2pm+1

into subgraphs isomorphic to G. Thus, as in the case of graceful labellings, this second result
stresses the importance of α-labellings in the study of cyclic decompositions of complete
graphs.

The Graceful Tree Conjecture is a very important open problem in Graph Theory [3].
On the other hand, unlike graceful labellings, there are several examples of trees that do not
have an α-labelling [4]. Nevertheless, α-labellings of trees have been investigated by many
authors [1, 2, 4, 5] due to their connection with cyclic decompositions of complete graphs and
also due to the fact that α-labellings also have suitable properties that allow one to obtain
larger α-labellable trees or graceful trees from smaller α-labellable trees [4, 5].

A family of trees for which α-labellings are still not characterized is the family of lobsters,
defined as follows. Let T be a tree and P be one of its longest paths. We say that T is
k-distant if all of its vertices are at distance at most k from P . Path P is called the spine

of T . The k-distant trees with k ∈ {0, 1, 2} have specific names in the literature: 0-distant
trees are paths, 1-distant trees are caterpillars, and 2-distant trees are lobsters. It is well-
known that every caterpillar has an α-labelling but the same is not true of lobsters [6]. For
example, Huang et al. [4] proved that no lobster of diameter four that is not a caterpillar has
an α-labelling.

A characterization of trees with maximum degree three and having α-labellings is still not
known, despite some attempts towards this end [1, 2]. In particular, Brinkmann et al. [2]
determined all trees with maximum degree three and at most 36 vertices that do not have
an α-labelling. They obtained a necessary condition for a tree to admit an α-labelling and
they found a family F of trees that do not admit α-labellings, defined as follows: a tree T

belongs to F if it can be obtained from a tree T ′ with 4k vertices, k ≥ 1, all of odd degree,
by subdividing each one of its edges. Furthermore, the authors observe that all trees T with
15 ≤ |V (T )| ≤ 36 and maximum degree three either have an α-labelling or are in F , leading
them to ask the following.

Question 1 (Brinkmann et al. [2]). Do all trees without an α-labelling, with maximum degree

three and at least 15 vertices belong to family F?

Motivated by Question 1, in this work, we investigate α-labellings of trees with maximum
degree three restricted to lobsters. We approach this family by using an important tool, called
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π-representation, introduced by Kotzig in order to deal with α-labellings and we present an
infinite family of lobsters with maximum degree three that have an α-labelling. The result
obtained in this work, points towards an affirmative answer to Question 1 when restricted to
the family of lobsters.

In order to state our result, some additional definitions are needed. Let G be a lobster with
∆(G) = 3. The legs of G are the non-trivial connected components obtained by removing the
edges of its spine. Note that, since ∆(G) = 3, the legs of G are isomorphic to P2, P3, or K1,3,
and are called 1-leg, 2-leg and Y -leg, respectively. Let P be the spine (v1, v2, . . . , vt) of G.
For integers i, j with 1 ≤ i ≤ j ≤ t, let P i,j denote the subpath (vi, vi+1, . . . , vj) of P . The
subgraph inherited from P i,j is the subgraph consisting of P i,j and all legs having a vertex in
P i,j . For 1 ≤ i ≤ t, the i-prefix is the subgraph inherited from P 1,i, while the i-suffix is the
subgraph inherited from P t−i+1,t. An i-ending is either the i-prefix or the i-suffix. When i is
irrelevant, we will speak of ‘a/an prefix/suffix/ending’. A prohibited suffix is one of the three
suffixes shown in Figure 1. Symmetrically, there are three prohibited prefixes. A prohibited

ending is either a prohibited suffix or a prohibited prefix.

vtvt vt vt−1vt−1 vt−1vt−2 vt−2vt−2 vt−3

Figure 1: The three prohibited suffixes.

In this work, we prove the following theorem:

Theorem 2. Let G be a lobster with ∆(G) = 3 and without Y -legs. If G has at most one

prohibited ending, then G has an α-labelling.

1 Preliminaries

In 1973, Kotzig [5] studied α-labellings of arbitrary bipartite graphs and he introduced a type
of graphical representation for a bipartite graph whose existence is equivalent to the existence
of an α-labelling. This graphical representation is called π-representation and we define it in
the context of trees as follows.

Let L0, L1 and L2 be three distinct parallel lines lying on a plane such that L1 and L2

are both equidistant from L0. Also, let T be a tree with bipartition {V1, V2}. Consider a
drawing of T such that: (i) the vertices of V1 and V2 lie on the lines L1 and L2, respectively,
and there is a real number d such that any two consecutive vertices on either L1 or L2 are
distance d; (ii) the edges of T are drawn as straight lines; and (iii) if two edges intersect, then
their intersection does not lie on line L0. Such a drawing of T is called a π-representation of
T and we say that T is π-representable if it can be drawn this way. As an example, Figure 2
exhibits two π-representations of the path P8.

L0 L0

L1 L1

L2 L2

v1

v1 v2

v2 v3

v3 v4

v4 v5

v5 v6

v6 v7

v7 v8

v8

00 11 22 33

44 55 66 77

Figure 2: Two π-representations of P8 and their respective α-labellings.

When dealing with π-representations, it is necessary to be able to talk about the distance
of a vertex from the end of a π-representation. Following Kotzig, consider a π-representation
of a tree T with vertices of V1 on L1 and vertices of V2 on L2. For i = 1, 2, label the vertices of
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Vi in order on Li as pi(0), pi(1), . . . , pi(|Vi| − 1). (We use the same direction for both L1 and
L2.) For j = 0, 1, . . . , |Vi| − 1, we set depth+(pi(j)) = j and depth−(pi(j)) = |Vi| − 1− j. For
example, in the first π-representation of Figure 2, the vertex v1 = p2(0) has depth+(v1) = 0
and depth−(v1) = 3, and the vertex v6 = p1(2) has depth+(v6) = 2 and depth−(v6) = 1.

Kotzig turns a π-representation of a tree into an α-labelling by labelling p1(i) with i and
p2(i) with |V (T )| − 1 − i. He shows this is an α-labelling. Conversely, the inverse function
converts an α-labelling of a tree into a π-representation.

Theorem 3 (Kotzig [5]). A tree T has an α-labelling if and only if it has a π-representation.

The importance of π-representations as a tool to study α-labellings is in the fact that two π-
representations can be linked in order to obtain a larger π-representation, which, equivalently,
provides us a way to obtain a larger α-labellable tree from two smaller ones. This construction
is widely used in our proofs:

Lemma 4 (Kotzig [5]). Let T ′ and T ′′ be two π-representable trees and x ∈ V (T ′), y ∈ V (T ′′)
such that T ′ and T ′′ have π-representations in which depth−(x) = depth+(y). Then, the tree

T obtained from T ′ ∪ T ′′ by the addition of the new edge xy is π-representable.

As previously stated, every caterpillar is α-labellable and, therefore, has a π-representation.
However, in our proof, we are interested in a specific π-representation of caterpillars which is
presented in Lemma 5. We say that a caterpillar is a C-block when its π-representation under
consideration is the π-representation stated at Lemma 5.

Lemma 5 (Kotzig [5]). Let T be a caterpillar with spine (v1, . . . , vn), n ≥ 1. Then, T has a

π-representation in which depth+(v1) = depth−(vn) = 0.

2 Results

In this section, we present our main results. In the proof of Theorem 2, we decompose lobster
G into vertex-disjoint subgraphs isomorphic to specific caterpillars called L-blocks, which are
defined as follows. Let T be a caterpillar with maximum degree at most three and spine
(v1, . . . , vn), n ≥ 6, which satisfies the following condition: if ∆(T ) = 3, then its vertices
of degree three are vi1 , . . . , vik such that 3 < i1 < i2 < · · · < ik < n − b, for b ∈ {0, 1, 2}.
Caterpillar T is denoted by the ordered tuple ({i1, . . . , ik}, b). We say that ({i1, . . . , ik}, b)
is an L-block if it has a π-representation such that depth+(v3) = depth−(vn−b) = 0. In
Lemma 6, we present the L-blocks that are used in the proof of Theorem 2. Lemmas 7 and 8
present additional results on π-representations of caterpillars that are considered in our proof.

Lemma 6. The following caterpillars are L-blocks: (∅, 2); ({4}, 2); ({4, 5}, 2); ({7}, 2);
({7, 8}, 2); ({4, 5, 9}, 2); ({4, 9}, 2); (∅, 1) not isomorphic to P8; ({4, 5}, 1) with |V (T )| ≥ 9 and

|V (T )| 6= 12; ({4}, 1) with |V (T )| ≥ 8 and |V (T )| 6= 11; ({7}, 1) with |V (T )| ≥ 11; ({7, 8}, 1)
with |V (T )| ≥ 12; ({4, 5, 9}, 1) with |V (T )| ≥ 14; and ({4, 9}, 1) with |V (T )| ≥ 13.

Lemma 7. The following caterpillars have a π-representation such that depth+(v3) = 0:
({7}, 0) with |V (T )| ∈ {9, 10}; ({7, 8}, 0) with |V (T )| = 11; ({4, 5, 9}, 0) with |V (T )| = 13;
({4, 9}, 0) with |V (T )| = 12; and ({4}, 1) with |V (T )| = 7.

Lemma 8. Let G be a lobster with ∆(G) = 3 and without Y -legs. For i ∈ {3, 4}, let H be an i-

suffix of G. If H is isomorphic to a prohibited suffix, then H does not have a π-representation

in which the vertex vt−i+1 has depth 0.

2.1 Sketch of the proof of Theorem 2

Let G be a lobster with ∆(G) = 3 and without Y -legs. Let the path (v1, v2, . . . , vt) be the
spine of G and adjust notation so that no suffix of G is one of the three prohibited suffixes.
This is possible, since such an ending exists by hypothesis.
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Given the spine (v1, v2, . . . , vt) and proceeding in order from v1, we partition G into C-
and L-blocks as follows. If there is no 2-leg, then G is a caterpillar; G is a C-block and is the
only block. Otherwise, let vj+1 be the first vertex that is in a 2-leg; the first block B1 is the
C-block inherited by P 1,j .

We suppose we have i ≥ 1 such that the ith block Bi has been determined with last spine
vertex vj ; the leg, if there is one, containing vj is in Bi. Suppose first that there is a k > j

such that there is a 2-leg containing vk. Choose the minimal such k. If k > j + 1, then
the next block Bi+1 is the C-block that is the subgraph inherited by P j+1,k−1. In the case
k = j + 1, if there is an l > k such that the subgraph inherited by P k,l is an L-block, then,
choosing the minimal such l yields one of the graphs in Lemma 6 as Bi+1. If no such l exists,
then subgraph inherited from P k,t is the suffix that makes the last block Bi+1. Finally, if
there is no k > j such that vk is in a 2-leg, the suffix that is the subgraph inherited from
P j+1,t is the last block Bi+1. Lemmas 6 and 7 combine with Lemma 4 to show that we can
glue together the blocks (with depths always equal to 0).
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Extended Abstract

1 Introduction
The first known result in extremal graph theory was published in 1907 when Mantel [4] proved
that the maximum number of edges in a simple graph without a triangle as a subgraph is
bn2/4c. Turán [6] generalized this result to find the maximum number of edges without Kr

as a subgraph, where Kr denotes the complete graph on r vertices. It’s important to note
that these results do not hold if the graphs considered are not simple, therefore, throughout
this text, we consider only simple graphs.

The Turán number ex(n,H) is the maximum number of edges in a graph on n vertices
which does not contain H as a subgraph. Using this notation, Mantel’s Theorem states that
ex(n,K3) = bn2/4c. Let Hex(n,G) represent an extremal graph on n vertices without G as
a subgraph with ex(n,G) edges. Turán’s Theorem states that Hex(n,Kr+1) = Tr(n), where
Tr(n) is the complete r-partite graph on n vertices in which all parts have size bn/rc or dn/re.

For a general graph H, the value of ex(n,H) is asymptotically well known. Erdős, Stone
and Simonovits’ Theorem [2] states that

lim
n→∞

ex(n,H)

n2
=

χ(H)− 2

2χ(H)− 2
.

Although this theorem gives a lot of information on the asymptotic growth of ex(n,H), it
should be noted that it is only of interest for nonbipartite graphs. If H is bipartite, it asserts
merely that ex(n,H)� n2. In this paper, we focus on the Turán number for bipartite graphs.
In particular, we consider when H = kP3, where Pr is a path on r vertices and kG consists
of k vertex-disjoint copies of the graph G.

For graphs G and H, let G +H and G ∨H be the disjoint union and join of G and H,
respectively. The join of G and H is the graph obtained from G+H by adding edges from all
vertices of G to all vertices of H. Simonovits [5] showed that the graph Kk−1∨Tr(n−k+1) is
the unique extremal graph forbidding kKr+1 for sufficiently large n. Gorgol [3] gave upper and
lower bounds for the Turán numbers forbidding kH, for a connected graph H on r vertices.
The lower bound was obtained by noting that neither G1(n, kH) = Kkr−1+Hex(n−kr+1, H)
nor G2(n, kH) = Kk−1 ∨ Hex(n − k + 1, H) contain k disjoint copies of H. Indeed, for
G1(n, kH), Kkr−1 does not have enough vertices to contain kH and Hex(n − kr + 1, H)
contains no copies of H. In the second case, since Hex(n − k + 1, H) contains no copies of
H, any copy of H in G2(n, kH) must contain at least one vertex in Kk−1 which implies that
there can be at most k − 1 copies of H in G2(n, kH). Gorgol’s lower bound is, therefore,

ex(n, kH) ≥ max{e(G1(n, kH)), e(G2(n, kH))}

where e(G) denotes the number of edges in G.
We consider the case whenH = P3. Let g1(n, k) = e(G1(n, kP3)), g2(n, k) = e(G2(n, kP3))

and Gorgol(n, k) = max{g1(n, k), g2(n, k)}. Note that Hex(n, P3) =Mn, where Mn is a near
perfect matching on n vertices. If n is even, then Mn consists of a matching on n vertices
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and, if n is odd, then Mn =Mn−1 +K1. Thus, e(Mn) = bn/2c and we have

g1(n, k) =

(
3k − 1

2

)
+

⌊
n− 3k + 1

2

⌋
;

g2(n, k) =

(
k − 1

2

)
+ (n− k + 1)(k − 1) +

⌊
n− k + 1

2

⌋
; and

Gorgol(n, k) =

{
g1(n, k), for 3k ≤ n < 5k,
g2(n, k), for n ≥ 5k.

When n < 3k, a graph on n vertices cannot contain kP3 as a subgraph. Gorgol’s conjecture
states that ex(n, kP3) = Gorgol(n, k) when n ≥ 3k and, in the same paper, Gorgol proved
this is true when k ∈ {2, 3}. Bushaw and Kettle [1] also proved the conjecture to be true for
n ≥ 7k.

In this paper, we give a constructive proof for Gorgol’s Conjecture for all values of n and
k. In particular, we give an algorithm that finds a set of disjoint copies of P3 given a graph G
as input. We prove Gorgol’s Conjecture by showing that, if G has n vertices and more than
Gorgol(n, k) edges, then this algorithm returns at least k disjoint copies of P3 in G.

2 Algorithm overview
A P3 configuration on G is a family of disjoint sets of vertices Q = {Q1, . . . , Qs} such that,
for 1 ≤ i ≤ s, |Qi| = 3 and G[Qi], the subgraph of G induced by Qi, contains a copy of P3 as
a subgraph. The size of the P3 configuration Q = {Q1, . . . , Qs} is s and is denoted by s(Q).
The number of triangles in Q is the number of Qi’s that induce a triangle in G. We say that
a P3 configuration Q′ is an improvement of Q if either s(Q′) > s(Q) or if s(Q′) = s(Q) and
Q′ has more triangles than Q.

We start with a P3 configuration Q0 of size 0 and proceed through a sequence of iterations.
For i ≥ 1, in the i-th iteration, the algorithm follows a sequence of steps looking for an
improvement Qi from the current known P3 configuration Qi−1. The steps will be performed
in order and, whenever a step is successful in finding an improvement, we begin a new iteration
starting from the first step. This guarantees that if a step is unsuccessful, then all previous
steps are also unsuccessful. If no improvement is found on any step of an iteration, then the
algorithm stops.

3 Algorithm Iteration
In this section, we describe the behaviour of the algorithm on each iteration. Each iteration
follows a sequence of steps in a given order.

On the i-th iteration, each step checks for a condition on Qi−1 to obtain an improvement
Qi. In what follows, we describe the sequence of steps in the algorithm indexed by the order
they are checked. In these steps, consider Q = Qi−1 = {Q1, . . . , Qs}, U = Q1 ∪ · · · ∪Qs and
F = V(G)− U .

To help the reader understand the relationship between the algorithm steps and Gorgol’s
conjecture we prove a few results which are valid whenever a step cannot find an improvement
on a given iteration. When proving these results, we always assume G has n vertices, e(G) >
Gorgol(n, k) and s(Q) < k. We state these conditions here and not on each result to avoid
the repetition.

Step 1
If F has any vertex u that has two distinct neighbours also in F , then choose Q containing u
and two of its neighbours in F and define Qi = Q∪ {Q}.

For A ⊆ V(G), let eG(A) be the number of edges of G[A]. For A,B ⊆ V(G), let eG(A,B)
be the number of edges in G with one endpoint in A and another in B. Let dG(v) and
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dG(v,A) be the degree of v in G and the number of neighbours of v in A, respectively. Let
neG(A,B) = |A||B| − eG(A,B) be the number of non-edges with one endpoint in A and
another in B. When G is clear from the context, we drop the subscript on this notation.

When Step 1 does not apply, it is expected that there are some sets Qj with many edges
to vertices in F . Therefore, we rely on finding improvements of our current configuration by
rebuilding those sets Qj with many edges to F . Let EEj(G) = eG(Qj) + eG(Qj , F )− 9. We
say that a set Qj has excess edges if EEj(G) ≥ 1. Such sets will be key to find a desired
improvement for Q, therefore we show that at least one set Qj has excess edges. We do so as
a corollary of the following inequality which is important in our proof of Gorgol’s Conjecture.

Lemma 1 Let Q+ = {Q1, · · · , Qk−1} where the sets Qs(Q)+1, . . . , Qk−1 are disjoint sets of
three vertices in F and let U∗ = U ∪Qs+1∪ · · · ∪Qk−1. If EE∗j (G) = eG(Qj)+eG(Qj , V (G)\
U∗)− 9, then ∑

1≤i<k

EE∗i (G) >
∑

1≤i<j<k

ne(Qi, Qj).

Corollary 2 There is at least one set in Q with excess edges.

Let L = {Qj ∈ Q : EEj(G) ≥ 1}. For every Qj ∈ L, let xj be a vertex of Qj with the
largest number of neighbours in F . In the remaining steps, we use the following auxiliary
lemmas to find improvements in Q.

Lemma 3 If Qj ∈ L, then e(Qj , F ) ≥ 7 and d(xj , F ) ≥ 3.

Lemma 4 Let C be a 4-cycle contained in a graph G. If C has at least two neighbours w1

and w2 not in C, then G[V(C) ∪ {w1, w2}] contains two copies of a P3.

Step 2
For all Q ∈ Q, do one of the following if the conditions are satisfied.

1. If G[Q ∪ F ] contains two disjoint copies of P3 with vertex sets Q′ and Q′′, then define
Qi = {Q′, Q′′} ∪ Q \ {Q}.

2. If Q does not induce a triangle but G[Q∪F ] contains a triangle with vertex set Q′, then
define Qi = {Q′} ∪ Q \ {Q}.

We get the following results if Step 2 does not apply.

Lemma 5 No vertex in F has two neighbours in any Qa ∈ L.

Lemma 6 If Qa ∈ L, then d(xa, F ) ≥ 6.

When we look for an improvement to Q, Lemma 6 tells us that if Qa, Qb ∈ L, then we
can choose disjoint neighbours of xa and xb in F to replace Qa and Qb as Q′a and Q′b using
only vertices in {xa, xb} ∪F . This observation will be recurrent in the following steps to find
an improvement for Q by using the vertices in (Qa ∪Qb) \ {xa, xb} to find another copy of a
P3.

Step 3
For all distinct Qa, Qb ∈ Q, do one of the following if the conditions are satisfied.

1. If G[Qa ∪Qb ∪F ] contains three disjoint copies of P3 with vertex sets Q, Q′ and Q′′ as
a subgraph, then define Qi = {Q,Q′, Q′′} ∪ Q \ {Qa, Qb}.

2. If neither Qa nor Qb induce triangles in G but G[Qb ∪ Qa ∪ F ] contains a triangle
with vertex set Q and a disjoint copy of P3 with vertex set Q′, then define Qi =
{Q,Q′} ∪ Q \ {Qa, Qb}.
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We get the following results if Step 3 does not apply.

Lemma 7 If Qa, Qb ∈ L, then ne(Qa, Qb) ≥ 4.

Lemma 8 If ne(Qa, Qb) ≤ 1 for Qa ∈ L and Qb ∈ Q \ L, then e(Qb, F ) = 0.

Step 4
For all distinct Qa ∈ Q \ L and Qb, Qc ∈ L do as follows. If G[(Qa ∪ Qb ∪ Qc) \ {xb, xc}]
contains two disjoint copies of P3 with vertex sets Q and Q′, then let Q′a and Q′b be disjoint
containing xa and xb and contained in F ∪{xa, xb} and that contain copies of P3 in G. Define
Qi = {Q,Q′, Q′a, Q′b} ∪ Q \ {Qa, Qb, Qc}.

We get the following result if Step 4 does not apply.

Lemma 9 If ne(Qa, Qb) ≤ 1 for Qa ∈ Q \ L and Qb ∈ L, then ne(Qa, Qc) ≥ 6 for every
Qc ∈ L \ {Qb}.

4 Proof of Gorgol’s Conjecture
Let G be a graph with n vertices and e(G) > Gorgol(n, k). Suppose we apply the provided
algorithm to G and it returns a P3 configuration Q. Assume to the contrary that s(Q) < k.

Lemma 10 If n < 5k and Qj ∈ L, then EE∗j (G) ≤ 2k − 4.

When n ≥ 5k, we can get the following strengthening of Lemma 1.

Lemma 11 Let Q+ and EE∗ be defined as in Lemma 1. If n ≥ 5k, then∑
1≤i<k

(EE∗i (G)− n+ 5k − 7) >
∑

1≤i<j<k

ne(Qi, Qj).

Lemma 12 If n ≥ 5k and Qj ∈ L, then EE∗j (G)− n+ 5k − 7 ≤ 2k − 10.

Theorem 13 If a graph G has n vertices with e(G) ≥ Gorgol(n, k), then the provided algo-
rithm will find a P3 configuration of size at least k.

Most results in this paper are used to find upper bounds on EE∗ or lower bounds on the
number of non-edges between sets in a P3 configuration of size smaller than k. The main
ideia behind the proof of Theorem 13 is to use these bounds to find a contradiction for the
inequalities in Lemma 1 when n < 5k and Lemma 11 when n ≥ 5k.
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Extended Abstract

Throughout, G = (V,E) refers to a simple loopless graph and n denotes the number of
vertices in G when the graph in question is clear. Standard graph theory notation is used
throughout, but we make the following definitions explicit. We denote by G[X] the subgraph
of G induced by X ⊆ V (G). A clique is a set Q ⊆ V (G) such that G[Q] is a complete graph.
The edge clique cover number of a graph G, denoted ecc(G), is the minimum number of
complete subgraphs of G whose union contains every edge of G. This parameter, also known
as the intersection number of a graph, was introduced by Erdős, Goodman, and Posa [3]. In
addition to being a interesting parameter in its own right, it is also related to a parameter
known as the competition number of a graph, introduced by Cohen [2] in the study of food
webs.

We begin with the following problem:

Problem 1 (Chen, Jacobson, Kézdy, Lehel, Scheinerman, Wan [1]) If G is a claw
free graph, is ecc(G) ≤ n?

It was shown in [1] that the answer is “yes” in the special case of quasi-line graphs (graphs
where the neighborhood of any vertex can be partitioned into two cliques), a question which
was of interest from the point of view of competition numbers of graphs. More recently,
Javadi and Hajebi [4] showed that ecc(G) ≤ n for any claw-free graph with α(G) ≥ 3, a result
which relies on the claw-free graph structure theorem due to Chudnovsky and Seymour (in
particular, see [6]). Our work focuses on the last remaining case:

Conjecture 2 If G is a graph with α(G) = 2, then ecc(G) ≤ n.

Tightness of the conjectured upper bound

In [4], it is shown that the bound given in Problem 1 is tight, and the graphs having
α ≥ 3 which attain the bound are characterized. We show that upper bound is tight even in
the case when α = 2. A set of edges E′ ⊆ E(G) is called a packing if for any two distinct
edges e1, e2 ∈ E′, no clique of G contains both e1 and e2. The packing number of G, denoted
pack(G), is the maximum size of a packing of G. Since no clique of G can cover two edges
of a packing, ecc(G) ≥ pack(G). We use the following lemmata regarding pack(G) when
α(G) = 2.

Lemma 3 If α(G) = 2, then pack(G) ≤ n.

Lemma 4 If α(G) = 2 and pack(G) = n, then ecc(G) = n.

We then construct an infinite family of graphs with independence number 2 and packing
number n. Let n = 3k+1 for some integer k ≥ 1, and let Hk = (V,E) with V = {0, . . . , n−1}
and E = {ij : i−j ≡ 0, 1 (mod 3)}. In other words, i and j are adjacent if and only if i−j+1
is not a multiple of 3.
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Lemma 5 For any k ≥ 1, α(Hk) = 2 and pack(Hk) ≥ n.

It follows that the bound proposed in Conjecture 2 is tight.

Upper bounds on ecc(G)

We begin the following simple lemma.

Lemma 6 If G with α(G) ≤ 2 has no dominating edge, then ecc(G) ≤ n.

Our main theorems below provide upper bounds on ecc(G) graphs with independence
number 2. These are obtained by showing that one may remove dominating edges without
increasing the independence number of the graph, then bounding the number of cliques needed
to cover the removed dominating edges in two different ways. This method, combined with
Lemma 6, yields the following two theorems as a result.

Theorem 7 If G is a graph with α(G) = 2, then ecc(G) ≤ n+ δ(G) + 1.

Theorem 8 There exists a positive real number c such that if G is a graph with α(G) = 2,
then ecc(G) ≤ 2n− c

√
n log n.

The results in these theorems above are improvements on results of Javadi, Maleki, and
Omoomi [5], who show that there is a constant c such that ecc(G) ≤ cn4/3 log1/3 n if α(G) = 2.

We also consider the fractional version of the problem. A graph G has a fractional edge
clique cover of size k if there exists a set of cliques Q and a real-valued weight function w
such that

1. w(Q) ≥ 0 for all Q ∈ Q,

2.
∑

Q : e∈E(G[Q])

w(Q) ≥ 1 for each e ∈ E(G), and

3.
∑
Q∈Q

w(Q) ≥ k.

The fractional edge clique cover number of a graph G, denoted eccf (G) and first studied in
[7], is the smallest k such that G has a fractional edge clique cover of size k. The proofs of the
theorems above are easily modified to give upper bounds on eccf (G) which are improvements
on their integer counterparts (though, all of which are still greater than n).

Further results

The proof idea behind Theorems 7 and 8 can be used to show that Conjecture 2 holds in
some special cases. Two examples are as follows:

Theorem 9 If G is a graph with α(G) = 2 and diam(G) ≤ 3, then ecc(G) ≤ dn2 e+ 1.

Theorem 10 If G is a C4-free graph with α(G) = 2, then ecc(G) ≤ n.

We also derive a number of properties which a vertex-minimal counterexample to Con-
jecture 2 must have, if one exists, in terms of connectivity, clique number, and minimum
degree.
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Extended Abstract

Partial cubes are the graphs which admit an isometric embedding into a hypercube.
Djoković [4] characterized partial cubes in the following simple but pretty way: a graph
G = (V,E) can be isometrically embedded in a hypercube if and only if G is bipartite and for
any edge uv, the sets W (u, v) = {x ∈ V : d(x, u) < d(x, v)} and W (v, u) = {x ∈ V : d(x, v) <
d(x, u)} are convex. In this case, W (u, v) ∪ W (v, u) = V , whence W (u, v) and W (v, u)
are complementary convex subsets of G, called halfspaces. The edges between W (u, v) and
W (v, u) correspond to a coordinate in a hypercube embedding of G.

Moreover, partial cubes have the separation property S3: any convex subgraph G′ of a
partial cube G can be represented as an intersection of halfspaces of G [2]. We call such a
representation (or simply the convex subgraph G′) a restriction of G. A contraction of G is the
partial cube G′ obtained from G by contracting all edges corresponding to a given coordinate
in a hypercube embedding. Now, a partial cube H is called a partial cube-minor (abbreviated,
pc-minor) of G if H can be obtained by a sequence of contractions from a convex subgraph
of G. If T1, . . . , Tm are finite partial cubes, then F(T1, . . . , Tm) is the set of all partial cubes
G such that no Ti, i = 1, . . . ,m, can be obtained as a pc-minor of G. We say that a class of
partial cubes C is pc-minor-closed if we have that G ∈ C and G′ is a minor of G imply that
G′ ∈ C. For any set of partial cubes T1, . . . , Tm, the class F(T1, . . . , Tm) is pc-minor-closed.
Many important subfamilies of partial cubes are pc-minor-closed as it can be shown from
their basic properties: median graphs, bipartite cellular graphs, graphs of lopsided sets, tope
graphs of COMs, the class S4 also known as Pasch graphs,. . .

In the talk we present some structural results of graphs in F(Q−3 ), where Q−3 denotes the
graph of the three dimensional cube minus a vertex. In some sense this is the simplest, non-
trivial pc-minor-closed family. It turns out that this class presents a natural generalization
to many known families; for the reasons that all finite convex subgraphs of graphs in F(Q−3 )
can be obtained from the Cartesian products of edges and even cycles (cells) by gluing them
together, we call them hypercellular graphs.

Our results mainly concern their structure. It is well-known [1] that median graphs are
exactly the graphs in which the convex hulls of isometric cycles are hypercubes; these hy-
percubes are gated subgraphs. Moreover, any finite median graph can be obtained by gated
amalgams from cubes [5, 7]. Analogously, it was shown in [3] that any isometric cycle of
a bipartite cellular graph is a convex and gated subgraph; moreover, the bipartite cellular
graphs are exactly the bipartite graphs which can be obtained by gated amalgams from even
cycles. We extend these results in the following way:

Theorem 1 The convex closure of any isometric cycle of a graph G ∈ F(Q−3 ) is a gated
subgraph isomorphic to a Cartesian product of edges and even cycles.

We say that a partial cube G satisfies the 3-convex cycles condition (abbreviated, 3CC-
condition) if for any three convex cycles C1, C2, C3 that intersect in a vertex and pairwise
intersect in three different edges the convex hull of C1 ∪ C2 ∪ C3 is a cell. Defining the
dimension of a cell X as the number of edge-factors plus two times the number cyclic factors
(which corresponds to the topological dimension of [X]) one can give a natural generalization
of the 3CC-condition. We say that a partial cube G (or its cell complex X(G)) satisfies the
3-cell condition (abbreviated, 3C-condition) if for any three cells X1, X2, X3 of dimension
k + 2 that intersect in a cell of dimension k and pairwise intersect in three different cells of
dimension k + 1 the convex hull of X1 ∪X2 ∪X3 is a cell.
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Theorem 2 For a partial cube G = (V,E), the following conditions are equivalent:

(i) G ∈ F(Q−3 ), i.e., G is hypercellular;

(ii) any cell of G is gated and G satisfies the 3CC-condition;

(iii) any cell of G is gated and G satisfies the 3C-condition;

(iv) each finite convex subgraph of G can be obtained by gated amalgams from cells.

A further characterization of hypercellular graphs is analogous to median and cellular
graphs. We show that hypercellular graphs satisfy the so-called median-cell property, which
is essentially defined as follows: for any three vertices u, v, w of G there exists a unique gated
cell X of G such that if u′, v′, w′ are the gates of u, v, w in X, respectively, then u′, v′ lie on
a common (u, v)-geodesic, v′, w′ lie on a common (v, w)-geodesic, and w′, u′ lie on a common
(w, u)-geodesic. Namely, we have:

Theorem 3 A partial cube G satisfies the median-cell property if and only if G is hypercel-
lular.

Theorem 2 immediately implies that median graphs and bipartite cellular graphs are
hypercellular. Furthermore, a subclass of netlike partial cubes, namely partial cubes which are
gated amalgams of even cycles and cubes [6], are hypercellular. In particular, we obtain that
these three classes coincide with F(Q−3 , C6), F(Q−3 , Q3), and F(Q−3 , C6 ×K2), respectively.
Other direct consequences of Theorem 2 concern convexity invariants (Helly, Caratheodory,
Radon, and partition numbers) of hypercellular graphs which are shown to be either a constant
or bounded above.
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Steinberg’s Conjecture is false

Vincent Cohen-Addad∗ Michael Hebdige† Daniel Král’‡
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Steinberg’s Conjecture is one of the most well-known open problems in planar graph
colourings. The conjecture has been open for 40 years and reads as follows:

Conjecture 1 (Steinberg’s Conjecture). Every planar graph that does not have a cycle of
length of four and five can be coloured using at most three colours.

As a possible approach to proving the conjecture, Erdős [?] suggested finding the small-
est c such that every planar graph that does not contain cycles of length {4,...,c} is 3-
colourable. The best known bound was proven in 2005 by Borodin et al. [?] when they
showed that every planar graph that does not have cycles of length four, five, six and seven
is 3-colourable i.e. c ≤ 7.

We resolve Steinberg’s conjecture by constructing a planar graph that has no cycles of
lengths four or five that is not 3-colourable. This counterexample also acts as a counterex-
ample to the following strengthenings of Steinberg’s Conjecture.

Conjecture 2 (Strong Bordeaux Conjecture [?]). Every planar graph that does not have
any pair of adjacent triangles or a cycle of length five is 3-colourable.

Conjecture 3 (Novosibirsk 3-Color Conjecture [?]). Every planar graph that does not have
a cycle of length three sharing an edge with a cycle of length three or five is 3-colourable.
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Extended Abstract

The chromatic number χ(D) of a digraph D is the chromatic number of its underlying graph.
The chromatic number of a class of digraphs D, denoted by χ(D), is the smallest k such that
χ(D) ≤ k for all D ∈ D, or +∞ if no such k exists. If χ(D) 6= +∞, we say that D has
bounded chromatic number.

We are interested in the following question : which are the digraph classes D such that
every digraph with sufficiently large chromatic number contains an element of D ? Let us
denote by Forb(H) (resp. Forb(H)) the class of digraphs that do not contain H (resp. any
element of H) as a subdigraph. The above question can be restated as follows :

Problem 1. Which are the classes of digraphs D such that χ(Forb(D)) < +∞ ?

An oriented graph is an orientation of a (simple) graph. An oriented path (resp., an
oriented cycle) is said directed if all vertices have in-degree and out-degree at most 1.

Observe that if D is an orientation of a graph G and Forb(D) has bounded chromatic
number, then Forb(G) has also bounded chromatic number. A classical result by Erdős
implies that G must be a tree. Burr proved that every (k − 1)2-chromatic digraph contains
every oriented tree of order k and conjectured Burr [3] that it could be further improved to
(2k − 2)-chromatic digraphs.

For special oriented trees T , better bounds on the chromatic number of Forb(T ) are
known. The most famous one, known as Gallai-Hasse-Roy-Vitaver Theorem [6] states that
χ(Forb(P+(k))) = k, where P+(k) is the directed path of length k (a directed path is an
oriented path in which all arcs are in the same direction).

The chromatic number of the class of digraphs not containing a prescribed oriented path
P on n vertices with two blocks (blocks are maximal directed subpaths) has been determined
by Addario-Berry et al. [1] :

Theorem 2 (Addario-Berry et al. [1]). Let P be an oriented path with two blocks on n ≥ 4
vertices, then χ(Forb(P )) = n− 1.

In this paper, we are interested in the chromatic number of Forb(H) when H is an infinite
family of oriented cycles. Let us denote by S-Forb(D) (resp. S-Forb(D)) the class of digraphs
that contain no subdivision ofD (resp. any element ofD) as a subdigraph. We are particularly
interested in the chromatic number of S-Forb(C), where C is a family of oriented cycles.

Let us denote by ~Ck the directed cycle of length k. For all k, χ(S-Forb(~Ck)) = +∞
because transitive tournaments have no directed cycle. Let us denote by C(k, `) the oriented
cycle with two blocks, one of length k and the other of length `. Observe that the oriented
cycles with two blocks are the subdivisions of C(1, 1). As pointed by Gyárfás and Thomassen
(see [1]), there are acyclic oriented graphs with arbitrarily large chromatic number and no
oriented cycles with two blocks. Therefore χ(S-Forb(C(k, `))) = +∞. We first generalise this
result to every oriented cycle.

Theorem 3. For any oriented cycle C, χ(S-Forb(C)) = +∞.

In fact, we show the following stronger theorem.

Theorem 4. For any positive integers b, c, there exists an acyclic digraph Dc with χ(Dc) ≥ c
in which all oriented cycles have more than b blocks.
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We need a construction due to Erdős and Lovász [5] of hypergraphs with high girth and
large chromatic number.

Theorem 5. [5, Theorem 1’] For k, g, c ∈ N, there exists a k-uniform hypergraph with girth
larger than g and weak chromatic number larger than c.

We assume g is being fixed, the following construction allow us to find Dc+1 from Dc.
Let p be the number of proper c-colourings of Dc, and let those colourings be denoted by
col1c , ..., col

p
c . By Theorem 5 there exists a c× p-uniform hypergraph H with weak chromatic

number > p and girth > g/2. Let X = {x1, . . . , xn} be the ground set of H.
We construct Dc+1 from n disjoint copies D1

c , ..., D
n
c of Dc as follows. For each hyperedge

S ∈ H, we do the following :

• We partition S into p sets S1, . . . , Sp of cardinality c.
• For each set Si = {xk1

, . . . , xkc
}, we choose vertices vk1

∈ Dk1
c , . . . , vkc

∈ Dkc
c such

that colic(vk1
) = 1, . . . , colic(vkc

) = c, and add a new vertex wS,i with vk1
, . . . , vkc

as
in-neighbours.

On the other hand, considering strongly connected (strong for short) digraphs may lead to
dramatically different result. An example is provided by the following celebrated result due
to Bondy [2], which can be rephrased as follows when denoting the class of strong digraphs
by S.

Theorem 6 (Bondy [2]). χ(S-Forb(~Ck) ∩ S) = k − 1.

Inspired by this theorem, Addario-Berry et al. [1] posed the following problem.

Problem 7. Let k and ` be two positive integers then χ(S-Forb(C(k, `) ∩ S)) < k + l.

We give evidence for this problem by showing the following weaker statement.

Theorem 8. Let k and ` be two positive integers such that k ≥ max{`, 3}, and let D be a
digraph in S-Forb(C(k, `)) ∩ S. Then, χ(D) ≤ (k + `− 2)(k + `− 3)(2`+ 2)(k + `+ 1).

We need the following lemma.
The union of two digraphsD1 andD2 is the digraphD1∪D2 with vertex set V (D1)∪V (D2)

and arc set A(D1) ∪A(D2).

Lemma 9. Let D1 and D2 be two digraphs. χ(D1 ∪D2) ≤ χ(D1)× χ(D2).

A consequence of the previous lemma is that, if we partition the arc set of D into set A1

· · · Ak, then bounding the chromatic number of all digraphs induced by the Ai implies that
D has bounded chromatic number.

Proof. Let D be a strong digraph without any copy of C(k, `), we exhibit a colouring of D
using a bounded number of colours. The proof heavily relies on the technique of levelling.
Let u be a vertex of D. The level of a vertex x, noted lvl(x) is the length of the shortest
dipath from u to x. L(i) is the set of vertices at level i.

Since D is strongly connected, it has an out-generator u. Let T be a BFS-tree with root
u. We define the following sets of arcs.

A0 = {xy ∈ A(D) | lvl(x) = lvl(y)};
A1 = {xy ∈ A(D) | 0 < | lvl(x)− lvl(y)| < k + `− 3;

A′ = {xy ∈ A(D) | lvl(x)− lvl(y) ≥ k + `− 3}.

Since k + ` − 3 > 0 and there is no arc xy with lvl(y) > lvl(x) + 1, (A0, A1, A
′) is a

partition of A(D). Observe moreover that A(T ) ⊆ A1. We further partition A′ into two sets
A2 and A3, where A2 = {xy ∈ A′ | y is an ancestor of x in T} and A3 = A′ \ A2. Then
(A0, A1, A2, A3) is a partition of A(D). Let Dj = (V (D), Aj) for all j ∈ {0, 1, 2, 3}.
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Claim 10. χ(D0) ≤ k + `− 2.

Proof. Observe that D0 is the disjoint union of the D[Li] where Li = {v | distD(u, v) = i}.
Therefore it suffices to prove that χ(D[Li]) ≤ k + `− 2 for all non-negative integer i.

L0 = {u} so the result holds trivially for i = 0.
Assume now i ≥ 1. Suppose for a contradiction χ(D[Li]) ≥ k + ` − 1. Since k ≥ 3, by

Theorem 2, D[Li] contains a copy Q of P+(k−1, `−1), the path on two blocks of length k−1
and `−1 with one vertex of indegree 2. Let v1 and v2 be the initial and terminal vertices of Q,
and let x be the least common ancestor of v1 and v2. By definition, for j ∈ {1, 2}, there exists
a dipath Pj from x to vj in T . By definition of least common ancestor, V (P1)∩V (P2) = {x},
V (Pj) ∩ Li = {vj}, j = 1, 2, and both P1 and P2 have length at least 1. Consequently,
P1 ∪ P2 ∪Q is a subdivision of C(k, `), a contradiction.

Claim 11. χ(D1) ≤ k + `− 3.

Proof. Let φ1 be the colouring of D1 defined by φ1(x) = lvl(x) (mod k+ `−3). By definition
of D1, this is clearly a proper colouring of D1.

The following two claims are more complicated, we refer the reader to [4] for the complete
proofs.

Claim 12. χ(D2) ≤ 2`+ 2.

Claim 13. χ(D3) ≤ k + `+ 1.

Claims 10, 11, 12, and 13, together with Lemma 9 yield the result.

More generally, one may wonder what happens for other oriented cycles. Our next result
generalises Theorem 8 for Ĉ4 the cycle with 4 blocks.

Theorem 14. Let D be a digraph in S-Forb(Ĉ4). If D admits an out-generator, then χ(D) ≤
24.

Proof. The general idea is the same as in the proof of Theorem 8.
Suppose that D admits an out-generator u and let T be an BFS-tree with root u. We

partition A(D) into three sets according to the levels of u.

A0 = {(x, y) ∈ A(D) | lvl(x) = lvl(y)};
A1 = {(x, y) ∈ A(D) | | lvl(x)− lvl(y)| = 1};
A2 = {(x, y) ∈ A(D) | lvl(y) ≤ lvl(x)− 2}.

For i = 0, 1, 2, let Di = (V (D), Ai).

Claim 15. χ(D0) ≤ 3.

Proof. Suppose for a contradiction that χ(D) ≥ 4. By Theorem 2, it contains a P−(1, 1)
(y1, y, y2), that is (y, y1) and (y, y2) are in A(D0). Let x be the least common ancestor of
y1 and y2 in T . The union of T [x, y1], (y, y1), (y, y2), and T [x, y2] is a subdivision of Ĉ4, a
contradiction.

Claim 16. χ(D1) ≤ 2.

Proof. Since the arc are between consecutive levels, then the colouring φ1 defined by φ1(x) =
lvl(x) mod 2 is a proper 2-colouring of D1.

Let y ∈ Vi we denote by N ′(y) the out-degree of y in
⋃

0≤j≤i−1 Vj . Let D
′ = (V,A′) with

A′ = ∪x∈V {(x, y), y ∈ N ′(x)} and Dx = (V,Ax) where Ax is the set of arc inside the level
and from Vi to Vi+1 for all i. Note that A = A′ ∪Ax and
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Claim 17. χ(D2) ≤ 4.

Proof. We refer to [4] for the proof of this statement.

Claims 15, 16, 17, and Lemma 9 implies χ(D) ≤ 24.
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Extended Abstract

Relevant information from networked systems can be obtained by analyzing the spectra of
matrices associated to their graph representations. In particular, the eigenvalues and eigen-
vectors of the Markov matrix and related Laplacian and normalized Laplacian matrices allow
the study of structural and dynamical aspects of a network, like its synchronizability and
random walks properties.

In this study we obtain, in a recursive way, the spectra of Markov matrices of a family of
rotationally invariant weighted Sierpiński graphs. From them we find analytic expressions for
the weighted count of spanning trees and the random target access time for random walks on
this family of weighted graphs.

Construction of Wt. The rotationally invariant weighted Sierpiński graph Wt, t ≥ 0, is
constructed as follows [1]:

For t = 0, W0 is K3 (a 3-cycle) and its three edges have weights a, b, c.
For t ≥ 1, Wt is obtained by recurrence by joining three copies of Wt−1 and identifying

two vertices of each copy with one of the vertices of each of the other two copies.
The construction process, as well as the distribution of edge weights (a, b, c), for the

rotationally invariant case is shown in the next figure.
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The order of Wt is Nt = (3t+1 + 3)/2 and the total number of edges is Lt = 3t+1. At each
iteration 3t new vertices are added to the graph.

Spectrum of the probability transition matrix for random walks on Wt. At denotes the
adjacency matrix of the weighted graph Wt and has elements At(i, j) = w(i, j), where w(i, j)
is the weight of edge (i, j). The degree matrix of Wt, denoted by Dt, is a diagonal matrix
such that Dt(i, i) =

∑
j w(i, j). The probability transition matrix for random walks on Wt,

or Markov matrix, is defined as Mt = D−1
t At.

When a = b = c,Wt degenerates into the unweighted Sierpiński graph St. The spectrum of
the transition matrix of St, denoted M t, has been determined elsewhere [2], and the resulting
recursive equation for the eigenvalues is λ(t) = λ(t+1)

(
4λ(t+1) − 3

)
where λ(t+1) 6= − 1

4 ,±
1
2 .

This equation gives a relationship between the spectra of the transition matrices at steps t
and t+ 1, i.e., each eigenvalue of M t+1, except for the exceptional eigenvalues {− 1

4 ,
1
2 ,−

1
2},

corresponds to an eigenvalue of M t. The multiplicities of the exceptional eigenvalues are:
mMt

(
− 1

2

)
= 3+3t

2 , mMt

(
− 1

4

)
= 3t−1−1

2 ), mMt

(
1
2

)
= 0, t > 0. Thus, in [2] the spectrum of

M t is given as σ(M t) = {1,− 1
2}
⋃(⋃t−1

i=0 Q−i{
1
4}
)⋃(⋃t−2

i=0 Q−i{−
1
4}
)
where Q−iA denotes

the preimage of a set A under the i-th composition power of the function Q(x) = x(4x− 3).
With a similar technique, we partition the matrix Mt into blocks corresponding to the

transition probabilities among old and new vertices, with respect to the last iteration, and
study the Schur complement ofMt. In the next theorem, we relate the eigenvalues ofMt with
those of Mt to find the complete spectrum of Mt. We have also obtained the multiplicities
for all the eigenvalues of Mt.
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Theorem 1 Any eigenvalue λ(t−1) of M t−1, is related to several eigenvalues of Mt, denoted
{λ(t)

i }, and they are the preimage of λ(t−1) under the function R given by

R(z) =
(a+ b)z(sz − 2c)(sz + c)− (a2 + b2)sz + c(a− b)2

2(a2 + b2)c+ 2absz

where s = a+ b+ 2c and z /∈ {− cs ,
2c
s ,−

(a2+b2)c2

abs }, the exceptional eigenvalues of Mt.

Weighted count of the spanning trees of Wt. A spanning tree ofWt is a subgraph that includes
all the vertices of Wt and is a tree. Let Υ(Wt) denote the set of spanning trees of Wt. For
T ∈ Υ(Wt), we define its weight w(T ) as

∏
e∈T we, where we denotes the weight of edge

e. Let τ(Wt) =
∑
T ∈Υ(Wt)

w(T ) denote the weighted count of the spanning trees of Wt.

From [3], τ(Wt) = (
∏Nt−1

k=1 γ
(t)
k

∏Nt

i=1 d
(t)
i )/

∑Nt

i=1 d
(t)
i , where 0 = γ

(t)
0 < γ

(t)
1 ≤ · · · ≤ γ(t)

Nt−1
are

the eigenvalues of Lt, the normalized Laplacian matrix of Wt, and d
(t)
i = Dt(i, i). Obviously,

the eigenvalue spectrum of the matrix D
1
2
t MtD

− 1
2

t = (I −Lt) is the same as the spectrum of
Mt. Thus, for each k, (1− γ(t)

k ) is an eigenvalue of Mt. We find the following result:

Theorem 2 The number of spanning trees of Wt, t > 0, is

2
3t−1−1

2 3
3t+2t−1

4 5
3t−1−2t+1

4 (a+ b)3t−1

(ab+ ac+ bc)
3t+1

2 (a+ b+ 3c)
3t−1−1

2 .

This result coincides with the the values obtained from generating functions by D’Angeli and
Donno [1], and verifies the correctness of our computation of the spectrum of Mt.

Random target access time for random walks on Wt. Let π = (π1, π2, · · · , πNt
) denote the

stationary distribution for random walks onWt, which is an eigenvector ofMt associated to the
eigenvalue 1. Let Hij(t) represent the mean first passage time from vertex i to vertex j. The
random target access time for random walks onWt, denoted by Ht, is defined as the expected
time for a walker starting from vertex i to reach for the first time a target vertex j, selected
stochastically according to the stationary distribution. Thus, Ht =

∑Nt

j=1 πjHij(t). The
random target access time, which reflects the structure of the the entire graph, is independent
of the choice of the starting vertex. It has been proved [5] that Ht can be expressed in terms
of the nonzero eigenvalues of Lt, given as Ht =

∑Nt−1
i=1

1

γ
(t)
i

. We find the following result:

Theorem 3 The random target access time Ht for random walks on Wt is

s2 − c2

ab+ ac+ bc

(
14 · 5t−2

3
− 3t−1

5
+

3

5

)
+
s(3t−1 − 1)

2(s+ c)
−s(3 + 3t−1)

2(a+ b)
+

abs(3t + 1)

2(ab+ ac+ bc)(a+ b)
+

2

3
,

where s = a+ b+ 2c and t > 1.
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Extended Abstract

Graph pebbling was introduced by Chung in 1989. Following a suggestion of Lagarias and
Saks, she computed the pebbling number of Cartesian products of paths to give a combina-
torial proof of the following number-theoretic result of Kleitman and Lemke.

Theorem 1 ([3, 10]). Let Zn be the cyclic group on n elements and let |g| denote the order
of a group element g ∈ Zn. For every sequence g1, g2, . . . , gn of (not necessarily distinct)
elements of Zn, there exists a zero-sum subsequence (gk)k∈K , such that

∑
k∈K

1
|gk| ≤ 1. Here

K is the set of indices of the elements in the subsequence.

Chung developed the pebbling game to give a more natural proof of this theorem. Results
of this type are important in this area of number theory, as they generalize zero-sum theo-
rems such as the Erd®s-Ginzburg-Ziv theorem [5]. Over the past two decades, pebbling has
developed into its own sub�eld, with over 80 papers. For reference, see [8, 9] or [6, Section
11.4].

We consider a connected graph G with pebbles (indistinguishable markers) on some of its
vertices. More precisely, a con�guration p on a graph G is a function from V (G) to N ∪ {0}.
A pebbling move removes two pebbles from some vertex and places one pebble on an adjacent
vertex. A rooted graph is a pair (G, r) where G is a graph and r ∈ V (G) is the root vertex.
A pebbling con�guration p is solvable for a rooted graph (G, r) if some con�guration p′ has
at least one pebble on r, and p′ can be obtained from p by a sequence of pebbling moves.
Otherwise, p is unsolvable (or r-unsolvable, when the root r is speci�ed.)

The pebbling number π(G) is the least integer k such that, for any vertex v ∈ V (G) and any
initial con�guration p of k pebbles, p is solvable for (G, v). Likewise π(G, r) is the pebbling
number of G, when the root vertex must be r. A trivial lower bound for π(G) is |V (G)|:
for some root r, we place one pebble on each vertex other than r, for a total of |V (G)| − 1
pebbles, but we cannot reach r.

The path, Pn, on n vertices has π(Pn) = 2n−1. More generally, if graph G has diameter
d, then π(G) ≥ 2d. Let f(n, d) denote the maximum pebbling number of an n-vertex graph
with diameter d. Pachter, Snevily, and Voxman [11] proved that f(n, 2) = n+1, and Clarke,
Hochberg, and Hurlbert [4] classi�ed all graphs G of diameter 2 with π(G) = n + 1. Bukh
[2] proved that f(n, 3) = 3

2n+O(1), and Postle, Streib, and Yerger [12] strengthened Bukh's
result, proving the exact bound f(n, 3) = b 32nc+2. They also gave [12] an asymptotic bound
for f(n, 4).

In this talk, we study Class 0 graphs via a discharging-based approach. We focus on
graphs with diameter at least 2 since those with diameter 0, a single vertex, and diameter 1,
a complete graph, are well understood. A graph G is Class 0 if its pebbling number is equal
to its number of vertices, i.e., π(G) = |V (G)|. Recall that always π(G) ≥ |V (G)|, so Class
0 graphs are those where this trivial lower bound holds with equality. For each vertex v, we
write N(v) for the set of vertices adjacent to v, and we write N [v] to denote N(v)∪ {v}. For
a graph G, let e(G) denote the number of edges in G. In this talk, we prove lower bounds on
e(G) for all Class 0 graphs.

Blasiak et al. [1] showed that every n-vertex Class 0 graph G has e(G) ≥ b 3n2 c. They
also conjectured (see [7, p. 19]) that for some constant C and for all su�ciently large n there
exist n-vertex Class 0 graphs with e(G) ≤ b 3n2 c + C. In particular, they de�ned a family of
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�generalized Petersen graphs� Pm,d on (2d − 1)m+ 1 vertices with diameter d, one vertex of
some �xed degree m, and all other vertices of degree 3. They conjectured that these graphs
are all Class 0. We disprove both of these conjectures.

In Corollary 4 we show that given a constant C, for su�ciently large n, all n-vertex Class
0 graphs G have e(G) > b 3n2 c + C. This disproves the �rst conjecture. In Theorem 6, we
extend this idea to show that every n-vertex Class 0 graph G, with diameter at least 3, has
e(G) ≥ 5

3n −
11
3 . Since the generalized Petersen graph Pm,d has e(Pm,d) = (3 + 1

2d−1 )
n−1
2 ,

this shows that for d ≥ 3 every su�ciently large generalized Petersen graph is not Class 0,
which disproves the second conjecture in a strong sense. (The proof that Pm,2 is not Class 0
follows immediately from Corollary 3.)

Our main tool for proving bounds on e(G) is the following lemma.

Lemma 2 (Small Neighborhood Lemma). Let G be a graph and u, v ∈ V (G). If Na[u] ∩
Nb[v] = ∅ and |Na[u] ∪Nb[v]| < 2a+b+1, then G is not Class 0. (Here Nk[w] denotes the set
of all vertices that are distance at most k from vertex w.)

Proof. We assume the statement is false and construct a con�guration with |V (G)| vertices
that is u-unsolvable. Form con�guration p by putting 2a+b+1 − 1 pebbles on v, 0 pebbles on
each vertex ofN [u]∪N(v), and 1 pebble on each other vertex. Since |N [u]∪N [v]| ≤ 2a+b+1−1,
this con�guration has at least |V (G)| pebbles. Now no pebble can reach u, since at most 2a−1
pebbles can leave Nb[v]. This contradicts that G is Class 0.

The following corollary is immediate from the Small Neighborhood Lemma.

Corollary 3. Let G be a Class 0 graph. If u, v ∈ V (G), d(u) = 2, and u and v are distance
at least 3 apart, then d(v) ≥ 4. Similarly, if u, v ∈ V (G), d(u) = 3, u and v are distance at
least 4 apart, and each neighbor of v is a 3-vertex, then d(v) ≥ 4.

Proof. Assume d(v) ≤ 3. For the �rst statement take a = b = 1; for the second, take a = 1
and b = 2. In each case we contradict the Small Neighborhood Lemma.

Corollary 4. For each integer C, there exists an integer n0, such that if G is any n-vertex
graph with δ(G) = 3, n ≥ n0, and e(G) ≤ 3

2n+ C, then G is not Class 0.

Proof. We can choose n0 su�ciently large so that there exists some pair of vertices u, v
violating the second statement of the Small Neighborhood Lemma. Speci�cally, it su�ces to
�nd a 3-vertex v such that every vertex within distance four of v is a 3-vertex. To guarantee
such a vertex v exists, we take, for example, n0 = 2C ∗ 35.

Now we use the Small Neighborhood Lemma to prove, in Theorem 6, that every n-vertex
Class 0 graph G with diameter at least 3 has e(G) ≥ 5

3n −
11
3 . The case δ(G) = 2 is

complicated, so we handle it separately, in Lemma 5. For the case δ(G) ≤ 1, we use a lemma
from [4].

Recall that a k-vertex is a vertex of degree k. Similarly, a k+-vertex has degree at least
k and a k-neighbor of a vertex v is a k-vertex adjacent to v.

Lemma 5. If an n-vertex Class 0 graph G has diameter at least 3 and δ(G) = 2, then
e(G) ≥ 5

3n−
11
3 .

Proof. (Sketch) Let G be an n-vertex Class 0 graph with diameter at least 3 and δ(G) = 2. We
assign each vertex v a charge ch(v), where ch(v) = d(v). Now we redistribute these charges,
without changing their sum, so that all but a few vertices �nish with charge at least 10

3 ; the
charge of each vertex v after redistributing is ch∗(v). If at most k vertices �nish with charge
less than 10

3 (but all charges are nonnegative), then e(G) = 1
2

∑
v∈V ch(v) = 1

2

∑
v∈V ch∗(v) ≥

1
2 (

10
3 (n− k)) = 5

3n−
5
3k.

Choose r ∈ V (G) such that d(r) = 2. For each positive integer i, let Ni denote the set of
vertices at distance i from r. Also, let N3+ =

⋃
i≥3Ni. By the Small Neighborhood Lemma

with u = r, if v ∈ N3+ , then d(v) ≥ 4.
We redistribute charge according to the following two discharging rules.
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1. Each vertex v ∈ N2 takes charge 1 from some neighbor in N1. If d(v) = 2, then v also
takes charge 1

3 from its other neighbor.

2. Each vertex v ∈ N3+ with d(v) = 4 takes charge 1
3 from each neighbor u with d(u) ≥ 3.

We show that nearly all vertices �nish with charge at least 10
3 n and can bound the ones

that do not to obtain the result of the lemma.

Theorem 6. If G is an n-vertex Class 0 graph with diameter at least 3, then e(G) ≥ 5
3n−

11
3 .

Proof. Let G be Class 0 with diameter at least 3. It is straightforward to show that δ(G) ≥ 2.

Lemma 5 proves the bound when δ(G) = 2. If δ(G) ≥ 4, then e(G) ≥ δ(G)n
2 ≥ 2n. Thus, we

assume that δ(G) = 3.
The proof is similar to that of Lemma 5, but easier. Choose r to be a 3-vertex with as

few vertices at distance 2 as possible. For each integer i, let Ni denote the set of vertices at
distance i from r. Also, let N4+ =

⋃
i≥4Ni. We �rst handle the case |N2| ≥ 8, which is short.

Proposition 7. If |N2| ≥ 8, then e(G) ≥ 5
3n.

Proof. Since r was chosen among all 3-vertices to minimize N2, each 3-vertex has either a
5+-neighbor or at least two 4-neighbors. Thus, we let ch(v) = d(v) and use the following
discharging rule.

1. Each 3-vertex takes 1
6 from each 4-neighbor and 1

3 from each 5+-neighbor.

If d(v) ≥ 5, then ch∗(v) ≥ d(v) − 1
3d(v) = 2

3d(v) ≥
10
3 . If d(v) = 4, then ch∗(v) ≥

d(v) − 1
6d(v) = 4 − 4

6 = 10
3 . If d(v) = 3, then ch∗(v) ≥ 3 + 1

3 = 10
3 or ch∗(v) ≥ 3 + 2

6 = 10
3 .

Hence, e(G) = 1
2

∑
v∈V (G) ch(v) =

1
2

∑
v∈V (G) ch

∗(v) ≥ 5
3n. This proves the proposition.

Hereafter, we assume that |N2| ≤ 7. Now the Small Neighborhood Lemma implies that
d(v) ≥ 4 for each vertex v ∈ N4+ . Suppose instead that d(v) = 3 for some vertex v ∈ N4+ .
Let p be the con�guration with 15 pebbles on r, 0 pebbles on each vertex in N1 ∪N2 ∪N [v],
and 1 pebble on each other vertex. Since |{r} ∪N1 ∪N2 ∪N [v]| ≤ 15, the con�guration has
at least n pebbles, but no pebble can reach v, since at most one pebble can leave N [r] ∪N2.
This contradicts that G is Class 0. Thus, d(v) ≥ 4 for each v ∈ N4+ .

Now we again redistribute charge. We let ch(v) = d(v) and we use the following two
discharging rules.

1. Each vertex in N2 takes charge 1 from a neighbor in N1.

2. Each vertex in N3 takes charge 1
3 from a neighbor in N2.

We show that each vertex in V (G) \ N [r] �nishes with charge at least 10
3 . If v ∈ N4+ ,

then ch∗(v) = ch(v) = d(v) ≥ 4. If v ∈ N3, then ch∗(v) ≥ d(v) + 1
3 ≥

10
3 . If v ∈ N2, then

ch∗(v) ≥ d(v) + 1− 1
3 (d(v)− 1) = 2

3d(v) +
4
3 ≥

10
3 . The total charge on vertices of {r} ∪N1

is 3+ 3(1) = 6. Thus, the sum of all �nal charges is at least 10
3 (n− 4) + 6 = 10

3 n−
22
3 . Thus,

e(G) ≥ 5
3n−

11
3 .

We now describe a best possible bound for the minimum number of edges in an n vertex
diameter 2 Class 0 graph. Before stating this result, we describe the only graphs for which
equality holds.
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Example 8. The following are two in�nite families of Class 0 graphs. Each n-vertex graph
has exactly 2n − 5 edges. To form an instance of Fp,q, begin with K3 and replace the two
edges incident to some vertex v with p parallel edges and q parallel edges (where p and q are
positive); �nally, subdivide each of these p+q new edges. To form an instance of Gp,q,r, begin
with K4 and replace the three edges incident to some vertex v with p parallel edges, q parallel
edges, and r parallel edges (where p, q, and r are positive); �nally, subdivide each of these
p+ q + r new edges.

Note that each n-vertex graph in Fp,q has 2n − 5 edges, since the 2-vertices induce an
independent set (when p ≥ 2 and q ≥ 2), and the three high-degree vertices have among them
a single edge. Similarly, Gp,q,r has 2n − 5 edges, since the 2-vertices induce an independent
set and the four high-degree vertices have among them 3 edges.

Clarke et al. [4, Theorem 2.4] characterized diameter 2 graphs that are not Class 0. It
seems likely that we could derive our result from theirs. Our result generalizes to diameter 2
graphs with no cut-vertices.

Theorem 9. Let G be an n-vertex graph with diameter 2. If G has no cut-vertex (in par-
ticular, if G is Class 0) then e(G) ≥ 2n − 5. Further, equality holds if and only if G is the
Petersen graph or one of the graphs in Example 1.
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Descriptions of generalized trees by logic and algebraic terms
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Extended Abstract

We de�ne and study countable generalized trees, called quasi-trees, such that the unique
"path" between two nodes may be in�nite and have any order type, in particular that of
rational numbers. Our motivation comes from the notion of rank-width, a complexity measure
of �nite graphs investigated �rst in [9] and [10].

Rank-width is based on graph decompositions formalized with �nite subcubic trees. In
order to extend rank-width to countable graphs in such a way that the compactness property

holds, i.e., that the rank-width of a countable graph is the least upper-bound of those of
its �nite induced subgraphs, we base decompositions on subcubic quasi-trees [4, 5] (a notion
presented at the Bordeaux Graph Workshop in 2014). For a comparison, the natural extension
of tree-width to countable graphs has the compactness property [8] without needing quasi-
trees.

Join-trees can be seen as directed quasi-trees. A join-tree is a partial order (N,≤) such
that every two elements have a least upper-bound (called their join) and each set {y | y ≥ x}
is linearly ordered. The modular decomposition of a countable graph is based on an ordered

join-tree [6, 3].
Our objective is to obtain �nitary descriptions (usable in algorithms) for the following

generalized trees : join-trees, ordered join-trees and quasi-trees. For this purpose we will de�ne
algebras of such generalized trees that use �nitely many operations and such that the �nite and
in�nite terms over these operations de�ne all countable relevant generalized trees. The regular
objects are those de�ned by regular terms, i.e. that have �nitely many di�erent subterms,
equivalently, that are the unique solutions of certain �nite equation systems [1, 2, 11].

We will prove that a generalized tree is regular if and only if it is monadic second-order

de�nable, i.e., is the unique model (up to isomorphism) of a monadic second-order sentence.
A linear order whose elements are labelled by letters from an alphabet is called an ar-

rangement. Regular arrangements were de�ned and studied in [1] and [7], and their monadic
second-order de�nability is proved in [11]. We use the latter result for proving its extension
to generalized trees.

This work has been supported by the French National Research Agency (ANR) within
the IdEx Bordeaux program "Investments for the future", CPU, ANR-10-IDEX-03-02. A
preliminary version is in the proceedings [5].
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Extended Abstract

Let G be a graph G. The neighborhood of a vertex v in G, denoted by N(v), is the set of
vertices adjacent to v i G. It closed neighborhood is the set N [v] = N(v) ∪ {v}.

A set C ⊆ V (G) is an identifying code in G if

(i) for all v ∈ V (G), N [v] ∩ C 6= ∅, and

(ii) for all u, v ∈ V (G), N [u] ∩ C 6= N [v] ∩ C.

The identifier of v by C, denoted by C[v], is the set N [v] ∩ C. Hence a identifying code is a
set such that the vertices have non-empty distinct identifiers.

Let G be a (finite or infinite) graph with bounded maximum degree. For any non-negative
integer r and vertex v, we denote by Br(v) the ball of radius r in G, that is Br(v) = {x |
dist(v, x) ≤ r}. For any set of vertices C ⊆ V (G), the density of C in G, denoted by d(C,G),
is defined by

d(C,G) = lim sup
r→+∞

|C ∩Br(v0)|
|Br(v0)|

,

where v0 is an arbitrary vertex in G. The infimum of the density of an identifying code in G
is denoted by d∗(G). Observe that if G is finite, then d∗(G) = |C∗|/|V (G)|, where C∗ is a
minimum-size identifying code in G.

The problem of finding low-density identifying codes was introduced in [9] in relation to
fault diagnosis in arrays of processors. Here the vertices of an identifying code correspond
to controlling processors able to check themselves and their neighbors. Thus the identifying
property guarantees location of a faulty processor from the set of “complaining” controllers.
Identifying codes are also used in [10] to model a location detection problem with sensor
networks.

Particular interest was dedicated to grids as many processor networks have a grid topology.
There are three regular infinite grids in the plane, namely the hexagonal grid, the square grid
and the triangular grid.

Regarding the infinite hexagonal grid GH , the best upper bound on d∗(GH) is 3/7 and
comes from two identifying codes constructed by Cohen et al. [4]; these authors also proved
a lower bound of 16/39. This lower bound was improved to 12/29 by Cranston and Yu [6].
Cukierman and Yu [7] further improved it to 5/12.

The infinite square grid GS is the infinite graph with vertices in Z×Z such that N((x, y)) =
{(x, y±1), (x±1, y)}. Given an integer k ≥ 2, let [k] = {1, . . . , k} and let Sk be the subgraph
of GS induced by the vertex set {(x, y) ∈ Z × [k]}. In [3], Cohen et al. gave a periodic
identifying code of GS with density 7/20. This density was later proved to be optimal by
Ben-Haim and Litsyn [1]. Daniel, Gravier, and Moncel [8] showed that d∗(S1) = 1

2 and

d∗(S2) =
3
7 . They also showed that for every k ≥ 3,

7

20
− 1

2k
≤ d∗(Sk) ≤ min

{
2

5
,
7

20
+

2

k

}
.

These bounds were recently improved by Bouznif et al. [2] who established

7

20
+

1

20k
≤ d∗(Sk) ≤ min

{
2

5
,
7

20
+

3

10k

}
.

They also proved d∗(S3) =
3
7 .
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The infinite triangular grid GT is the infinite graph with vertices in Z × Z such that
N((x, y)) = {(x, y ± 1), (x ± 1, y), (x − 1, y + 1), (x + 1, y − 1)}. Given an integer k ≥ 2, let
[k] = {1, . . . , k} and let Tk be the subgraph of GT induced by the vertex set {(x, y) ∈ Z× [k]}.
Karpovsky et al. [9] showed that d∗(GT ) = 1/4. Trivially, T1 = S1. Hence d∗(T1) = 1

2 In
this paper, we prove the following results regarding the density of an identifying code of Tk,
k > 1.

Theorem 1 • d∗(Tk) =
1
4 + 1

4k for every odd k.

• d∗(T2) =
1
2 and d∗(T4) = d∗(T6) =

1
3 .

• 1
4 + 1

4k ≤ d∗(Tk) ≤ 1
4 + 1

2k for every even k.

The upper bounds are obtained by showing periodic identifying codes with the desired
density. Consider the sets (see Figure 1)

C2 = {(x, 1) | x ≡ 1, 3 mod 5} ∪ {(x, 2) | x ≡ 1, 2, 4 mod 5};
C2k−1 = {(x, y) | x | x, y odd and 1 ≤ x, y ≤ 2k − 1};

C4 = {(x, 2) | x ≡ 0, 3 mod 3} ∪ {(x, 3) | x ≡ 0, 1 mod 3};
C2k = {(x, y), (x, y) | x, y odd , 1 ≤ x ≤ 2k and 1 ≤ y ≤ 2k − 3} ∪ {(x, 2k − 1) | x ∈ Z}.

It is easy to check that the above defined sets C2 is an identifying codes of T2 with density
1/2, C3 is identifying codes of T3 with density 1/3, C4 is an identifying code of T4 with density
3/10. and C2k−1 is an identifying code of T2k−1 with density 1

4 +
1
4k and C2k is an identifying

code of T2k with density 1
4 + 1

2k .

Our lower bounds are obtained via the Discharging Method. The general idea is the
following. We consider any identifying code C of Tk. The vertices in C receive a certain
value qk > 0 of charge and the vertices not in C receive charge 0. Then we apply some local
discharging rules. Here local means that there is no charge transfer from a vertex to a vertex
at distance more than dk for some fixed constant dk, and that the total charge sent by a
vertex is bounded by some fixed value mk. Finally, we prove that after the discharging, every
vertex v has final charge chrg∗(v) at least pk for some fixed pk > 0. We claim that it implies
d(C,G) ≥ pk

qk
. Since a vertex sends charge at most mk to vertices at distance at most dk, a

charge of at most mk · |Br+s(v0) \Br(v0)| ≤ 2dk · k ·mk enters Br(v0) during the discharging
phase. Thus

|C ∩Br(v0)| =
1

qk

∑
v∈Br(v0)

chrg0(v) ≥ 1

qk

 ∑
v∈Br(v0)

chrg∗(v)−mk · |Br+s(v0) \Br(v0)|


≥ pk|Br(v0)| − 2dk · k ·mk

qk
.

But |Br(v0)| ≥ 2(k + 1)r − k2, thus d(C,Sk) ≥ lim sup
r→+∞

(
pk
qk
− 1

qk
· 2dk · k ·mk

2(k + 1)r − k2

)
=

pk
qk

.

This proves our claim. As the claim holds for any identifying code, we have d∗(Tk) ≥ pk/qk.
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Extended Abstract

In this extended abstract, the graphs considered are assumed to be connected. Let k ≥ 2 be
an integer and T1, . . . , Tk be spanning trees in a graph G. A vertex is said to be an inner
vertex in a tree T if it has degree at least 2 in T . We denote by I(T ) the set of inner vertices of
tree T . The spanning trees T1, . . . , Tk are completely independent spanning trees if any vertex
from G is an inner vertex in at most one tree among T1, . . . , Tk and the trees T1, . . . , Tk are
pairwise edge-disjoint.

Completely independent spanning trees were introduced by Hasunuma [4] and then have
been studied on di�erent classes of graphs, such as underlying graphs of line graphs [4],
maximal planar graphs [5], Cartesian product of two cycles [6] and k-trees [10]. Moreover,
determining if there exist two completely independent spanning trees in a graph G is a NP-
hard problem [5]. Recently, su�cient conditions inspired by the su�cient conditions for
hamiltonicity have been determined in order to guarantee the existence of several completely
independent spanning trees: Dirac's condition [1] and Ore's condition [2]. Moreover, Dirac's
condition has been generalized to more than two trees [7].

In this extended abstract, we introduce (i, j)-disjoint spanning trees:

De�nition 0.1 Let k ≥ 2 be an integer and T1, . . . , Tk be spanning trees in a graph G. We
let I(T1, . . . , Tk) = {u ∈ V (G)|∃`, `′ u ∈ I(T`) ∩ I(T`′), 1 ≤ ` < `′ ≤ k} be the set of
vertices which are inner vertices in at least two spanning trees among T1, . . . , Tk, and we let
E(T1, . . . , Tk) = {e ∈ E(G)|∃`, `′, 1 ≤ ` < `′ ≤ k, e ∈ E(T`) ∩ E(T`′)} be the set of edges
which belong to at least two spanning trees among T1, . . . , Tk. The spanning trees T1, . . . , Tk

are (i, j)-disjoint for two positive integers i and j, if the two following conditions are satis�ed:

i) |I(T1, . . . , Tk)| ≤ i;

ii) |E(T1, . . . , Tk)| ≤ j.

The sets D1, . . . Dk in a graph G are disjoint connected dominating sets if they are pair-
wise disjoint and dominating. Moreover, if | ∪1≤i<j≤k Di ∩Dj | ≤ ` we say that D1, . . . Dk are
`-rooted connected dominating sets. Other works on disjoint spanning trees are about disjoint
connected dominating sets (the disjoint connected dominating sets can be used to provide
the inner vertices of (0, E(G))-disjoint spanning trees). The maximum number of disjoint
connected dominating sets in a graph G is the connected domatic number [12]. An interest-
ing result about connected domatic number concerns planar graphs, for which Hartnell and
Rall have proven that, except K4 (which has connected domatic number 4), their connected
domatic number is bounded by 3 [3]. The problem of constructing a connected dominating
set is often motivated by wireless ad-hoc networks [11]. Connected dominating sets are used
to create a virtual backbone or spine of a wireless ad-hoc network.

By ∗ we denote a large enough integer, i.e. an integer larger than max(|E(G)|, |V (G)|), for
a graph G. Remark that (0, 0)-disjoint spanning trees are completely independent spanning
trees and that (∗, 0)-disjoint spanning trees are edge-disjoint spanning trees. Also, (0, ∗)-
disjoint spanning trees are related to connected dominating sets. Hence, we call them trees
induced by disjoint connected dominating sets. For the same reason than (0, ∗)-disjoint span-
ning trees, (`, ∗)-disjoint spanning trees are trees induced by `-rooted connected dominating
sets. In the following sections, we illustrate that (i, j)-disjoint spanning trees provide some
nuances between the existence of disjoint connected dominating sets and of completely inde-
pendent spanning trees.
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1 Characterizations in terms of partitions

We introduce a de�nition which is a generalization of CIST-partition introduced by Araki
[1]. Let V1 and V2 be two disjoint subsets of vertices of a graph G. By B(V1, V2) we denote
the bipartite graph with vertex set V1 ∪ V2 and edge set {uv ∈ E(G)| u ∈ V1, v ∈ V2}.
An `-CIST-partition of a graph G into k sets is a partition of V (G) into k sets of vertices
V1, . . . , Vk such that:

i) G[Vi] is connected, for each integer i, 1 ≤ i ≤ k;

ii) B(Vi, Vj) contains no isolated vertex, for every two integers i, j, 1 ≤ i < j ≤ k;

iii)
∑

1≤i<j≤k ci,j ≤ `, where ci,j is the number of connected component which are trees in
B(Vi, Vj), 1 ≤ i < j ≤ k.

Theorem 1.1 Let G be a graph. There exist k (0, `)-disjoint spanning trees T1, . . . , Tk in G
if and only if G has an `-CIST-partition into k sets.

Proof. Suppose G has an `-CIST-partition into k sets V1,. . . ,Vk. We are going to construct
(0, `)-disjoint spanning trees T1, . . . , Tk. We begin by setting I(Ti) = Vi for each integer i,
1 ≤ i ≤ k. For now, we suppose that E(Ti) is empty and we progressively add edges in E(Ti),
for each integer i, 1 ≤ i ≤ k, in order to obtain spanning trees of G. Since G[Vi] is connected
for each i, 1 ≤ i ≤ k, we can add edges in E(Ti) in order to form a tree with vertex set Vi,
for each i.

Let i and j be two integers, 1 ≤ i < j ≤ k, and let Di,j be a connected component of
B(Vi, Vj). We add edges in order to build a spanning tree restricted to Vi∪V (Di,j) and another
spanning tree restricted to Vj∪V (Di,j) by considering two cases. Let u be a vertex of Di,j∩Vi.
First, if Di,j is a tree, then we add one edge e of Di,j incident with u in E(Ti) and in E(Tj).
Remark that the edge e is common to Ti and Tj . Let D

d
i,j(u) = {v ∈ V (Di,j)| dDi,j

(u, v) = d}.
We add to E(Ti) the edges of the set {vv′ ∈ E(Di,j)| v ∈ Dd

i,j(u), v′ ∈ Dd+1
i,j (u), d is even}

and to E(Tj) the edges of the set {vv′ ∈ E(Di,j)| v ∈ Dd
i,j(u), v′ ∈ Dd+1

i,j (u), d is odd}.
Second, if Di,j is not a tree, then we suppose that u is in a cycle of Di,j . Let e be an
edge of this cycle incident with u and let Ti,j be a spanning tree of Di,j − e. We de�ne
Bd

i,j(u) as follows: {v ∈ V (Di,j)| dTi,j
(u, v) = d}. We add to E(Ti) the edges of the set

{vv′ ∈ E(Ti,j)| v ∈ Bd
i,j(u), v′ ∈ Bd+1

i,j (u), d is even} and to E(Tj) the edges of the set

{vv′ ∈ E(Ti,j)| v ∈ Bd
i,j(u), v′ ∈ Bd+1

i,j (u), d is odd} ∪ {e}. We repeat this process for every
connected component of B(Vi, Vj) and every two integers i and j, 1 ≤ i < j ≤ k. Since there
is only one common edge between Ti and Tj for each connected component that is a tree and
since

∑
1≤i<j≤k ci,j ≤ `, the set E(T1, . . . , Tk) contains at most ` edges. Therefore we obtain,

by Property ii), k (0, `)-disjoint spanning trees.
Let us prove the converse of the previous implication. Suppose there exist k (0, `)-disjoint

spanning trees T1, . . . , Tk in G. The set I(Ti), 1 ≤ i ≤ k, induces a connected subgraph in G.
We begin by setting Vi = I(Ti), for each integer i, 1 ≤ i ≤ k. If some vertices are inner vertices
in no trees, we can add them to any set among V1, . . . , Vk. Thus, Property i) follows. Let i
and j be two integers, 1 ≤ i < j ≤ k. Suppose there exists one isolated vertex u in B(Vi, Vj).
Without loss of generality, suppose u ∈ Vi. By Proposition ??.i), we obtain a contradiction
since u /∈ I(Tj) and u has no neighbor in I(Tj). Thus, Property ii) follows. Now suppose∑

1≤i<j≤k ci,j > `. Let Di,j be a connected component which is a tree in B(Vi, Vj) for some
integers i and j and suppose that Di,j contains no edge from E(T1, . . . , Tk). Since Di,j has
|V (Di,j)|−1 edges, it is impossible that every vertex of V (Di,j)∩Vi is adjacent to a vertex of
V (Di,j)∩Vj in Tj and that every vertex of V (Di,j)∩Vj is adjacent to a vertex of V (Di,j)∩Vi

in Ti, since it would require |V (Di,j)| edges. Thus, for every two integers i and j and every
connected component Di,j of B(Vi, Vj), if Di,j is a tree then V (Di,j) ∩ E(T1, . . . , Tk) 6= ∅
and we obtain a contradiction since

∑
1≤i<j≤k ci,j > ` implies |E(T1, . . . , Tk)| > `. Thus,

Property iii) follows.
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�

For a graph G and subset of vertices A ⊆ V (G), let N(A) = {u ∈ V (G) \A| uv ∈ E(G), v ∈
A}. In a similar way than Zelinka [12], we prove that the notion of `-rooted connected
dominating sets is equivalent to a notion of partition. An `-rooted partition of a graph G into
k + 1 sets is a partition of V (G) into k + 1 sets of vertices V1, . . . , Vk, A such that:

i) |A| ≤ `;

ii) G[Vi ∪A] is connected, for each i, 1 ≤ i ≤ k;

ii) B(Vi, Vj)−N(A) contains no isolated vertex, for every i and j, 1 ≤ i < j ≤ k.

Theorem 1.2 Let G be a graph. There exist k `-rooted connected dominating sets D1, . . . , Dk

in G if and only if G has an `-rooted partition into k + 1 sets.

Sketch of Proof. The proof is similar to the one of Theorem1.1.

2 Computational complexity and connectivity

We de�ne the following decision problem:

k-(i, j)-DSP

Instance : A graph G.

Question: Does there exist k (i, j)-disjoint spanning trees in G ?

Theorem 2.1 Let i and j be non negative integers. The problem 2-(i, j)-DSP is a NP-
complete problem for every pair of integers (i, j).

Sketch of proof. The proof uses a reduction from 3-SAT similar to the reduction used by
Hasunuma [5].

�

Moreover, since the presence of a k-cut in a graph G implies that there do not exist
k + 1 disjoint connected dominating set, it is natural to ask whether k-connected graph, for
k su�ciently large, contains at least two (i, j)-disjoint spanning trees or not.

Theorem 2.2 Let i, j and k be integers. For any positive integer k, there exist a k-connected
graph which does not contain two (i, j)-disjoint spanning trees.

Sketch of proof. The considered graphs are the same than the graphs introduced by Kriesell
[9] (they are the incidence graphs of complete k-uniform hypergraphs). The proof consists
in proving that the existence of two (i, j)-disjoint spanning trees implies that there exists a
vertex u in this graph for which the vertices of N(u) are all inner vertices of the same tree.
Moreover, no vertex of N(u) should be inner vertex of both trees. These facts imply that u
cannot be in one of the two spanning trees and thus a contradiction.

�

3 Some simple classes of graphs

We �nish this extended abstract by giving some results for square of graphs, complete graphs
and square grids.

Theorem 3.1 Let G be graph. There exists two (0, 1)-disjoint spanning trees in G2 and there
do not exist two completely independent spanning trees in G2 if and only if G is a tree from
the family described by Araki [1].
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Sketch of proof. Let V1 and V2 be the set of vertices induced by a bipartition of a spanning
tree of G. It easy to prove that V1 and V2 form a 1-CIST-partition of G. Moreover, Araki
has characterized the trees containing two completely independent spanning trees. It su�ce
to prove that a connected graph G which is not a tree contains two completely independent
spanning trees to complete the proof. That is the case since the set of vertices induced by a
bipartition of a spanning tree of G− {e} for e an edge of a cycle of G, is a 0-CIST-partition.

�

Remark that there are n disjoint connected dominating sets in Kn and that there are bn/2c
completely independent spanning trees in Kn [10] and that there does not exist two dis-
joint connected dominating sets in a su�ciently large square grid [3]. We give the following
intermediate result about (i, j)-disjoint spanning trees (the proof is not given):

Theorem 3.2 Let n be an integer. There are at most bn/2c+max(b`/(n−1)+1odd(n)/2c, dn/2e)
(0, `)-disjoint spanning trees in Kn, where 1odd(n) = 1 if n is odd and 0 otherwise.

Also, there exist two 1-rooted connected dominating sets in Pn1�Pn2 , for every n1 ≥ 3
and n2 ≥ 3.
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Extended Abstract

1 Introduction

A graph G is equimatchable if every (inclusion-wise) maximal matching of G has the same car-
dinality. In this paper, this widely studied class of graphs (see e.g. [4, 6, 1, 2, 3]) is considered
from a new perspective; we deal with the stability of the property of being equimatchable with
respect to edge or vertex removals. Formally, we call an equimatchable graph G edge-stable
if G \ e is equimatchable for each e ∈ E(G). Edge-stable equimatchable graphs are denoted
ESE-graphs as a shorthand. Similarly, an equimatchable graph G is called vertex-stable (VSE
for short) if G− v is equimatchable for each v ∈ V (G).

It is well-known that a graph is equimatchable if and only if its line graph is well-covered,
that is, every maximal independent set of it has the same size. In [8], well-covered graphs
which remain well-covered upon removal of any vertex, called 1-well-covered, are introduced
and some basic properties of these graphs are studied. More recently, C4-free 1-well-covered
graph are characterized in [5]. Besides, well-covered graphs which remain well-covered upon
removal of any edge, called strongly well-covered, are studied in [7] where these graphs are
shown to be 3-connected and strongly well-covered graphs with independence number 2 are
characterized. Note that a graph is ESE if and only if its line graph is 1-well-covered. Con-
sequently, in this paper, we characterize all 1-well-covered line graphs.

Given a graph G = (V,E) and a subset of vertices I, G[I] denotes the subgraph of G
induced by I, and G \ I = G[V \ I]. When I is a singleton {v}, we denote G \ I by G− v. We
also denote by G\e the graph G(V,E\{e}). For a subset I of vertices, we say that I is complete
to another subset I ′ of vertices (or by abuse of notation, to a subgraph H) if all vertices of I
are adjacent to all vertices of I ′ (respectively H). The size of a maximum matching of a graph
G is denoted by ν(G). A matching M is said to saturate a vertex v if v is the endvertex of
some edge inM , otherwise it leaves a vertex exposed. If G−v has a perfect matching for each
v ∈ V (G), then G is called factor-critical. Factor-critical equimatchable graphs are denoted
EFC-graphs. We notice that a graph G is ESE if and only if every connected component of
G is ESE. Therefore, we only consider connected ESE-graphs.

The following consequence of the results in [6] will guide us through our characterization.

Theorem 1 [6] A 2-connected equimatchable graph is either factor-critical or bipartite or
K2t for some t ≥ 1.

Clearly K2t is not ESE, therefore as suggested by Theorem 1, we study ESE-graphs in
Section 2 under three categories: 2-connected factor-critical ESE-graphs, 2-connected bipar-
tite ESE-graphs and ESE-graphs with a cut-vertex (it turns out that these are all bipartite
ESE-graphs). These results provide a full characterization of all ESE-graphs yielding an
O(min(n3.376, n1.5m)) time recognition algorithm which is better than the most natural way
of recognizing ESE-graphs by checking the equimatchability of G \ e for every e ∈ E. In the
same line as edge-stability, in Section 3, we study vertex-stable equimatchable graphs; their
characterization is much simpler compared to the one of ESE-graphs.

1See http://arxiv.org/abs/1602.09127 for the full version.
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2 Characterization and Recognition of ESE-graphs

Factor-critical ESE-graphs

Let us �rst underline that although we seek to characterize factor-critical ESE-graphs
which are 2-connected, all the results in this section are valid for any factor-critical ESE-graph.
Note that factor-critical graphs are connected but not necessarily 2-connected. However, it
follows from their characterization that factor-critical ESE-graphs are also 2-connected (See
Corollary 7). The following two lemmas are frequently used for our further results.

Lemma 2 Let G be a factor-critical graph. G is equimatchable if and only if there is no
independent set I with 3 vertices such that G \ I has a perfect matching.

Lemma 3 Let G be an EFC-graph. Then G is edge-stable if and only if there is no induced
P3 in G such that G \ P3 has a perfect matching.

The following lemma is fundamental for the characterization of factor-critical ESE-graphs.
Its proof is based on the existence of a perfect matching Mv in G − v for any vertex v ∈ V .
We de�ne three sets of vertices according to Mv: let N1 be the set of neighbors of v which
are matched with non-neighbors of v, N ′1 be the set of vertices matched to N1, and N2 be the
set of neighbors of v matched to each other. By Lemma 3, we have V (Mv) = V (G) \ {v} =
N1 ∪N ′1 ∪N2 for a factor-critical ESE-graph.

Lemma 4 Let G be a factor-critical graph with at least 7 vertices. If G is an ESE-graph
which is not an odd clique, then there is a nontrivial independent set S which is complete to
G \ S.

Moreover, we can show that there is a nontrivial independent set S complete to G\S and
having a special form with respect to the decomposition N1, N

′
1 and N2 for some vertex v.

Corollary 5 Let G be a factor-critical graph with at least 7 vertices. If G is an ESE-graph
which is not an odd clique, then for some v ∈ V (G), G has a decomposition into the sets
N1, N

′
1 and N2 where S = N ′1∪{v} is a nontrivial independent set which is complete to G\S,

and N1 is an independent set.

Let us de�ne two graph families G1 and G2 illustrated in Figure 1 corresponding to the
cases where the nontrivial independent set S described in Corollary 5 has respectively 2 or
more vertices. The matching Mv de�ning the sets N1, N

′
1 and N2 is shown by bold (red)

edges in Figure 1. A graph G belongs to G1 if G ∼= K2r+1 \M for some nonempty matching
M containing vu′1 and r ≥ 3. A graph G of G1 is illustrated in Figure 1a where the edges in
G[N1 ∪N2] ∼= K2r−1 \M are not drawn, and S = {v, u′1} is complete to G \ S. Besides, G2
is de�ned as the family of graphs G admitting an independent set S of size at least 3 which
is complete to G \ S and such that ν(G \ S) = 1. In Figure 1b, we show an illustration of
a graph G in G2 where S = N ′1 ∪ {v} with |S| ≥ 3 and ν(G \ S) = 1. Again, the edges in
G[N1 ∪N2] are not drawn but just described by the property ν(G \ S) = 1.

Theorem 6 Let G be a factor-critical graph with at least 7 vertices. Then, G is ESE if and
only if either G is an odd clique or it belongs to G1 or G2.

In addition, we determined all factor-critical ESE-graphs whose orders are at most 5 by
using computer programming (Python-Sage). There are just 7 such graphs: K1, K3, K5, C5,
K5\e, K5\E(2K2) and K5\E(P2+P3) where + denotes the disjoint union of two graphs. By
observing that all these graphs and all the graphs described in Theorem 6 are 2-connected,
we obtain as a byproduct the following:

Corollary 7 Factor-critical ESE-graphs are 2-connected.
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u1

...

v

u′1
N1 N ′1

N2

(a) Illustration of a graph G in G1 with S = {v, u′1}
and G[N1 ∪N2] ∼= K2r−1 \M for some matching M

...

v

...

N1 N ′1

N2

(b) Illustration of a graph G in G2
with S = N ′1∪{v} and ν(G\S) = 1

Figure 1: Factor-critical ESE-graph families G1 and G2 where the bold (red) edges are Mv.

Bipartite ESE-graphs

The following is obtained by using the Gallai-Edmonds Decomposition of equimatchable
graphs [6] and Lemmas 2 and 3.

Theorem 8 ESE-graphs with a cut vertex are bipartite.

Having characterized all 2-connected factor-critical ESE-graphs (Theorem 6) and having
shown that ESE-graphs with a cut vertex are bipartite (Theorem 8), we now consider bipartite
ESE-graphs to complete our characterization. We will see that bipartite ESE-graphs can be
characterized in a way very similar to bipartite equimatchable graphs:

Lemma 9 [6] A connected bipartite graph G = (U ∪W,E), |U | ≤ |W | is equimatchable if
and only if for every u ∈ U , there exists S ⊆ N(u) such that S 6= ∅ and |N(S)| ≤ |S|.

Lemma 9, together with the well-known Hall's condition implies in particular that a connected
bipartite graph G = (U ∪W,E) with |U | ≤ |W | is equimatchable if and only if every maximal
matching of G saturates U (then we say that every vertex in U is strong). A strong vertex v
is called square-strong if for every u ∈ N(v), v is strong in G− u. Noting that if a connected
bipartite graph G = (U∪W,E) is ESE then |U | < |W |, we have the following characterization:

Proposition 10 Let G = (U ∪W,E) be a connected bipartite graph with |U | < |W |. Then
the followings are equivalent.

(i) G is ESE.

(ii) Every vertex of U is square-strong.

(iii) For every u ∈ U , there exists nonempty S ⊆ N(u) such that |N(S)| ≤ |S| − 1.

(iv) For every u ∈ U , every maximal matching of G− u leaves at least two vertices of N(u)
exposed.

The following is a consequence of Proposition 10 and Hall's condition:

Corollary 11 A connected bipartite graph G = (U ∪W,E) with |U | < |W | is not ESE if and
only if there exists u ∈ U such that N(u) is saturated by some (maximal) matching of G.

Recognition of ESE-graphs

The recognition of ESE-graphs is trivially polynomial since checking equimatchability can
be done in time O(n2m) for a graph with n vertices and m edges (see [1]) and it is enough to
repeat this check for every edge removal. This trivial procedure gives a recognition algorithm
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for ESE-graphs in time O(n2m2). However, using the characterization of ESE-graphs, we can
improve this time complexity in a signi�cant way. The following time complexity is due to the
recognition of bipartite ESE-graphs which requires n times the computation of a maximum
matching in a bipartite graph.

Theorem 12 ESE-graphs can be recognized in time O(min(n3.376, n1.5m)).

3 Vertex-Stable Equimatchable Graphs

If we require not only G−v for some v ∈ V (G) to remain equimatchable, but also all induced
subgraphs of G, then this coincides with the notion of hereditary equimatchable graphs which
are shown in [2] to be only complete graphs and complete bipartite graphs. Then, complete
graphs and complete bipartite graphs are clearly VSE. Subsequently, we show that factor-
critical VSE-graphs are only odd cliques. Moreover, using the Gallai-Edmonds decomposition,
we show that if G is a VSE-graph which is not a complete graph, then G is bipartite. Finally,
by showing that a bipartite graph apart from complete bipartite is VSE if and only if it is
ESE, we obtain the following characterization of VSE-graphs.

Theorem 13 A graph G is VSE if and only if G is either a complete graph or a complete
bipartite graph or a bipartite ESE-graph.

It follows that VSE-graphs can also be recognized in time O(min(n3.376, n1.5m)). Let us
conclude with Figure 2 which summarizes our �ndings.

ESE-graphs VSE-graphs

Bip. ESE
(or VSE)

Odd cliques

Even cliques

Complete Bip.
G1 ∪ G2

Figure 2: Illustration of the classes of ESE-graphs and VSE-graphs.
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Extended Abstract

We prove that every 3-edge-connected graph G has a 3-flow φ with the property that
|supp(φ)| ≥ 5

6 |E(G)|. The graph K4 demonstrates that this 5
6 ratio is best possible.

1 Introduction
Throughout we permit graphs to have both multiple edges and loops. If G is an oriented
graph and Γ is an additive abelian group, then we define a function φ : E(G) → Γ to be a
flow if it satisfies the following rule at every vertex v ∈ V (G). Here δ+(v) (δ−(v)) denotes
the set of edges directed away from (toward) the vertex v∑

e∈δ+(v)

φ(e)−
∑

e∈δ−(v)

φ(e) = 0

The flow φ is nowhere-zero if 0 6∈ φ(E(G)) and it is called a k-flow for a positive integer k if
Γ = Z and |φ(e)| ≤ k− 1 for every e ∈ E(G). Tutte initiated the study of nowhere-zero flows
by proving the following duality theorem: If G and G∗ are dual plane graphs, then G∗ has a
proper k-colouring if and only if G has a nowhere-zero k-flow.

Based in part on this duality, Tutte made three lovely conjectures concerning the exis-
tence of nowhere-zero flows. These conjectures, known as the 5-Flow, 4-Flow, and 3-Flow
conjectures have motivated a great deal of research on this subject, but despite this all three
remain unsolved.

Our approach here will be to relax the notion of nowhere-zero and instead look for flows
which have large support. Our main theorem is the following bound for 3-flows in 3-edge-
connected graphs.

Theorem 1 Every 3-edge-connected graph G has a 3-flow φ satisfying

|supp(φ)| ≥ 5
6 |E(G)|.

Since the graph K4 does not have a nowhere-zero 3-flow, the ratio 5
6 in this theorem is

best possible. When we restrict our attention to planar graphs, our theorem has the following
corollary.

Corollary 2 If G is a simple planar graph, then there exists a function f : V (G)→ {1, 2, 3}
so that the number of edges uv with f(u) = f(v) is at most 1

6 |E(G)|.

Note that the graph K4 also demonstrates that the above corollary gives a best possible
bound. In fact, this corollary is not a new result – it is also an easy corollary of the Four
Colour Theorem.

Although the 5
6 ratio in Theorem 1 is best possible, it seems quite possible that the same

bound holds more generally for graphs which are 2-edge-connected. Unlike most results in
the realm of nowhere-zero flows, our theorem on 3-edge-connected graphs does not obviously
give a similar result for 2-edge-connected graphs. The best bound we have for 3-flows in
2-edge-connected graphs is the following result due to Kráľ.
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Theorem 3 (Kráľ) Every 2-edge-connected graph G has a 3-flow φ with

|supp(φ)| ≥ 3
4 |E(G)|.

Our main theorem has a somewhat stronger “choosability” form related to group-connec-
tivity as introduced by Jaeger, Linial, Payan, and Tarsi. Instead of insisting that the function
φ be a flow, we may instead ask for the sum involved at the vertex v to take on certain
prescribed values at each vertex v. Let us return to a general setting to put these definitions
in place. So, we assume that G is an oriented graph, let Γ be an abelian group (written
additively) and let φ : E(G) → Γ. The boundary of φ is the function ∂φ : V (G) → Γ given
by the following rule for every v ∈ V (G).

∂φ(v) =
∑

e∈δ−(v)

φ(e)−
∑

e∈δ+(v)

φ(e)

If we think of φ as indicating a circulation of fluid, then ∂φ(v) tells us how much is accumu-
lating at v or exiting the network at v. Note that, by definition, the function φ is a flow if
∂φ is identically zero. If we sum the boundary function ∂φ over every vertex, then whatever
value x is assigned to an edge e will get added once and subtracted once, so it has no effect.
This gives the following useful identity ∑

v∈V (G)

∂φ(v) = 0

which holds for every function φ : E(G) → Γ. The general form of our main theorem may
now be stated as follows (a function µ : V (G)→ Z3 is zero-sum if

∑
v∈V (G) µ(v) = 0).

Theorem 4 If G is an oriented 3-edge-connected graph and µ : V (G) → Z3 is zero-sum,
there exists φ : E(G)→ Z3 so that

1. ∂φ = µ

2. |supp(φ)| ≥ 5
6 |E(G)|

Unlike our earlier theorem, in the case of Theorem 4 the assumption of 3-edge-connectivity
is necessary. To see this, take an arbitrary oriented 3-edge-connected graph G and modify it
by subdividing every edge twice (thus forming a directed path of three edges). Now define
µ : V (G)→ Z3 by the following rule:

µ(v) =

{
1 if deg(v) = 2,
0 otherwise.

For every 3-edge path P with both interior vertices of degree 2, a straightforward check reveals
that every function φ : E(G) → Z3, which satisfies ∂φ = µ, will have the property that φ
assigns all three edges of P distinct values. Therefore, every such function φ will satisfy
|supp(φ)| = 2

3 |E(G)|.

2 Ears
Although the theorem we wish to prove concerns 3-edge-connected graphs, our proof will in-
volve a reductive process that encounters graphs which are only 2-edge-connected. In prepara-
tion for this, we will establish some terminology and tools for working with 2-edge-connected
graphs.
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Ear Decomposition
We define an ear of a graph G to be a subgraph P ⊆ G which satisfies one of the following:

• P is a nontrivial path, all interior vertices of P have degree 2 in G, but both endpoints
have degree ≥ 3 in G.

• P is a cycle of G containing exactly one vertex with degree 6= 2 in G.

• P = G is a cycle.

For an arbitrary graph H we let H× denote the graph obtained from H by deleting all
isolated vertices (i.e., vertices of degree 0). If P is an ear of G, then removing P brings us to
the new graph (G−E(P ))×. We define a partial ear decomposition of a graph G to be a list
P1, P2, . . . , P` of subgraphs of G satisfying the following:

1. E(Pi) ∩ E(Pj) = ∅ whenever i 6= j.

2. Pj is an ear of the graph obtained from G by removing P`, . . . , Pj+1.

Weighted Graphs and Ear Labellings
We define a weighted graph to be a graph G equipped with a function µG : V (G)→ Z3, and
we call G a zero-sum weighted graph if µG is zero-sum. In preparation for the proof of our
main theorem, we now introduce a framework to move from one weighted graph to another
by removing ears.

For our main theorem we have an oriented zero-sum weighted graph G and we are inter-
ested in finding a function φ : E(G)→ Z3 with boundary µG and large support. Let us take
a moment to consider the possible behaviours of such a function φ on an ear.

If P is an ear of G, a function ψ : E(P ) → Z3 is called an ear labelling if ∂ψ(v) =
µ(v) for every vertex v which is in the interior of the path P . The following observation is
straightforward but crucial.

Observation 5 Let P be an ear of the oriented zero-sum weighted graph G. Then there are
exactly three ear labellings φ1, φ2, φ3 of P , and every e ∈ E(P ) has the value 0 in exactly one
of these labellings.

Since we are looking to construct functions φ : E(G)→ Z3 which have large support, we
will naturally be interested in ears P of G which have an ear labelling with large support.
If ψ1, ψ2, ψ3 are the ear labellings of P , then by the above discussion, the average size of
the support of an ear labelling ψi will be precisely 2

3 |E(P )|. When |E(P )| is a multiple of
3, we may have |supp(ψi)| = 2

3 |E(P )| for 1 ≤ i ≤ 3. In this extreme case we say that P
is equitable, and in all other cases we call P inequitable. When |E(P )| is not a multiple of
3 (or more generally when P is inequitable), there exists at least one ear labelling ψi with
|supp(ψi)| > 2

3 |E(P )| and our proof will frequently exploit this. Indeed, the key to our
argument is getting a small advantage for each inequitable ear.

In preparation for this we now introduce a general definition. If H is a subgraph of G and
ψ : E(H)→ Z3, we define the gain of ψ to be

gain(ψ) = 24|supp(ψ)| − 16|E(H)|.

The following lemma gives our basic tool for finding good ear labellings. We will use this
extensively in the remainder of the paper.

Lemma 6 Let G be a weighted graph, and assume that P is an inequitable ear of G. If
|E(P )| = 3k+i where 1 ≤ i ≤ 3, then P has an ear labelling ψ : E(P )→ Z3 with gain(ψ) ≥ 8i.
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Next we introduce some terminology to facilitate the process of deciding on a particular
ear labelling, and then removing this ear from the (weighted graph). If P is an ear of G
and ψ : E(P ) → Z3 is an ear-labelling, we define the ψ-removal of P to be the weighted
graph G′ = (G \ E(P ))

× equipped with the weight function µG′ : V (G′) → Z3 given by the
following rule (we put ∂ψ(v) = 0 if v 6∈ V (P ))

µG′(v) = µG(v)− ∂ψ(v).

Since µG and ∂ψ both sum to zero, the same holds for the function µG − ∂ψ. However, this
latter function is identically zero on the interior vertices of the path P . It follows that the
function µG′ will be zero-sum. The following straightforward observation shows that we can
combine a function φ′ : E(G′)→ Z3 with boundary µG′ with our ear labelling ψ to obtain a
function on E(G) with boundary µG.

Observation 7 Let G be an oriented zero-sum weighted graph, let P ⊆ G be an ear, let ψ
be an ear labelling of P , and let G′ be the ψ-removal of P . If φ′ : E(G′) → Z3 satisfies
∂φ′ = µG′ , then the following function φ : E(G)→ Z3 has ∂φ = µG.

φ(e) =

{
φ′(e) if e ∈ E(G′)
ψ(e) if e ∈ E(P )

3 Framework
We close this extended abstract by stating our workhorse lemma that is used to prove our
main theorem. As seen above, ears with different lengths modulo 3 will behave differently for
us when constructing our desired function. To deal with this behaviour we will introduce a
bonus function which assigns each ear a value which indicates in some sense the amount we
expect to gain for it. For an ear P we define the bonus of P as follows:

bonus(P ) =

 0 if P is equitable
3 if |E(P )| ≡ 2 (mod 3).
4 otherwise

For a subgraph H ⊆ G which is a union of disjoint ears H = ∪`i=1Pi we define bonus(H) =∑`
i=1 bonus(Pi). So bonus(G) is the sum of the bonuses of all of the ears. With this termi-

nology in place, we are finally ready to state the workhorse lemma which will imply our main
theorem.

Lemma 8 Let G be an oriented zero-sum weighted graph and assume that G is a subdivision
of a 3-edge-connected graph. Then there exists φ : E(G)→ Z3 satisfying:

• ∂φ = µG,

• gain(φ) ≥ bonus(G).

It is straightforward to deduce Theorem 4 from Lemma 8. The proof of the lemma is
rather extensive. It is based on studying properties of possible minimal counterexample and
limiting its properties step-by-step.
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Extended Abstract

Power dominating a graph consists in choosing some vertices of the graph such that, while
applying a simple set of rules, all the vertices of the graph are monitored. The problem of
determining a power dominating set of minimum size has been first described in terms of
monitoring an electrical network with measurement devices (see for example [1]) and has
then been transposed in terms of a graph-theoretical problem by Haynes et al. in a seminal
paper [3]. After some classical definitions and notations on graphs, we present the power
domination problem in more details, along with our main result.

We use classical notations of graph theory. A planar graph G together with such an
embedding is called a plane graph. The edges of a plane graph partition the plane into
regions called faces, and the only unbounded face is called the outerface. A triangulation (or
maximal planar graph) is a plane graph whose faces are all triangles. A triangle composed of
vertices u, v, w (i.e., uv, vw, uw ∈ E(G)) is denoted as [uvw], and such a triangle is facial if it
is the boundary of some face of G. An octahedron is a triangulation composed of two triangles
[x0x1x2] and [y0y1y2] so that xi is adjacent to yi and yi+1 (being indices taken modulo 3). A
facial octahedron of a triangulation G is any subgraph H ⊆ G isomorphic to an octahedron
whose faces are facial in G, except for the outer triangle.

Given a subset S ⊆ V (G), the set of vertices monitored by S after i steps is defined as
P i
G(S) = P i−1

G (S)∪{u ∈ N(v) | v ∈ P i−1
G (S) and N(v)\P i−1

G (S) = {u}}, and P 0
G(S) = N [S].

Clearly, there is i∗ so that P i∗

G (S) = P j
G(S) for each j ≥ i∗, and so we can define the set of

vertices monitored by S asMG(S) = P i∗

G (S). We say that G is monitored when all its vertices
are monitored; the set of non-monitored vertices is denoted by MG(S) = V (G) \MG(S).
When the graph G is clear from the context, we simplify the notations P i

G(S), MG(S) and
MG(S) into respectively P i(S), M(S) andM(S). The set S is said to be a power dominating
set (PD-set for short) for G if M(S) = V (G), and the minimum cardinality of such a set is
the power dominating number of G, denoted by γP (G).

The decision problem associated to power domination (i.e. "Given a graph G and an
integer k, does γP (G) ≤ k?") has been proven to be NP-complete, even when restricted to
special classes of graphs, such as planar graphs [2], but is fixed-parameter tractable with
respect to tree-width [2]. Linear-time algorithms have been given to determine γP (G) if the
graph is a tree [3], a block graph [5], or an interval graph [4] (if endpoints are sorted), among
other classes. Bounds are known for some classes of graphs, including connected graphs [6]
and trees [3]. We are here studying power domination in maximal planar graphs.

The main result of this paper is the following theorem:

Theorem 1 Let G be a maximal planar graph of order n ≥ 6. Then γP (G) ≤ n−2
4 .

To prove Theorem 1, we describe how to compute a PD-set S of order at most n−2
4 . We

introduce the following invariant, which we seek to maintain throughout the process.
Property (∗). We say that a subset A of vertices of a graph G has Property (∗) in G

whenever, for each induced triangulation G′ ⊆ G of order at least 4, if G′ is monitored by
A then (a) |V (G′)| ≥ 6 and |A ∩ V (G′)| ≤ |V (G′)|−2

4 , or (b) there exists a vertex u of the
outerface of G′ such that NG[u] is monitored by A.

Building the set S is done in three steps. First, Algorithm 1 produces a set S1 monitoring
the facial induced octahedra with a small number of vertices. Then, Algorithm 2 builds
a set S2 by expanding the set S1 iteratively, while maintaining Property (∗). If G is not
monitored after that, we show that G has a specific structure. This structure is finally used
by Algorithm 3 to choose carefully the last vertices to add to S2 to construct the set S.
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Detailed description of the process
We denote by OG the set of facial octahedra of G, and G[OG] is the octahedra subgraph of G.
We say that two facial octahedra H,H ′ ∈ OG are adjacent if they share a vertex. Remark
that if H is a facial octahedron of G, then a PD-set of G contains at least a vertex of H.
Thus γP (G) is at least the maximum number of disjoint facial octahedra of G. An extreme
example is the graph formed by disjoint octahedra along with as many edges as one wants to
reach a triangulation. We begin by monitoring the facial octahedra of G with Algorithm 1.

Algorithm 1: Monitoring the vertices of the octahedra induced subgraph
Input: A triangulation G of order n ≥ 6
Output: A set S1 ⊆ V (G[OG]) monitoring G[OG] and |M(S1)| ≥ 6 |S1|
S1 := ∅
while ∃ adjacent non-monitored H,H ′ ∈ OG do

u: a common vertex of H and H ′
S1 ← S1 ∪ {u}
Label internal vertices of H and H ′ with u

while ∃ H ∈ OG with V (H) ∩ S1 = ∅ do
u: a vertex of the outerface of H
S1 ← S1 ∪ {u}
Label all vertices of H with u

Return S1

Lemma 2 Let S1 be the set obtained by application of Algorithm 1 to G. The following
statements hold: (i) V (G[OG]) ⊆MG(S1), (ii) |MG(S1)| ≥ 6 |S1|, and (iii) S1 has Property
(∗) in G.

Proof. (i) At the end of the algorithm, all octahedra are monitored since they all have
one of their exterior vertices in S1 (recall that as soon as one of the vertices of an octahedron is
in S1 the whole octahedron is monitored). Consequently, all vertices of G[OG] are inMG(S1).

(ii) Two facial octahedra H and H ′ can only share vertices of their outer faces. Thus for
each vertex u ∈ S1, there are at least 6 monitored vertices labelled exclusively with u: either
the interior vertices of two adjacent octahedra or the vertices of some octahedron. Hence
|MG(S1)| ≥ 6 |S1|.

(iii) Let G′ be an induced triangulation of G monitored after Algorithm 1. If G′ contains
no facial octahedra, then |S1 ∪ V (G′)| = 0 and thus Property (∗).(a) holds. Assume G′
contains facial octahedra. If for every vertex v ∈ S1 ∪ V (G′), all vertices with label v are
in G′, then |S1 ∪ V (G′)| ≤ |V (G′)|

6 and Property (∗).(a) holds. Otherwise, there is a vertex
v ∈ S1 such that some vertices labelled v are outside G′. But then v is a vertex of the outer
face of G′. Thus Property (∗).(b) holds.

Thus Property (∗) holds for S1 in G. �

We can suppose M(S1) 6= V (G) after Algorithm 1: if G[OG] = G, then |S1| ≤ n
6 , and

since n ≥ 6, then |S1| ≤ n−2
4 . Algorithm 2 now builds a set S2 ⊆ V (G) by greedily adding

vertices to S1.
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Algorithm 2: Greedy selection of vertices to expand S1

Input: A triangulation G of order n ≥ 6

Output: A set S2 ⊆ V (G) with |S2| ≤ |M(S2)|−2
4

S2 := Algorithm 1(G);M :=M(S2)
while ∃ u of maximum degree in G among {v ∈ V (G) \ S2 : |M(S2 ∪ {v})| ≥ |M |+ 4}
do

S2 ← S2 ∪ {u}
M ←M(S2)

Return S2

After Algorithm 2, the following lemma holds:

Lemma 3 Let S2 be the output of Algorithm2 on a triangulation G with |V (G)| ≥ 6. Then
(i) |S2| ≤ |M(S2)|−2

4 and (ii) Property (∗) holds for S2 in G.

(Sketch of proof) Statement (i) is proved by induction on the number of rounds of
Algorithm 2. Statement (ii) is proved for any induced triangulation G′ of G monitored after
Algorithm 2, with three cases depending on the number of vertices of G′. �

If M(S2) = V (G), then by Lemma 3, S2 is a PD-set of G with at most n−2
4 vertices. We

can thus suppose that M(S2) 6= ∅. We then show the following lemma (proof omitted here):

Lemma 4 After applying Alg. 2, let G′ be an induced triangulation of the graph G containing
non-monitored vertices. If G′ contains adjacent non-monitored vertices, then G′ is isomorphic
to one of the four first graphs depicted in Fig. 1. Otherwise (i.e. the non-monitored vertices
are independent in G′), G′ is isomorphic to the last graph depicted in Fig. 1.

In each case, a splitting structure C of three non-monitored vertices divide the other
vertices of G′ into two triangulations G1 and G2, called the associated triangulations of C.
Since the splitting structures must be disjoint, it implies that in the graph G, these structures
are nested and can be considered one into an other. Algorithm 3 (applied initially to G)
considers recursively the splitting structures and adds vertices to S2 to create the set S.

G1

G2

G2

G1G1

G2
G2

G1

G1

G2

Figure 1: The five different splitting structures and their associated triangulations G1 and G2. White
vertices belong to MG(S2) and black vertices to MG(S2). All triangles are facial except for G1 and G2.

Lemma 5 Suppose G is isomorphic to one of the graphs of Fig. 1 after Algorithms 1 and
2. If there exists two sets of vertices monitoring respectively G1 and G2, then G has a power
dominating set S with |S| ≤ n−2

4 .

Proof. In all five cases depicted in Fig. 1, vertices of the outerfaces of G1 and G2 have
neighbors in M . Let S1 and S2 be the PD-sets of respectively G1 and G2. By Lemmas 2 and
3, Property (∗).(a) holds for G. Thus G1 and G2 have at least 6 vertices each, |S1| ≤ |V (G1)|−2

4

and |S2| ≤ |V (G2)|−2
4 . Then if S = S1 ∪ S2 ∪ {u ∈ V (M)}, then |S| ≤ |V (G1)|+|V (G2)|

4 . In all
five cases, |V (G)| ≥ |V (G1)|+ |V (G2)|+ 2. Thus |S| ≤ |V (G)|−2

4 . �
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Algorithm 3: Monitoring the last vertices
Input: A triangulation G of order n ≥ 6, and an induced triangulation G′ ⊆ G
S = Algorithm 2(G) ∩ V (G′)

if ∃ a connected component C of MG(S3) in V (G′) isomorphic to P2 or P3 then
G1, G2 ⊆ G′ triangulations of G associated to C
S′ ← Algorithm 3(G, G1)
S′′ ← Algorithm 3(G, G2)
S ← S′ ∪ S′′ ∪ {u ∈ C}

if ∃ u ∈MG(S) ∩ V (G′) then
G1, G2 ⊆ G′ triangulations of G associated to C
S′ ← Algorithm 3(G, G1)
S′′ ← Algorithm 3(G, G2)
S ← S′ ∪ S′′ ∪ {u}

Return S

Lemma 6 Let G′ be an induced triangulation of G and C a splitting structure in G′ with G1

and G2 its associated triangulations. Let u be a vertex of C. Let S′ denote the set S ∩V (G1)
and S′′ the set S∩V (G2). If G1 and G2 are monitored and Property (∗) holds for respectively
S′ in G1 and S′′ in G2, then Property (∗).(a) holds for S′∪S′′∪{u} in G′ and G′ is monitored.

(Sketch of proof.) If a vertex of the outer face of G1 or G2 can propagate in G′,
then it can also propagate in G. Since in each case, all vertices of the outer face of G1 and
G2 have non-monitored neighbors, then Property (∗).(a) holds in both G1 and G2. Thus
|S′| ≤ |V (G1)|−2

4 and |S′′| ≤ |V (G2)|−2
4 . Remark that |V (G′)| ≥ |V (G1)|+ |V (G2)|+2 in every

case. After adding a vertex u ∈ C, we have: |S′ ∪ S′′ ∪ {u}| ≤ |V (G1)|−2
4 + |V (G2)|−2

4 + 1, and
thus |S′ ∪ S′′ ∪ {u}| ≤ |V (G1|+|V (G2)|

4 ≤ |V (G′)|−2
4 . Considering the cases depending on which

splitting structure is found and which vertex is added, we prove that in each case, vertices
u1, u2, u3 are monitored. Thus G′ is monitored. �

Theorem 7 At the end of Algorithm 3, M = V (G) and |S| ≤ |V (G)|−2
4 .

Proof. Since the splitting structures are nested, then Algorithm 3 considers a binary
tree-like hierarchy of structures, such that all P1 structures are considered after P2 and P3

structures. By induction on the depth of the structure considered, Lemma 6 guarantees
that the bound holds and that the graph is completely monitored after Algorithm 3. Thus
|S| ≤ |V (G)|−2

4 and M = V (G). �
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Extended Abstract

The marking game is a 2-player game played on a graph, that was introduced in 1999 by
Zhu [3].The players, called Alice and Bob, alternate turns marking a yet unmarked vertex.
When a vertex is marked, we de�ne its score as one plus the number of its marked neighbors.
The score of the whole game is the maximum of the scores of the vertices of the graph,
independently of who marked the vertex. We say Alice has a strategy with score k if Alice
has a strategy that ensures all vertices get score at most k. We say Bob has a strategy with
score k if Bob has a strategy to ensure at least one vertex gets score more than k.

In the following, we call A-marking game the game where Alice starts, and B-marking
game when Bob starts. In order to be able to consider games under progress, we denote G|M
the game played on G where the set of vertices M is considered already marked (and we
ignore their score). The A-marking number (resp. B-marking number) denoted colA(G|M)
(resp. colB(G|M)) is the minimum k such that Alice has a strategy with score k on the graph
G|M in the A-marking game (resp. the B-marking game).

In the following, we study how the A- and B-marking numbers change when canonical
operations are applied to the graph. We �rst prove that the A- and B-marking numbers of a
graph di�er by at most one. We then give some bounds on the marking game numbers of a
graph under three operations: vertex removal, edge removal, and edge contraction.

1 Marking numbers

In this section we study and compare the A-marking number and the B one. The results on
this section also involve some work by El»bieta Sidorowicz [4].

For a graph G = (V,E) and an integer s, we let As(G) = {v ∈ V |d(v) ≥ s} and Bs(G) =
V \As(G).

Proposition 1 ([4]) Let G = (V,E) be a graph, s an integer, and M ⊆ V a set of marked
vertices in G. We then have:

• if |As \M | > |Bs \M |, colA(G|M) > s

• if |As \M | ≥ |Bs \M |, colB(G|M) > s.

A strategy for Bob to ensure the previous proposition is to play only vertices in |Bs \M |.
Then the last vertex to be marked is necessarily in As and thus the score is at least s+ 1.

We improve this result by showing that in general, Alice has no advantage playing on Bs

if she wants to ensure a score s. This is similar to saying it is never useful for Alice to let
Bob play �rst.

Lemma 2 Let G(V,E) be a graph and M a set of marked vertices. We have :

colA(G|M) ≤ colB(G|M) ≤ colA(G|M) + 1.

Proof: We �rst prove that colA(G|M) ≤ colB(G|M) by using the imagination strategy
argument (see [1]). Consider a strategy for Alice to ensure a score at most s in the B-
marking game. Alice adapts that same strategy to play the A-marking game. Before her �rst
move, she imagines Bob played on any vertex x ∈ Bs \M , then she plays the vertex y she
would have played as answer in the B-marking game. As the game goes on, she plays as if x
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was marked, and she follows her strategy step by step to the answers of Bob. If Bob happens
to mark the vertex x, then she imagines Bob played any other unplayed vertex x′ ∈ Bs \M
and continues as in the imagined game.

Each time a vertex is marked in the A-marking game, it has no more marked neighbors
than in the imagined B-marking game, since Alice uses the same strategy. Moreover, the
imagined vertex that is played at the end of the game belongs to Bs so it has less than s
marked neighbors. Hence the maximum score is at most s. (This statement requires some
induction that is omitted here.)

We now prove that colB(G|M) ≤ colA(G|M) + 1. Assume Alice has a strategy in the
A-marking game with score s. Playing the B-marking game, Alice uses the same imagination
strategy. Bob starts playing some vertex x and Alice plays as if Bob did not play that move.
If at some point she is supposed to mark the vertex x marked by Bob, Alice marks any vertex
in As and imagines she played the vertex x (since that vertex would be played later on, it
has no more than s − 1 marked neighbors in the imagined game. If there is no vertex left
in As, there are only vertices of Bs unmarked, and we can immediately conclude the proof).
At each step there is one more vertex marked in the A-marking game than in the imagined
B-marking game. Thus when a vertex is marked, it has at most s marked neighbors. So the
maximum score is at most s+ 1.

Both bounds are tight. We consider the graphs Kn ∨Sm, where Kn denotes the complete
graph on n vertices, Sm the edgeless graph onm vertices, andG∨H the joint of two graphs (see
Fig. 1 for examples). For any integers n > m, we have that colA(Kn∨Sm) = colB(Kn∨Sm) =
n+m. Indeed, playing only the vertices of Sm, Bob enforces that the last vertex of Kn played
has all its n +m − 1 neighbors marked. This tighten the lower bound. On the other hand,
for n = m, colA(Kn ∨Sm) = n+m− 1 while colB(Kn ∨Sm) = n+m. Optimal strategies for
Alice and Bob are respectively to mark vertices from Kn and from Sm. �

Figure 1: Graphs K4 ∨ S4 and K3 ∨ S4 that show tightness

2 Basic operations

In this section, we describe the possible e�ect of deleting a vertex, deleting an edge or con-
tracting an edge on the marking number of a graph. We �rst propose the following result:

Theorem 3 (Vertex deletion) Let v be a vertex of V \M (and V \M 6= {v}). Then we
have:

colA(G|M)− 2 ≤ colA(G− {v}|M) ≤ colA(G|M),
colB(G|M)− 2 ≤ colB(G− {v}|M) ≤ colB(G|M),

and these bounds are tight.

The proof is omitted here, but it is also based on some imagination argument. We observed
earlier that colA(Kn ∨ Sn) = 2n − 1 while colA(Kn−1 ∨ Sn) = 2n − 3, tightening the lower
bound. For the B-marking game, we have colB(Kn∨Sn) = 2n while colA(Kn−1∨Sn) = 2n−2.
Removing a vertex of Sm in Kn ∨ Sm where m ≥ n + 2 does not change any of its marking
numbers, tightening the upper bound.
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Theorem 4 (Edge deletion) Let e be an edge of G. Then we have:

colA(G|M)− 1 ≤ colA(G \ {e}|M) ≤ colA(G|M),
colB(G|M)− 1 ≤ colB(G \ {e}|M) ≤ colB(G|M),

and these bounds are tight.

The tightness is obtained by taking G = (Sn ∨Kn) minus a perfect matching. We have
then : colA(G) = 2n− 1 and colB(G) = 2n− 1. When an edge in Kn is removed we obtain :
colA(G \ {e} = colB(G \ {e}) = 2n− 2.

As a corollary of Theorems 3 and 4, we get:

Theorem 5 For H a subgraph of G, we have:

colA(H) ≤ colA(G),
colB(H) ≤ colB(G).

This is a nice behavior of the marking game for subgraphs. We could expect that the
parameter behave less nicely with the edge contraction. Indeed, we prove the following result.

Theorem 6 (Edge contraction) Denote by G/e the graph G where the edge e has been
contracted. Then we have:

colA(G|M)− 2 ≤ colA(G/e|M) ≤ colA(G|M) + 2.

Both bounds are tight, as show the following examples. First consider the family of
graphs Gn obtained as follows. Remove from Kn ∨ Sn a perfect matching. Duplicate one of
the vertices of Kn, changing a vertex w into two adjacent twins u and v. Then add a vertex
adjacent to all the vertices of Kn (including u and v). We can check that colA(Gn) = 2n+1,
but if we contract the edge uv, then colA(Gn/uv) = 2n − 1. This tighten the lower bound.
Similarly, for G obtained from Cn ∨ Sn minus a matching, we have colA(G) = n + 2 but if
we split a vertex of the cycle in two (distributing evenly the neighbors), we get a A-marking
number of n.
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Extended Abstract

Abstract

An (I,Fd)-partition of a graph is a partition of the vertices of the graph into two sets

I and F , such that I is an independent set and F induces a forest of maximum degree

at most d. We showed that, for all 2 ≤M < 3 and d ≥ 2
3−M

−2, a graph with maximum

average degree less than M admits an (I,Fd)-partition. Additionally, we proved that,

for all 8
3
≤ M < 3 and d ≥ 1

3−M
, a graph with maximum average degree less than M

admits an (I,Fd)-partition.

1 Introduction

In this abstract, all the considered graphs are simple graphs, without loops or multi-edges.
For i classes of graphs G1, . . . ,Gi, a (G1, . . . ,Gi)-partition of a graph G is a partition of the
vertices of G into i sets V1, . . . , Vi such that, for all 1 ≤ j ≤ i, the graph G[Vj ] induced by Vj
belongs to Gj . In the following we will consider the following classes of graphs:

• F the class of forests,

• Fd the class of forests with maximum degree at most d,

• ∆d the class of graphs with maximum degree at most d,

• I the class of empty graphs (i.e. graphs with no edges).

For example, an (I,F ,∆2)-partition of G is a vertex-partition into three sets V1, V2, V3 such
that G[V1] is an empty graph, G[V2] is a forest, and G[V3] is a graph with maximum degree
at most 2. Note that ∆0 = F0 = I and ∆1 = F1. The average degree of a graph G with
n vertices and m edges, denoted by ad(G), is equal to 2m

n . The maximum average degree of
a graph G, denoted by mad(G), is the maximum of ad(H) over all subgraphs H of G. The
girth of a graph G is the length of a smallest cycle in G, and in�nity if G has no cycle. Many
results on partitions of sparse graphs appear in the literature, where a graph is said to be
sparse if it has a low maximum average degree, or if it is planar and has a large girth. The
study of partitions of sparse graphs started with the Four Colour Theorem [1, 2], which states
that every planar graph admits an (I, I, I, I)-partition. Borodin [3] proved that every planar
graph admits an (I,F ,F)-partition, and Borodin and Glebov [4] proved that every planar
graph with girth at least 5 admits an (I,F)-partition. Poh [9] proved that every planar graph
admits an (F2,F2,F2)-partition. More recently, Borodin and Kostochka [7] showed that for

all j ≥ 0 and k ≥ 2j+2, every graph G with mad(G) < 2
(

2− k+2
(j+2)(k+1)

)
admits a (∆j ,∆k)-

partition. In particular, every graph G with mad(G) < 8
3 admits an (I,∆2)-partition, and

every graph G with mad(G) < 14
5 admits an (I,∆4)-partition. With Euler's formula, this

yields that planar graphs with girth at least 7 admit (I,∆4)-partitions, and that planar
graphs with girth at least 8 admit (I,∆2)-partitions. Borodin and Kostochka [6] proved that
every graph G with mad(G) < 12

5 admits an (I,∆1)-partition, which implies that that every
planar graph with girth at least 12 admits an (I,∆1)-partition. This last result was improved
by Kim, Kostochka and Zhu [8], who proved that every triangle-free graph with maximum
average degree at most 11

9 admits an (I,∆1)-partition, and thus that every planar graph with
girth at least 11 admits an (I,∆1)-partition. In contrast with these results, Borodin, Ivanova,
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Classes Vertex-partitions References

Planar graphs
(I, I, I, I) The Four Color Theorem [1, 2]
(I,F ,F) Borodin [3]
(F2,F2,F2) Poh [9]

Planar graphs with girth 5 (I,F) Borodin and Glebov [4]
Planar graphs with girth 6 no (I,∆d) Borodin et al. [5]

Planar graphs with girth 7
(I,∆4) Borodin and Kostochka [7]
(I,F5) Present paper

Planar graphs with girth 8
(I,∆2) Borodin and Kostochka [7]
(I,F3) Present paper

Planar graphs with girth 10 (I,F2) Present paper

Planar graphs with girth 11 (I,∆1) Kim, Kostochka and Zhu [8]

Table 1: Known results on planar graphs.

Montassier, Ochem and Raspaud [5] proved that for every d, there exists a planar graph of
girth at least 6 that admits no (I,∆d)-partition.

In this paper, we focus on (I,Fd)-partitions of sparse graphs ; this is a follow-up of the
previous studies. Note that, if a graph admits an (I,Fd)-partition, then it admits an (I,∆d)-
partition, and that an (I,F1)-partition is the same as an (I,∆1)-partition. Therefore the
previous results imply the following for (I,Fd)-partitions:

• for every d, there exists a planar graph of girth at least 6 that admits no (I,Fd)-
partition;

• every planar graph with girth at least 11 admits an (I,F1)-partition.

Here are the main results of our paper:

Theorem 1 Let 2 ≤ M < 3 be a real number and d ≥ 2
3−M − 2 be an integer. Every graph

G with mad(G) < M admits an (I,Fd)-partition.

Theorem 2 Let 8
3 ≤ M < 3 be a real number and d ≥ 1

3−M be an integer. Every graph G
with mad(G) < M admits an (I,Fd)-partition.

By a direct application of Euler's formula, every planar graph with girth at least g has
maximum average degree less than 2g

g−2 . That yields the following corollary:

Corollary 3 Let G be a planar graph with girth at least g.

1. If g ≥ 7, then G admits an (I,F5)-partition.

2. If g ≥ 8, then G admits an (I,F3)-partition.

3. If g ≥ 10, then G admits an (I,F2)-partition.

Corollaries 3.2 and 3.3 are obtained from Theorem 2, whereas Corollary 3.1 is obtained from
Theorem 1. See Table 1 for an overview of the results on vertex partitions of planar graphs
presented above.

2 Sketch of the proofs

The proofs of Theorems 1 and 2 work on the same model, though the proof of Theorem 2 has
some additional arguments. We will focus here on the proof of Theorem 1. The proof uses the
discharging method. Let G be a counter-example to Theorem 1 with the minimum number of
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Figure 1: The construction of the light forest L. The big vertices are represented with big
circles, and the small vertices with small circles. The �lled circles represent vertices whose
incident edges are all represented. The dashed lines are the continuation of the light forest.
The arrows point from son to father in L.

vertices. For all k, a vertex of degree k, at least k, or at most k in G is a k-vertex, a k+-vertex,
or a k−-vertex respectively. A (d + 1)−-vertex is a small vertex, and a (d + 2)+-vertex is a
big vertex. We prove some properties on the structure of G.

Lemma 4 There are no 1−-vertices in G.

Lemma 5 There are no 2-vertices adjacent to two small vertices in G.

Lemma 6 There are no sets B of small 3+-vertices in G inducing a tree such that every

vertex that is not in B and has a neighbour in B is of degree 2.

Note that Lemma 6 allows us to forbid con�gurations of unbounded size. Let us de�ne
the notion of light forest in the graph G that is useful both in de�ning some forbidden
con�gurations and in the discharging procedure. Let B be a (maximal) set of small 3+-
vertices such that G[B] is a tree with only one edge that links a vertex of B to a 3+-vertex
u ∈ V (G) \ B, and u is a big vertex. Such a set B is called a bud with father u. A 2-vertex
adjacent to a small vertex is called a leaf. Let us build the light forest L, by the following
three steps:

1. While there are leaves that are not in L, do the following. Pick a leaf v, and let u be
the big vertex adjacent to v (that exists by Lemma 5). Add to L the vertex v, the edge
uv, and the vertex u (if it is not already in L). Also set that u is the father of v (and
v is a son of u). See Figure 1, left.

2. While there are buds that are not in L, do the following. Pick a bud B. Let u be the
father of B, and let v be the vertex of B adjacent to u. Add G[B] to L, as well as the
edge uv, and the vertex u (if it is not already in L). The vertex u is the father of v,
and the father/son relationship in B is that of the tree G[B] rooted at v. See Figure 1,
middle.

3. While, for some k, there exists a big k-vertex w ∈ L that has k− 1 sons in L and whose
last neighbour is a 2-vertex that is not in L, do the following. Let v be the 2-vertex
adjacent to w that is not in L, and let u be the neighbour of v distinct from w. Note
that v is a non-leaf 2-vertex (since it was not added to L in Step 1), therefore u is a
big vertex. Add to L the vertex v, the edges uv and vw, and the vertex u (if it is not
already in L). We set that v is the father of w, and that u is the father of v. See
Figure 1, right.

The following lemma uses the notion of light forest to de�ne forbidden con�gurations of
unbounded size.

Lemma 7 For all k, the light forest L of G does not contain a big k-vertex with k sons.
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Discharging procedure:

Let ε = 3 −M . Recall that d ≥ 2
3−M − 2 = 2

ε − 2, therefore ε ≥ 2
d+2 > 0. We start by

assigning to each k-vertex a charge equal to k −M = k − 3 + ε. Note that since M is bigger
than the average degree of G, the sum of the charges of the vertices is negative. The initial
charge of each 3+-vertex is at least ε, and thus is positive.

Every big vertex gives charge 1 − ε to each of its neighbours that are its sons in L, does
not give anything to its father in L (if it has one), and gives 1−ε

2 to its other neighbours with
degree 2.

One can prove that, at the end of the procedure, every vertex has a non-negative charge,
that is a contradiction.
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Extended Abstract

Recall that an oriented graph is a digraph obtained from a simple, undirected graph by
giving each edge one of its two possible orientations. The directed girth of an directed graph
H is defined to be the minimum length of a directed cycle in H, or infinity if H has no
directed cycle. For a pair of vertices u, v ∈ V (G), the weak distance from u to v, denoted
dweak(u, v), is the least k such that there is a directed path of length k from u to v or from
v to u, or infinity if no such path exists.

Recall, also, that if G and H are oriented graphs, then a homomorphism of G to H is a
function φ from the vertices of G to the vertices of H such that φ(x)φ(y) ∈ E(H) whenever
xy ∈ E(G). If G and H are oriented graphs such that there is a homomorphism φ of G to H,
then we write φ : G→ H, or G→ H if the name of the function φ is not important.

Let k and t be a positive integers, and let G be an oriented graph. Chen and Wang [2]
defined a k-dipath t-colouring of G to be an assignment of t colours to the vertices of G so that
any two vertices joined by a directed path of length at most k are assigned different colours.
A 1-dipath t-colouring of an oriented graph G is a colouring of the underlying undirected
graph of G. Figure 1 gives of a 3-dipath 4-colouring of an oriented graph.

3

4

4

2

12

4

2

Figure 1: A 3-dipath 4-colouring.

The k-dipath chromatic number of G, denoted by χkd(G), is the smallest positive integer t
such that there exists a k-dipath t-colouring ofG. Chen andWang showed that any orientation
of a Halin graph has 2-dipath chromatic number at most 7, and there are infinitely many such
graphs G with χ2d(G) = 7 [2].

For a positive integer t, an oriented t-colouring of an oriented graph G is a homomorphism
of G to some oriented graph on t vertices. Oriented colourings were first introduced in 1994
[3], and have been a topic of considerable interest in the literature since then; see the recent
survey by Sopena [8], and also [1], [4] for related topics. Since oriented graphs have no directed
cycles of length two, the definition implies that any two vertices of G joined by a directed
path of length at most two are assigned different colours (i.e. they have different images) in
an oriented colouring of G. The 2-dipath chromatic number is of interest, in part, because it
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gives a lower bound for the oriented chromatic number χo(G) – the smallest positive integer
t such that G admits an oriented t-colouring. It follows from the definition that any oriented
colouring of G is a 2-dipath colouring of G; hence χ2d(G) ≤ χo(G).

In her Master’s thesis [9] (more recently published as [6]), Sherk (née Young) gives a ho-
momorphism model for 2-dipath t-colouring. That is, for each positive integer t, she describes
an oriented graph Gt with the property that an oriented graph G has a 2-dipath t-colouring
if and only if there is a homomorphism of G to Gt. As is common with such theorems, it is
possible to use the homomorphism to Gt to find a 2-dipath t-colouring of G. The existence
of this model implies an upper bound for the oriented chromatic number as a function of the
2-dipath chromatic number. It also leads to a proof that deciding whether a given oriented
graph has a 2-dipath t-colouring is Polynomial if the fixed integer t ≤ 2, and NP-complete if
t ≥ 3.

A natural question is whether Sherk’s results can be generalized to k-dipath t-colouring.
We seek a model similar to hers, where the homomorphism to the target oriented graph can
be used to find a k-dipath t-colouring of the given oriented graph. However, we suggest that
such model only exists for colouring oriented graphs with no directed cycles of length k or
less. Consider the case of 3-dipath t-colouring, where t ≥ 3. Suppose there exists a digraph
H3,t with the property that an oriented graph G has a 3-dipath t-colouring if and only if there
is a homomorphism of G to H3,t. The digraph H3,t has no loops, otherwise all vertices of G
can be assigned the same colour.

By definition, the directed 3-cycle has a 3-dipath 3-colouring: assign each vertex a different
colour. Thus, there is a homomorphism of the directed 3-cycle to H3,t. Consequently, H3,t

has a directed 3-cycle. But, now there is a homomorphism of a directed path of length three
to H3,t in which the two end vertices have the same image. Since the ends of a directed path
of length three must be assigned different colours in a 3-dipath t-colouring, this model will
not have the desired property. Similar considerations apply to k-dipath t-colouring for all
pairs of positive integers k and t with t ≥ k. Hence, a homomorphism model of the type we
seek will not exist if the oriented graphs being coloured can have directed cycles of length k
or less. This is consistent with Sherk’s results for 2-dipath colouring of oriented graphs as
these graphs have no directed cycles of length two or less.

Let G be an oriented graph. Define Gk to be the simple graph formed from G as follows:

• V (Gk) = V (G), and

• E(Gk) = {uv|0 < dweak(u, v) ≤ k}.

Observe that if G is an oriented graph with directed girth at least k + 1, then there is a
one-to-one correspondence between k-dipath colourings of G and proper colourings of Gk.

The main result of this work is the construction of a homomorphism model for k-dipath t-
colouring of oriented graphs with no directed cycles of length k or less. That is, for all positive
integers k and t we describe an oriented graph Gk,t with the property that an oriented graph
G, with no directed cycle of length at most k, has a k-dipath t-colouring if and only if G
admits a homomorphism to Gk,t. Further, such a homomorphism is sufficient to construct
an explicit k-dipath t-colouring of G. The oriented graph Gk,t is constructed by considering
a set of matrices which encode the possible colours of vertices (in a k-dipath t-colouring)
in an closed (k − 1)-neighbourhood of a fixed vertex . The set of such matrices is taken
as the vertex set of Gk,t. Adjacency between a pair of matrices encodes that the respective
fixed vertices in those matrices have consistent (k − 1)-neighbourhoods. This construction
generalises Sherk’s homomorphism model for 2-dipath colouring using vectors to encode the
colours of neighbours of a vertex with a fixed colour.

This homomorphism model for k-dipath t-colouring captures the following facts.

• If t < k, then no oriented graph with directed girth at least k + 1 and a k-dipath
t-colouring can have a directed path of length greater than t. Any such digraph is
k-dipath t-colourable.
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• If t ≥ k, then any k-dipath t-colouring of an oriented graph is also a k-dipath (t + 1)-
colouring, and there exist oriented graphs with k-dipath chromatic number t+ 1.

• Every (k + 1)-dipath t-colouring of an oriented graph is a k-dipath t-colouring

In addition to considering homomorphisms and k-dipath coloring, we determine the com-
plexity of deciding the existence of a k-dipath t-colouring for all pairs of fixed positive integers
k and t. When instances are restricted to oriented graphs with no directed cycles of length
k or less, it is shown that that this problem is NP-complete whenever t > k ≥ 3, and Poly-
nomial if t = k or k ≤ 2. When there are no restrictions, it is shown that this problem is
NP-complete whenever k ≥ 3 and t ≥ 3, and Polynomial whenever k ≤ 2 or t ≤ 2. These
results generalise the result of Sherk for 2-dipath colouring; however, the here reduction is
directly from the t-colouring problem, rather than following from the homomorphism model.

The problem of deciding whether the k-th power of a graph G is t-colourable is known to
be NP-complete [7, 5]. Our results imply that if t > k, the problem of deciding whether the
underlying graph of the k-th power of an oriented graph G (i.e. two vertices are adjacent if
and only if they are at weak distance at most k) is t-colourable is NP-complete, even when
restricted to powers of oriented graphs with directed girth at least k + 1, and also that,
if t = k ≥ 3, the problem of deciding whether the k-th power of an oriented graph G is
t-colourable is NP-complete.
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Extended Abstract

We study the parameterized complexity of the Hamiltonian Anti-Path problem (i.e.
the problem of Hamiltonian Path in the graph complement) parameterized by tree-width.
Standard problem of Hamiltonian path on graphs parameterized by tree-width admits
an FPT algorithm by Courcelles meta-theorem [4]. However, complements of graphs with
bounded tree-width can have tree-width arbitrarily large. Moreover, it is unlikely that there
is an MSO formula expressing Anti-Path. We show an FPT algorithm for Hamiltonian
Anti-Path parametrized by tree-width. Moreover, by an easy trick (i.e. add k isolated
vertices, this change does not increase the tree-width) we can state stronger result for the
k-Anti-Path cover problem.

k-Anti-Path Cover
Input: A graph G.
Question: Is it possible to cover the complement of graph G (every vertex of G has

to belong to exactly one path) by at most k paths?

In this notion Hamiltonian Anti-Path problem is exactly the 1-Anti-Path Cover prob-
lem.

Theorem 1 Let G be a graph of tree-width at most w. The problem of k-Anti-Path cover
admits an FPT algorithm parameterized by tree-width. Precisely, after the first step of the
algorithm the middle-product graph has neighborhood diversity bounded by 22w

2

+ 2w2.

Theorem 2 Let G be a graph of tree-depth most d. The problem of k-Anti-Path cover
admits an FPT algorithm parameterized by tree-width. Precisely, the algorithm middle-product
graph has neighborhood diversity bounded by 2d + d.

The notion of tree-width was introduced by Bertelé and Brioshi in 1972 [1].

Definition 3 (Tree decomposition) A tree decomposition of a graph G is a pair (T,X),
where T = (I, F ) is a tree, and X = {Xi | i ∈ I} is a family of subsets of V (G) (called bags)
such that:

• the union of all Xi, i ∈ I equals V ,

• for all edges {v, w} ∈ E, there exists i ∈ I, such that v, w ∈ Xi and

• for all v ∈ V the set of nodes {i ∈ I | v ∈ Xi} forms a subtree of T .

The width of the tree decomposition is max(|Xi|−1). The tree-width of a graph tw (G) is the
minimum width over all possible tree decompositions of the graph G.

Sparser tree-like graph parameter is tree-depth.

Definition 4 (Tree-depth [7]) The closure Clos(F ) of a forest F is the graph obtained
from F by making every vertex adjacent to all of its ancestors. The tree-depth td(G) of a
graph G is one more than the minimum height of a rooted forest F such that G ⊆ Clos(F ).

1Work was supported by the project SVV-2016-260332.
2The research leading to these results has received funding from the European Research Council under the

European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 616787.
3Author was supported by the project GAUK 1784214 and by the project CE-ITI P202/12/G061 .
4Author was supported by the project GAUK 338216 and by the project CE-ITI P202/12/G061.
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The last graph parameter is the neighborhood diversity introduced by Lampis in 2012 [6].

Definition 5 (Neighborhood diversity) The neighborhood diversity of a graph G is de-
noted by nd (G) and it is the minimum size of a partition of vertices into classes such that
all vertices in the same class have the same neighborhood, i.e. N(v) \ {v′} = N(v′) \ {v},
whenever v, v′ are in the same class.

It can be easily verified that every class of neighborhood diversity is either a clique or an
independent set. Moreover, for every two distinct classes C,C ′, either every vertex in C is
adjacent to every vertex in C ′, or there is no edge between C and C ′. If classes C and C ′ are
connected by edges, we refer to such classes as adjacent.

From this definition it can be easily seen that complement of graph has exactly the same
neighborhood diversity as the former graph.

All the standard parameterized complexity notion used here can be found in a nice book
by Downey and Fellows [5].

We say that an algorithm for a parameterized problem L is an FPT algorithm if there
exist a constant c and a computable function f such that the running time for input (x, k) is
f(k)|x|c and the algorithm accepts (x, k) if and only if (x, k) ∈ L.

We now would like to sketch the proof of our result.
Our approach repeatedly use Bondy-Chvátal’s closure theorem to increase the number of

edges in the complement of a graph (i.e. to reduce edges in a graph given). This operation
preserves the tree-width.

Theorem 6 (Bondy-Chvátal closure [3]) Let G(V,E) be a graph of order |V | ≥ 3 and
suppose that u and v are distinct non-adjacent vertices such that deg(u) + deg(v) ≥ |V |.

Then G(V,E) has a Hamiltonian path if and only if G′(V,E ∪ {uv}) has a Hamiltonian
path.

Then we prove that when this process gets stuck the resulting graph has bounded neigh-
borhood diversity and so we use an FPT algorithm for bounded neighborhood diversity by
Lampis [6].

Despite being quite similar the proof of an FPT algorithm parametrized by tree-depth has
easier calculations so we decided to present that one first and in more details.

Proof of Theorem 2 Lets have a graph G(V,E) with tree-depth at most d. There is an
FPT algorithm parameterized by tree-depth that finds a representation of a graph by a tree
and its closure [7]. We denote height of a vertex in this tree as h(v), height of the root is 0
and maximum height is d.

We start to remove edges from the leaves to the root using Bondy-Chvátal’s closure in
the complement. For all leaves of G holds that they have at least |V | − d non-neighbors. We
remove an edge to the next layer vertex if possible. Generally, for the leaf of height h there
is at least |V | − h non-neighbors. If a vertex is not a leaf we have to add number of leaves in
the corresponding subtree f so it has at least |V | − (h− 1)− f non-neighbors. Every time we
re move an edge we increase the height of that leaf.

The algorithm gets stuck if and only if for each leaf holds |V | − h+ |V | − h+ 1− f ≤ |V |
so when f ≥ |V | − 2h+ 1 or G becomes an independent set. After this process the resulting
graph is only a path of the length at most d with several additional leaves attached to each
its vertex. So we have at most d special vertices that can have any possible neighborhood
and other vertices forms together a clique thus the resulting graph has neighbor diversity at
most 2d + d. �

Sketch of the Proof of Theorem 1 Lets have a graph G(V,E) with tree-width at
most w. We can compute its tree-decomposition by an FPT algorithm parametrized by tree-
width [2]. Moreover, a decomposition with at most |V | bags can be found.

Then we can have at most 2k2 special vertices that belongs to at least n
2k bags. Vertices

belonging to less bags forms a clique again by Bondy-Chvátal’s closure because each vertex
there has at most n

2 neighbors and so every pair of those vertices fulfill the condition.
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And so again we have 2k2 special vertices that can have any possible neighborhood and
other vertices forms together a clique thus the resulting graph has neighbor diversity at most
22k

2

+ 2k2. �
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Extended Abstract

An online Ramsey game (G, H) is a game between Builder and Painter, alternating in turns.
In each round Builder draws an edge and Painter colors it either red or blue. Builder wins
if after some round there is a monochromatic copy of the graph H, otherwise Painter is the
winner. The rule for Builder is that after each his move the resulting graph must belong to
the class of graphs G. In this abstract we consider that G is the class of all planar graphs.
We present some new strategies for Builder and introduce a new graph class H such that if
H is in H then Builder wins.

Introduction The online Ramsey game was introduced independently by Beck [1] and
Friedgut et al. [4]. In this abstract we consider an extensions of the online Ramsey game
(G, H) introduced by Grytczuk et al. [5] as follows. We are given a class of �nite graphs G
and a �xed graph H. There are two players, Builder and Painter, and the board of the game
is an in�nite independent set of vertices. In each round Builder draws a new edge and Painter
colors it red or blue. The goal of Builder is to force Painter to create a monochromatic copy
of H. However, in each round the graph induced by the drawn edges must belong to G,
otherwise Builder loses.

De�nition 1 If Builder can always win the online Ramsey game (G, H), we say that H is

unavoidable on G. A graph class C is unavoidable on G if every graph C ∈ C is unavoidable

on G.
Let R(H) be a Ramsey graph of H, that means a graph such that any two-coloring of

its edges contains a monochromatic copy of H. If R(H) ∈ G then H is trivially unavoidable
on G. However, the question of unavoidability is usually highly nontrivial when R(H) /∈ G.
For example, for H = K4 and G the class of all 4-colorable graphs, no Ramsey graph R(K4)
belongs to G, but still K4 is unavoidable on G by [5]. The online Ramsey theory is thus an
interesting member of the family of Ramsey-related problems.

Online Ramsey theory recently gained popularity and di�erent versions of the online
Ramsey game were considered and several unavoidability results were obtained. Grytczuk
et al. [5] has shown that forests are unavoidable on the class of all forests and that any k-
colorable H is unavoidable on the class of k-colorable graphs. They also proved that K3 is not
unavoidable on the class of outerplanar graphs and conjectured that the class unavoidable on
planar graphs is exactly the class of outerplanar graphs. This was disproved by Pet°í£ková [7].
She showed that the class of outerplanar graphs is unavoidable on the class of planar graphs.
However, she also found a class of planar graphs, which are not outerplanar, unavoidable on
planar graphs.

Theorem 2 (Pet°í£ková [7]) Let θi,j,k be a graph consisted of three internally disjoint path

of length i, j and k between connecting two vertices. The graph θ2,j,k is unavoidable on planar

graphs for even j, k.

Butter�eld et al. [2] presented several unavoidability results for graphs on the class of
bounded-degree graphs. Rolnick [8] provided a complete characterization of trees unavoidable
on the class of graphs with maximum degree 4.

Conlon [3] studied the di�erences between standard Ramsey theory and the online theory.
He proved that there is a constant c such that for in�nitely many values k Builder needs to
draw less then c−k

(
r(k)
2

)
edges to force Kk on the in�nite complete background graph, where

r(k) is the standard Ramsey number for complete graphs, i.e., there is more e�cient strategy
for Builder to force Kk than using results from standard Ramsey theory.
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Builder's Strategies From now we suppose that the class G is the class of planar graphs.
Grytczuk et al. [5] and Pet°í£ková [7] conjectured the graph K4 is avoidable on planar graphs.
We suspect the class of series-parallel graph is exactly the unavoidable class on planar graphs.
We present some techniques and results which might be useful for proving the conjecture. Our
strategies were inspired by the result of Grytczuk et al. [5] that forests are unavoidable on
forests. As a corollary we present new graph class unavoidable on planar graphs.

The �rst technique is about reusing existing strategy in a tree-like structure. We de�ne a
tree-like structure where each edge of a tree is replaced by some graph. Let T = (U,F ) be a
tree and H = {Gf |f ∈ F} be a set of graphs. We call a function r : U → P(V (H)) by a tree

function1 if r has the following properties for every f ∈ F :

1. |r(v) ∩ V (Gf )| ≤ 1

2. r(v) ∩ V (Gf ) 6= ∅ ⇔ v ∈ f

Informally, the extended tree T (H, r) arises by replacing every edge f ∈ F by a graph
Gf ∈ H. The tree function r determined how the graphs in H are connected. An example of
an extended tree is in Figure 1. An extended forest T (H, r) is de�ned in the same way but
the graph T can be a forest. Let T (H, r) be an extended tree and R be a subtree of T . For
simplicity, we use notation R(H, r) for extended tree such that the graph family H and the
tree function r are restricted to the edges and the vertices of R.

v

T
a b

dc

Ga Gb

Gc Gd

u1

u2

w

y z

x

u2

u3

u5

u6

T (G, r)

u7 u8

rx : r(x) = {u2}

ry : r(y) = {u6}

rz : r(z) = {u8}

rw : r(w) = {u2, u5, u7}

rv : r(v) = {u1, u3}

Figure 1: Example of an extended tree T ({Ga, Gb, Gc, Gd}, r).

De�nition 3 Let G = (V,E) be a connected graph and u, v ∈ V . An uniform extended

tree T (G, u, v, r) is an extended tree T (H, r) such that every Gi ∈ H is isomorphic to G via

isomorphism fi : V (Gi)→ V (G) and

{fi(v)|v ∈ V (T ) : r(v) ∩ V (Gi) 6= ∅} = {u, v}.

Informally, the uniform extended tree arises by replacing every edge of a tree T by a copy of
the �xed graph G such that all copies of G are connected by copies of two �xed vertices in
V (G).

Let τ1 = T1(H1, r1) be an extended forest for a forest T1 = (U1, F1) and τ2 = R(H2, r2)
be an extended forest for a forest T2 = (U2, F2). We say the extended forest τ1 is a proper

subforest of τ2 if

1. the forest T1 is a subgraph of T2,

2. for every f ∈ F1 it holds that G1
f ∈ H1 is a subgraph of G2

f ∈ H2,

3. for every u ∈ U1 it holds that r1(u) = r2(u).
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Figure 2: Example of proper subtree for trees T1 and T2.

An example of proper subtree is in Figure 2.

Lemma 4 Let G = (V,E) be a graph, u, v ∈ V and T = (U,F ) be a tree. Let Builder has a

strategy S such that he can force a monochromatic copy of G on planar graphs. Then, there

exists a Builder's strategy S′ such that Builder force a monochromatic copy of an uniform

extended tree τ1 = T (G, u, v, r) such that the drawn graph D(S′) is a planar extended forest

τ2 = T (H, r′) and τ1 is a proper subtree of τ2. Moreover, if G is forced by S such that u and

v are always in the same face of the drawn graph D(S) then all copies of u and v are in the

same face of a drawn graph D(S′).

Idea of proof of Lemma 4 is to change strategy Sf for forest by Grytczuk et al. [5].
Whenever Builder connect two vertices by an edge using the strategy Sf to force the tree T ,
he use the strategy S′ to connect corresponding two vertices in τ1.

Second technique is about connecting vertices with a monochromatic path. If a drawn
graph has to be planar then Builder has to draw only edges between two vertices in the
same face of the drawn graph. Trivially, one edge is always monochromatic. Thus, we ask
a question if there are two vertices u and v in the same face of a drawn graph, can Builder
force a monochromatic path between u and v? The next lemma shows our result.

Lemma 5 Let G = (V,E) be a graph and u, v ∈ V . Let S is a Builder's strategy for forcing a

monochromatic copy of G such that u and v are always in the same face of the drawn graph.

Then, there exists a Builder's strategy S′ which forces a monochromatic copy of G and a

monochromatic path Pk of the odd length connecting u and v. Moreover, u and v are in the

same face of a graph drawn by Builder when using the strategy S′.

Lemma 4 and strategy for paths by Grytczuk et al. [5] are used in a proof of Lemma 5. A
monochromatic copy of extended tree for graph G is forced and then a monochromatic paths
are forced as well. Note that the monochromatic copy of G and Pk do not have to be colored
by the same color. A straightforward corollary of Lemma 5 gives us the new class of graphs
unavoidable on planar graphs.

Corollary 6 Let Q(k, `, u, v) be a graph consisting ` internally disjoint paths of the length

k between the vertices u and v. The graph Q(k, `, u, v) is unavoidable on planar graphs for

arbitrary ` ∈ N and k ∈ N odd.
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Extended Abstract

Introduction
Perfect graphs received considerous attention in graph theory. The purely combinatorial defi-
nition — that a graph is perfect if and only if for each of its induced subgraphs, the chromatic
number and the clique number coincide — can be replaced by a polyhedral one (Chvàtal [3]):

A graph G is perfect if and only if its stable set polytope SSP(G), ie the convex hull of
stable sets of G, is completely described by non-negativity and clique inequalities.

Modification of the considered inequalities leads to generalisations of perfection. A graph
G is t-perfect if SSP(G) equals the polyhedron TSTAB(G) which is defined by non-negativity-,
edge- and odd-cycle inequalities.

To be more precise, let G = (V,E) be a graph. All the graphs mentioned here are finite
and simple; we follow the notation of Diestel [4]. The stable set polytope SSP(G) ⊆ RV of G
is defined as the convex hull of the characteristic vectors of stable, ie independent, subsets
of V . The characteristic vector of a subset S of the set V is the vector χS ∈ {0, 1}V with
χS(v) = 1 if v ∈ S and 0 otherwise. We define a second polytope TSTAB(G) ⊆ RV for G,
given by

x ≥ 0,

xu + xv ≤ 1 for every edge uv ∈ E,∑
v∈V (C)

xv ≤
⌊
|C|
2

⌋
for every induced odd cycle C in G.

Clearly, SSP(G) ⊆ TSTAB(G).
The graph G is called t-perfect if SSP(G) and TSTAB(G) coincide. Equivalently, G is

t-perfect if and only if TSTAB(G) is an integral polytope, ie if all its vertices are integral
vectors.

It is easy to verify that vertex deletion preserves t-perfection. Another operation that
keeps t-perfection was found by Gerards and Shepherd [6]: whenever there is a vertex v, so
that its neighbourhood is stable, we may contract all edges incident with v simultaneously.
We will call this operation a t-contraction at v. Any graph that is obtained from G by a
sequence of vertex deletions and t-contractions is a t-minor of G. Let us point out that any
t-minor of a t-perfect graph is again t-perfect.

A p-wheel Wp is a graph consisting of a cycle (w1, . . . , wp) and a vertex v adjacent to wi

for i = 1, . . . , p (see Figure 1). Odd wheels W2k+1 for k ≥ 1 are t-imperfect. Indeed, the
vector (1/3, . . . , 1/3) is contained in TSTAB(W2k+1) but not in SSP(W2k+1). Furthermore,
every proper t-minor of an odd wheel is t-perfect.

As bipartite graphs are easily seen to be perfect, the above polyhedral conditions directly
show that bipartite graphs are t-perfect as well. We show that non-bipartite quadrangulations
of the projective plane are never t-perfect. A quadrangulation is an embedding where all faces
are of size 4.

Corollary 1. A quadrangulation of the projective plane is t-perfect if and only if it is bipartite.

This directly follows from the fact that every non-bipartite quadrangulation of the pro-
jective plane has an odd wheel as a t-minor.
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Theorem 2. A quadrangulation G of the projective plane contains an odd wheel W2k+1 for
k ≥ 1 as a t-minor if and only if G is not bipartite.

Figure 1: The odd wheels W3,W5 and W7

A general treatment on t-perfect graphs may be found in Grötschel, Lovász and Schri-
jver [8, Ch. 9.1] as well as in Schrijver [11, Ch. 68]. Bruhn and Benchetrit showed that plane
triangulations are t-perfect if and only if they do not contain a certain subdivision of an
odd wheel as an induced subgraph [1]. Boulala and Uhry [2] established the t-perfection of
series-parallel graphs. Gerards and Shepherd [6] characterised the graphs with all subgraphs
t-perfect.

Youngs [12] showed that all non-bipartite quadrangulations of the projective plane have
chromatic number equal to 4. Esperet and Stehlík [5] gave bounds for edge- and face-width
of non-bipartite quadrangulations.

Embeddings in the projective plane
First let us recall several useful definitions related to surface-embedded graphs. For further
background on topological graph theory, we refer the reader to Gross and Tucker [7] or Mohar
and Thomassen [10].

An embedding of a simple graph G in the projective plane is a continuous one-to-one
function from G into the projective plane where G is assumed to have the natural topology
as a 1-dimensional CW-complex. For our purpose, it is convenient to abuse the terminology
by referring to the image of G as the embedded graph G. The connected components of the
complement of an embedded graph are called the faces of G. An embedding is a cell embedding
if each face is homeomorphic to an open disk. A cell embedding is a closed-cell embedding if
each face is bounded by a cycle of G.

The size of a face is the length of its bounding cycle. An embedding G is even if all faces
are of even size. A quadrangulation is a cell embedding where all faces are of size 4. Note
that a quadrangulation of a simple graph G is always a closed-cell embedding as G does not
contain multiple edges.

A cycle C in the projective plane is contractible if C separates the projective plane into
two sets SC and SC where SC is homeomorphic to an open disk in R2. We call SC the interior
of C.

A quadrangulation is nice, if the interior of every contractible 4-cycle contains no vertex.
Since the projective plane has Euler characteristic 1, every quadrangulation G satisfies∑

v∈V (G)

deg(v) = 2|E(G)| = 4|V (G)| − 4. (1)

A cycle in a non-bipartite quadrangulation of the projective plane is contractible if and
only if it has even length (see e.g. [9, Lemma 3.1]). One can easily generalise this result.

Lemma 3. A cycle in a non-bipartite even embedding in the projective plane is contractible
if and only it has even length.

Note that therefore any two odd cycles have an odd number of crossings.
Let us continue with some useful operations.
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Lemma 4. A graph obtained from an even embedding in the projective plane by a deletion
of a vertex or an edge is again an even embedding.

Lemma 5. A graph obtained from a non-bipartite nice quadrangulation G by a t-contraction
is a non-bipartite quadrangulation.

After each t-contraction, we can delete all vertices in the interior of a 4-cycle to obtain a
nice quadrangulation. This does not destroy non-bipartiteness.

Application of t-contractions (and deletion of vertices in the interior of 4-cycles ) gives a
graph where each vertex is contained in a triangle. The following lemma is a direct conse-
quence of this observation:

Lemma 6. Let G be a non-bipartite quadrangulation. Then there is a sequence of t-contractions
and deletions of vertices in the interior of 4-cycles that transforms G into a non-bipartite nice
quadrangulation where each vertex is contained in a triangle.

We can easily deduce the minimal degree of nice quadrangulations.

Lemma 7. Every nice quadrangulation has minimal degree 3.

Finally, we consider wheels in the projective plane. Odd wheels, ie p-wheels where p ≥ 3
is odd, are evenly embeddable in the projective plane; see Figure 2 for an illustration.

Figure 2: An even embedding of W5

Lemma 8. Even wheels W2k for k ≥ 2 do not have an even embedding in the projective
plane.

Proof of Theorem 2
This section is dedicated to the proof of Theorem 2 (and of Corollary 1). The theorem is
based on the following lemma.

Lemma 9. Let G be a non-bipartite nice quadrangulation of the projective plane where each
vertex of G is contained in a triangle. Then G is an odd wheel.

Proof. By Lemma 7 there exists a vertex v of degree 3 in G. Let {x1, x2, x3} be its neigh-
bourhood and let x1,x2 and v form a triangle.

Recall that each two triangles intersect (see Lemma 3).
As x3 is contained in a triangle intersecting the triangle (v, x1, x2) and as v has no further

neighbour, we can suppose without loss of generality that x3 is adjacent to x1. The graph
induced by the two triangles (v, x1, x2) and (x1, v, x3) is not a quadrangulation. Further,
addition of the edge x2x3 yields a K4. Thus, the graph contains a further vertex and this
vertex is contained in a further triangle T . Since the vertex v has degree 3, it is not contained
in T . If further x1 /∈ V (T ), then the vertices x2 and x3 must be contained in T . But then
x2x3 ∈ E(G) and, as above, v, x1, x2 and x3 form a K4. Therefore, x1 is contained in T
and consequently in every triangle of G. Since every vertex is contained in a triangle, x1
must be adjacent to all vertices of G′ = G− x1. As |E(G)| = 2|V (G)| − 2 by (1), the graph
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G′ has 2|V (G)| − 2 − (|V (G)| − 1) = |V (G)| − 1 = |V (G′)| many edges. Since G is a nice
quadrangulation, G′ does not contain a vertex of degree 1. Thus, G′ is a cycle and G is a
wheel. Since even wheels are not evenly embeddable (Lemma 8), G is an odd wheel.

Finally, from Lemma 9 and Lemma 6 our main result follows:

Proof of Theorem 2. As t-contraction preserves the parity of cycles, no bipartite graph has
an odd wheel as a t-minor.

Let G be a non-bipartite quadrangulation. By Lemma 6, G has a non-bipartite nice
quadrangulation G′ where each vertex is contained in a triangle as a t-minor. By Lemma 9,
G′ is an odd wheel. Therefore, G has an odd wheel as a t-minor.

Proof of Corollary 1. Let G be a quadrangulation of the projective plane. If G is bipartite,
G is also t-perfect.

Otherwise, G contains an odd wheel as a t-minor (Theorem 2). Since odd wheels are
t-imperfect, G is t-imperfect as well.
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Extended Abstract

In this paper we consider the complexity of semi-equitable k-coloring, k ≥ 4, of the vertices
of a cubic or subcubic graph G. In particular, we show that, given n-vertex subcubic graph
G and k ≥ 4, a semi-equitable k-coloring of G is NP-hard if s ≥ 7n/20, and polynomially
solvable if s ≤ 7n/21, where s is the size of maximum color class of the coloring.

We say that a graph G = (V,E) is equitably k-colorable if and only if its vertex set can
be partitioned into independent sets V1, . . . , Vk ⊂ V such that |Vi| − |Vj | ∈ {−1, 0, 1} for all
i, j = 1, . . . , k. The smallest k for which G admits such a coloring is called the equitable

chromatic number of G and denoted χ=(G). Graph G has a semi-equitable coloring, if there
exists a partition of its vertices into independent sets V1, . . . , Vk ⊂ V such that one of these
subsets, say V1 is of size s /∈ {bnk c, d

n
k e}, and the remaining subgraph G − V1 is equitably

(k−1)-colorable. These two non-classical models of graph coloring have potential applications
in multiprocessor scheduling of unit-execution time jobs [6, 7].

In the following we will say that graph G has (V1, . . . , Vk) coloring to express explicitly
a partition of V into k independent sets. If, however, only cardinalities of color classes are
important, we will use the notation [|V1|, . . . , |Vk|].

The problem of semi-equitable 3-coloring of connected cubic graphs was introduced in [4].
In this note we extend those results to an arbitrary number k ≥ 4 of colors and to, possibly
disconnected, subcubic graphs, where by a subcubic graph we mean a graph G whose vertex
degrees ful�ll deg(v) ≤ 3 for all v ∈ V . In contrast to equitable coloring not all cubic/subcubic
graphs have a semi-equitable coloring (cf. Tables 1 and 2). Therefore, in the following we
assume that all graphs under consideration have such a coloring.

In order to develop a polynomial time algorithm for semi-equitable k-coloring of subcubic
graphs, we generalize Chen et al.'s theorem. In fact, Chen et al. [1] proved that χ(G) =
χ=(G) for any connected cubic graph G. Their proof starts from any proper 3-coloring of G
and it relies on successive decreasing the width of the coloring, i.e. the di�erence between
the cardinality of the largest and smallest independent set, step by step until a coloring is
equitable. Actually, this procedure works for every 3-coloring of any cubic graph, except for
K3,3.

Corollary 1 ([1]) If G is a connected cubic graph such that K3,3 6= G 6= K4, then there

exists an equitable 3-coloring of G. �

We claim that their approach can be slightly modi�ed to hold for subcubic graphs, not
necessarily connected.

Theorem 2 If G is a subcubic graph, K4 6= G 6= K3,3, then there exists an equitable 3-
coloring of G.

In contrast to equitable coloring, the problem of semi-equitable coloring becomes NP-hard
already if k = 4. More precisely, we show that computing a semi-equitable k-coloring of a
subcubic graph whose maximum color class is of size at least 7n/20 is NP-hard.

Let us consider the following combinatorial decision problem:

1Project has been partially supported by Narodowe Centrum Nauki under contract DEC-
2011/02/A/ST6/00201
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IS(G, l): given a subcubic graph G on n vertices and an integer l; the question is
whether G has an independent set I of size at least l,

and its subproblem IS(G, .35n), i.e. IS(G, l), where l = 35n/100 and n is divisible by 20, in
symbols 20|n.

Note that the IS(G, l) problem is NP-complete even if G is cubic [8] and remains so if
20|n. This is so because we can enlarge a cubic graph G by adding to it a bipartite cubic
graph on j vertices, where j = 6, 8, 10, 12, 14, 16, 18, 22, or 24, so that the number of vertices
in the new graph is divisible by 20. It is easy to see to see that G has an independent set of
size at least l if and only if the new graph has an independent set of size at least l + j/2.

In [5] we proved that the problem of deciding whether a cubic graph has a coloring of
type [4n/10, 3n/10, 3n/10] is NP-complete. In the following we strenghten and generalize this
result to semi-equitable k-colorings (k ≥ 4) and subcubic graphs.

Lemma 3 Problem IS(G, .35n) is NP-complete.

Lemma 4 Let G be a subcubic graph such that 20|n, where n is the number of vertices of G.
The problem of deciding whether G has a semi-equitable coloring of type [7n/20, 13n/60, 13n/60, 13n/60]
is NP-complete.

Theorem 5 Given an n-vertex subcubic graph, a constant k ≥ 4, and an integer function

s = s(n). Finding a semi-equitable k-coloring of G of type [s, dn−sk−1 e, . . . , b
n−s
k−1 c] is NP-hard,

if s ≥ 7n/20.

Finally, we show how to obtain in O(n2) time a semi-equitable k-coloring of a subcubic
graph whose maximum color class is at most n/3.

Theorem 6 Given an n-vertex subcubic graph G, K4 6= G 6= K3,3, a constant k ≥ 4, and an

integer function s = s(n). Finding a semi-equitable k-coloring of G of type [s, dn−sk−1 e, . . . , b
n−s
k−1 c]

is solvable in O(n2) time, if s ≤ dn/3e.

One can ask about a semi-equitable 3-coloring of a subcubic graph G. The problem was
discussed in [4], where we proved

Theorem 7 ([4]) If G, n-vertex cubic graph, has an independent set I of size |I| ≥ 2n/5,

then it has a semi-equitable coloring of type [|I|, dn−|I|2 e, b
n−|I|

2 c]. �

Moreover, we noticed that a cubic graph usually has such a big independent set. This is
so because Frieze and Suen [3] proved that for almost all cubic graphs G their independence
number α(G) ful�lls the inequality α(G) ≥ 4.32n/10 − εn for any ε > 0. In practice this
means that a random cubic graph is very likely to have an independent set of size k ≥ 2n/5
and the probability of this fact increases with n.

The above result holds also for almost all subcubic graphs.
Tables 1 and 2 gather the complexity status for semi-equitable k-coloring for cubic and

subcubic graps, respectively.
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k s ≤ dn3 e dn3 e < s < b 2n5 c b 2n5 c ≤ s <
n
2 s = n

2
n
2 < s

3 - ? NPH O(n)∗/- -
≥ 4 O(n2) ? NPH O(n)∗/- -

Table 1: The complexity of semi-equitable k-coloring of cubic graphs. The �-� sign means
that the corresponding solution does not exist. The �*� sign means that the solution concerns
bipartite cubic graphs only.

k s ≤ dn3 e dn3 e < s < b 7n20 c b 7n20 c ≤ s ≤ b
3n
4 c b 3n4 c < s

3 - ? NPH -∗

≥ 4 O(n2) ? NPH -∗

Table 2: The complexity of semi-equitable k-coloring of subcubic graphs. The �-� sign means
that the corresponding solution does not exist. The �*� sign means that the corresponding
negative result concerns connected graphs only.
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Extended Abstract

Given a number of colours k ≥ 1, we consider the probability space Gkn,p of edge-coloured
random graphs, whose elements are produced by first generating a graph G in the Erdős-
Rényi probability space Gn,p and then colouring each edge of G independently and uniformly
with a colour from the set [k] = {1, . . . , k}. We determine the threshold function p = pk(n) for
the property that such an edge-coloured random graph contains a properly coloured spanning
tree, for all fixed k ≥ 3. It turns out to coincide with the connectivity threshold, which is
log(n)/n. This contrasts with the case k = 2, where the threshold is known to be 2 log(n)/n
in light of recent work by Espig, Frieze and Krivelevich [6].

More generally, given positive integers n and k, and a probability space Gn on the set of
graphs whose vertex set is labelled by [n] = {1, . . . , n}, we may define a probability space
of edge-coloured graphs Gkn by first sampling an n-vertex graph G in Gn, and then colouring
each edge of G independently and uniformly with a colour from the set [k]. For instance, if
k = 1, the probability space produced is precisely Gn. Probability spaces of this type have
been introduced by Cooper and Frieze [3], who considered edge-coloured graphs obtained
from the standard random graph model Gn = Gn,m of uniformly distributed labelled n-
vertex graphs with m = m(n) edges. They studied conditions on n, m and k which imply
that an element of Gkn,m a.a.s. contains a rainbow Hamilton cycle, that is, a Hamilton cycle
such that all edges have different colours. As usual, for a sequence of probability spaces
Ωn, n ≥ 1, an event An of Ωn occurs asymptotically almost surely, or a.a.s. for brevity, if
limn→∞ P(An) = 1. Also observe that results about Gkn,m may be easily translated in terms
of Gkn,p for p = p(n) = m/

(
n
2

)
, as Gn,p is asymptotically equivalent to Gn,m.

Since then, several authors have found tighter sufficient conditions for the occurrence of
rainbow Hamilton cycles [10, 7, 1] in Gkn,p. As it turns out, the paper [1] also provides con-
ditions on p to ensure the occurrence of a rainbow perfect matching when the number of
colours is k = n/2. Moreover, a recent paper of Ferber, Nenadov and Peter [9] investigates
the occurrence of other types of rainbow spanning subgraphs in a random coloured graph.
Regarding other probability spaces, Janson and Wormald [13] studied the occurrence of rain-
bow Hamilton cycles in edge-coloured graphs arising from the space of random regular graphs
Gn,d, while Ferber, Kronenberg, Mousset and Shikhelman [8] looked for edge-disjoint rainbow
copies of some fixed subgraph in random coloured percolations of graphs with sufficiently
large minimum degree.

Very recently, Espig, Frieze and Krivelevich [6] determined that the threshold for the
occurrence of zebraic Hamilton cycles (that is, Hamilton cycles whose edges alternate in the
two colours) in G2n,p is 2 log n/n. More precisely, they studied the random graph process where
one edge is randomly added and coloured in each step, and they showed that the hitting time
for a zebraic Hamilton cycle a.a.s. coincides with the hitting time for having minimum degree
1 in both colours, which is an obvious necessary condition. Their results easily imply that
p2(n) = 2 log(n)/n is the threshold for the occurrence of a properly coloured spanning tree in
G2n,p.

As in previous work, we study the existence of a nicely coloured spanning substructure
in an edge coloured random graph. Precisely, our objective is to find the threshold function
p = pk(n) for the property that Gkn,p contains a properly coloured spanning tree. Spanning
trees were also sought in the context of power of k choices [2]. In that paper, every edge of
a random graph was assigned u.a.r. a subset of k colours of [n− 1], and the objective was to
find a rainbow spanning tree.
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By the discussion in the previous paragraph, the work in [6] implies that p2(n) = 2 log(n)/n.
In the present paper, we prove that, for all k ≥ 3, pk(n) = log(n)/n. The fact that Gkn,p a.a.s.
does not contain a properly coloured spanning tree if p ≤ (1 − ε) log(n)/n is immediate, as
Gn,p is a.a.s. disconnected in this case [4]. Our main result is the following.

Theorem 1 Let k ≥ 3 and ε > 0. If p : N→ [0, 1] satisfies p ≥ (1 + ε) log(n)/n, then an edge
coloured random graph G ∈ Gkn,p a.a.s. contains a properly coloured spanning tree.

In this extended abstract, we restrict our discussion about the proof of Theorem 1 to the
case k = 3. Intuitively, this is the hardest case, and the proof of the general case may be
obtained with similar arguments (indeed, if there are k = 3m colours, where m is a positive
integer, then the result is derived directly from the case of 3-colourings by splitting the colours
into three classes of size m, and by being colour-blind in each class).

Assume that the colours are red, blue and green. We view a coloured graph in this setting
as the union of three random graphs using the well-known technique of two-round exposure
(see [12]) to avoid problems with dependency. Our proof consists of three main steps. In the
first step, we argue that a.a.s. the set of red and blue edges in G ∈ G3n,p produce a family
of disjoint zebraic paths and cycles that span almost all vertices. To this end, we obtain the
following lower bound on the size of a maximum matching in Gn,q, where q(n) = p(n)/3.

Lemma 2 If q = (1 + ε) log n/3n then Gn,q a.a.s. contains a matching of size

1

2

(
n− n

2−ε
3

)
+O(n

1
3 ).

Proof (Sketch). The proof of Lemma 2 uses arguments introduced in the classical proof of
Erdős and Rényi [5], based on Tutte’s Matching Theorem [14], for the fact that if a random
graph a.a.s. has minimum degree one, then it a.a.s. contains a matching covering all but at
most one vertex. Unfortunately, in the probability regimen of Lemma 2, there is a considerable
number of isolated vertices and cherries (i.e. copies of K1,2 whose leaves have degree 1 in the
original graph), which clearly prevent vertices from being covered by a matching. Let H
be the subgraph of G obtained by deleting isolated vertices and all degree 1 vertices that
lie in cherries. With standard random graph arguments, we show that H contains at least
n − n 2−ε

3 + O(n
1
3 ) vertices; moreover, it does not contain any isolated vertices or cherries

because the following two facts hold a.a.s. in G: (i) no vertex is incident with three or more
vertices of degree 1; (ii) no vertex of degree less than 4 is adjacent to two vertices of degree
1. To conclude the proof, we show that H contains a matching covering all but at most one
vertex with arguments as in [5].

Henceforth, we say that a matching M in an n-vertex graph is almost-spanning if it
covers at least n−2n

2−ε
3 vertices. In the second step of our proof, we randomly select almost-

spanning monochromatic matchings M1 and M2 with colours red and blue, respectively, in
the random coloured graph, and we show that they induce a reasonably small number of
components. Moreover, we split the components of M1 ∪M2 into classes L and S of large
and small components, respectively, satisfying D ∈ L ⇔ |D| ≥ n ε

3 . Let s = |S| and ` = |L|.

Lemma 3 Let M1 and M2 be random almost-spanning matchings in colours red and blue,
respectively, in the random coloured graph G3n,p. We split the components of M1 ∪M2 into
classes L and S as above. The following statements hold with probability 1− o(1):

(a) M1 ∪M2 has O(log2 n) cycles.

(b) M1 ∪M2 has O(n
1−ε
3 ) small paths.

(c) M1 ∪M2 has O(n
2−ε
3 ) components.

In particular, s = O(n
1−ε
3 ) and ` = O(n

2−ε
3 ).
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Proof (Sketch). One may prove this lemma by adapting arguments of Frieze and Luczak [11],
who considered the distribution of cycles in two randomly chosen disjoint perfect matchings
of Kn, to the current setting. Of course, here we also need to consider the occurrence of
paths.

To conclude the proof of Theorem 1, we show that we can choose green edges to merge
red-blue zebraic paths into a properly coloured spanning tree. To this end, given matchings
M1 and M2 as in Lemma 3, let C1, . . . , Cs be the components of M1 ∪ M2 in S and let
D1, . . . , D` be the components in L.

Lemma 4 With probability 1−o(1), we find distinct vertices ui ∈ ∪D∈LV (D), i ∈ {1, . . . , s},
such that

(a) there is a green edge between Ci and ui;

(b) for every D ∈ L, we have |V (D) ∩ {u1, . . . , us}| < |D|
2 .

Proof (Sketch). The proof again uses standard techniques for random graphs. Recall that, to
preserve independence, we expose the edges of the three colours in three rounds, and edges
of later rounds must be deleted if they had already been chosen before. For part (a), we
first show that every vertex in

⋃s
i=1 Ci is a.a.s. incident with at most one double edge in this

process. We then fix a vertex vi in each Ci and find the vertices ui inductively by showing
that, in the last round (corresponding to colour green), there were a.a.s. at least two exposed
edges between vi and ∪D∈LV (D)− {u1, . . . , ui−1}. Part (b) is a simple calculation.

Lemma 4 allows us to connect all small components to large ones using green edges.
Moreover, at least half the number of vertices in each large component are not incident with
the edges used in this step. These vertices are called unsaturated. To conclude the proof, we
show that its is possible to find a matching composed of green edges, all of whose endpoints
are unsaturated, connecting the large components.

Lemma 5 With probability 1− o(1), there exists a tree T on the vertex set [`] satisfying the
following property. For every edge e = {i, j}, there exist unsaturated vertices uei ∈ Di and
uej ∈ Dj such that {uei , uej} is a green edge in the random coloured graph. Moreover, for any
i ∈ [`], we have uei 6= ue

′

i whenever e and e′ are distinct edges of the tree.

Proof (Sketch). Let D̃i be the set of unsaturated vertices in Di, where i ∈ [`]. We use
expansion properties of the random graph, as well as the number of edges between the sets D̃i

and their complements to build the tree T inductively: starting from an arbitrary component
in L, say D1, there is at least one edge between D1 and

⋃`
i=2Di that is not a double edge

and does not contain vertices that were saturated in previous steps. Let {u, v} be such an
edge and assume that v ∈ Dj . Then we add the edge e1 = {1, j} to T , and we set ue11 = u
and ue1j = v. The unsaturated vertices of D1 and Dj are in the set of discovered vertices.
We then apply the previous argument successively to obtain edges between the current set
of discovered vertices and unsaturated vertices in its complement, until the set of discovered
vertices has cardinality Ω(n). At this point, we prove that a.a.s. there is a green matching
that merges the remaining large components into the required tree.
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Extended Abstract

A graph G is hypohamiltonian if G is non-hamiltonian and G− v is hamiltonian for every
v ∈ V (G). The study of hypohamiltonicity goes back to a paper of Sousselier [10] from the
early sixties. The survey of Holton and Sheehan [7] provides a good overview. For more
recent results and new references not contained in the survey, we refer to [8].

In 1973, Chvátal showed [3] that if we choose n to be sufficiently large, then there exists
a hypohamiltonian graph of order n. We now know that for every n ≥ 18 there exists such
a graph of order n, and that 18 is optimal, since Aldred, McKay, and Wormald showed that
there is no hypohamiltonian graph on 17 vertices [1]. Their paper fully settled the question
for which orders hypohamiltonian graphs exist and for which they do not exist. For more
details, see [7].

They also provide a complete list of hypohamiltonian graphs with at most 17 vertices.
There are seven such graphs: exactly one for each of the orders 10 (the Petersen graph), 13,
and 15, four of order 16 (among them Sousselier’s graph), and none of order 17. Aldred,
McKay, and Wormald [1] showed that there exist at least thirteen hypohamiltonian graphs
with 18 vertices, but the exact number was unknown.

In this work we will present a new algorithm to generate all non-isomorphic hypohamil-
tonian graphs of a given order. The algorithm is based on the work of Aldred, McKay, and
Wormald from [1], but is extended with several additional bounding criteria which speed it
up substantially. Furthermore, our algorithm also allows to generate planar hypohamiltonian
graphs and hypohamiltonian graphs with a given lower bound on the girth efficiently.

Using our implementation of this algorithm we were able to generate complete lists of hy-
pohamiltonian graphs of much larger orders than what was previously possible. Our program
can be downloaded from [4].

Table 1 shows the counts of the complete lists hypohamiltonian graphs which were gen-
erated by the program. We generated all hypohamiltonian graphs up to 19 vertices and also
went several steps further for hypohamiltonian graphs with a given lower bound on the girth.
(Recall that previously the complete lists of hypohamiltonian graphs were only known up to
17 vertices.) The algorithm also allowed us to determine the smallest hypohamiltonian graph
of girth 6. It is shown in Figure 1.

Table 2 gives an overview of the current bounds of the smallest hypohamiltonian graphs
with given properties. The new bounds we obtained in this work are marked in bold.

Figure 1: The smallest hypohamiltonian graph of girth 6. It has 25 vertices.
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Order # hypoham. g ≥ 4 g ≥ 5 g ≥ 6 g ≥ 7 g ≥ 8

0− 9 0 0 0 0 0 0
10 1 1 1 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 1 1 1 0 0 0
14 0 0 0 0 0 0
15 1 1 1 0 0 0
16 4 4 4 0 0 0
17 0 0 0 0 0 0
18 14 13 8 0 0 0
19 34 34 34 0 0 0
20 ? ? 4 0 0 0
21 ? ? 85 0 0 0
22 ? ? 420 0 0 0
23 ? ? ? 0 0 0
24 ? ? ? 0 0 0
25 ? ? ? 1 0 0
26 ? ? ? 0 0 0
27 ? ? ? ? 0 0
28 ? ? ? ≥ 2 1 0
29 ? ? ? ? 0 0
30 ? ? ? ? 0 0

31− 35 ? ? ? ? ? 0

Table 1: The number of hypohamiltonian graphs. The columns with a header of the form
g ≥ k contain the number of hypohamiltonian graphs with girth at least k. The counts of
cases indicated with a ’≥’ are possibly incomplete; all other cases are complete.

girth 3 4 5 6 7 8 9

general 18 18 10 25
18..28

28
18..28

36..∞
18..∞

61..∞
18..∞

cubic – 24 10 28 28 50..∞
30..∞

66..∞
58..∞

planar 23..240
18..240

25..40
18..40 45 – – – –

planar and cubic – 54..70
44..70 76 – – – –

Table 2: Bounds for the order of the smallest hypohamiltonian graph with additional proper-
ties. The bold numbers are new bounds obtained in this work; if an entry contains two lines,
the upper line indicates the new bounds, while the lower line shows the previous bounds.
The symbol “–” designates an impossible combination of properties and a..b means that the
number is at least a and at most b. b = ∞ signifies that no graph with the given properties
is known.

McKay [9] recently showed that there exist no cubic planar hypohamiltonian graphs of
girth 5 with less than 76 vertices, and exactly three such graphs of order 76. All three graphs
have trivial automorphism group. In that paper the natural question is raised whether in-
finitely many such graphs exist. Using the program plantri [2] we generated all cubic planar
cyclically 4-connected graphs with girth 5 with 78 vertices and tested them for hypohamil-
tonicity. This yielded exactly one such graph. It is shown in Figure 2 and it has D3h sym-
metry, so it is the smallest cubic planar hypohamiltonian graph of girth 5 with a non-trivial
automorphism group.

By using new theoretical and computational results we were able to answer McKay’s
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question affirmatively:

Theorem 1 There are infinitely many planar cubic hypohamiltonian graphs of girth 5. More
specifically, there exist such graphs of order n for every n = 74k + a, where k ≥ 2 and
a ∈ {2, 4}.

(a) (b)

Figure 2: The smallest cubic planar hypohamiltonian graph of girth 5 with a non-trivial
automorphism group. It has 78 vertices and D3h symmetry. Both Figure 2a and Figure 2b
show different symmetries of the same graph.

More information can be found on the arXiv in [5] and [6].
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Extended Abstract

1 Introduction
A few words on cutwidth. The cutwidth of a graph is defined as the minimum possible
width of a linear ordering of its vertices, where the width of an ordering σ is the maximum,
among all the prefixes of σ, of the number of edges that have exactly one vertex in a prefix.
Due to its natural definition, cutwidth has various applications in a range of practical fields of
computer science: whenever data is expected to be roughly linearly ordered and dependencies
or connections are local, one can expect the cutwidth of the corresponding graph to be small.
These applications include circuit design, graph drawing, bioinformatics, and text information
retrieval; we refer to the survey of layout parameters of Díaz, Petit, and Serna [DPS02] for a
broader discussion.

As finding a layout of optimum width is NP-hard [GJ79], the algorithmic and combina-
torial aspects of cutwidth were intensively studied. There is a broad range of polynomial-
time algorithms for special graph classes [HLMP11, HvtHLN12, Yan85], approximation algo-
rithms [LR99], and fixed-parameter algorithms [TSB05a, TSB05b]. In particular, Thilikos,
Bodlaender, and Serna [TSB05a, TSB05b] proposed a fixed-parameter algorithm for comput-
ing the cutwidth of a graph that runs† in time 2O(k2) · n, where k is the optimum width and
n is the number of vertices. Their approach is to first compute the pathwidth of the input
graph, which is never larger than the cutwidth. Then, the optimum layout can be constructed
by an elaborate dynamic programming procedure on the obtained path decomposition. To
upper bound the number of relevant states, the authors had to understand how an optimum
layout can look in a given path decomposition. For this, they borrow the technique of typical
sequences of Bodlaender and Kloks [BK96], which was introduced for a similar reason, but
for pathwidth and treewidth instead of cutwidth.

Obstructions. Since the class of graphs of cutwidth at most k is closed under immersions,
and the immersion order is a well-quasi ordering of graphs‡ [RS10], it follows that for each
k there exists a finite obstruction set Lk of immersion-minimal graphs such that a graph
has cutwidth at most k if and only if it does not admit any graph from Lk as an immersion.
However, this existential result does not give any hint on how to generate, or at least estimate
the sizes of the obstructions. The sizes of obstructions are important for efficient treatment of
∗This work was partially done while A. C. Giannopoulou was holding a post-doc position at Warsaw

Center of Mathematics and Computer Science. The research of A. C. Giannopoulou has been supported by
the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (ERC consolidator grant DISTRUCT, agreement No 648527). The research of Mi. Pilipczuk and
M. Wrochna is supported by the Polish National Science Center grant SONATA UMO-2013/11/D/ST6/03073.
The research of J-F. Raymond is supported by the Polish National Science Center grant PRELUDIUM UMO-
2013/11/N/ST6/02706. Mi. Pilipczuk is supported by the Foundation for Polish Science (FNP) via the
START stipend programme.
†Thilikos, Bodlaender, and Serna [TSB05a, TSB05b] do not specify the parametric dependence of the

running time of their algorithm. A careful analysis of their algorithm yields the above claimed running time
bound.
‡All graphs considered here may have parallel edges, but no loops.
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graphs of small cutwidth; this applies also in practice, as indicated by Booth et al. [BGLR92]
in the context of VLSI design.

Bounds on the size of obstructions. The estimation of sizes of minimal obstructions
for graph parameters like pathwidth, treewidth, or cutwidth, has been studied before. For
minor-closed parameters pathwidth and treewidth, Lagergren [Lag98] showed that any mini-
mal minor obstruction to admitting a path decomposition of width k has size at most single-
exponential in O(k4), whereas for tree decompositions he showed an upper bound double-
exponential in O(k5) . Less is known about immersion-closed parameters, like cutwidth.
Govindan and Ramachandramurthi [GR01] showed that the number of minimal immersion
obstructions for the class of graphs of cutwidth at most k is at least 3k−7 + 1, and their con-
struction actually exemplify minimal obstructions for cutwidth at most k with (3k−5 − 1)/2
vertices. To the best of our knowledge, nothing was known about upper bounds for the
cutwidth case.

2 Obstructions to bounded cutwidth
Our main result concerns the sizes of obstructions for cutwidth.

Theorem 1 Suppose a graph G has cutwidth larger than k, but every graph with fewer vertices
or edges (strongly) immersed in G has cutwidth at most k. Then G has at most 2O(k3 log k)

vertices and edges.

The above result immediately gives the same upper bound on the sizes of graphs from the
minimal obstruction sets Lk as they satisfy the prerequisites of Theorem 1. This somewhat
matches the (3k−5 − 1)/2 lower bound of Govindan and Ramachandramurthi [GR01].

Overview of the proof. Our approach for Theorem 1 follows the technique used by Lager-
gren [Lag98] to prove that minimal minor obstructions for pathwidth at most k have sizes
single-exponential in O(k4). Intuitively, the idea of Lagergren is to take an optimum decom-
position for a minimal obstruction, which must have width k+1, and to assign to each prefix
of the decomposition one of finitely many “types”, so that two prefixes with the same type
“behave” in the same manner. If there were two prefixes, one being shorter than the other,
with the same type, then one could replace one with the other, thus obtaining a smaller
obstruction. Hence, the upper bound on the number of types, being double-exponential in
O(k4), gives some upper bound on the size of a minimal obstruction. This upper bound can
be further improved to single-exponential by observing that types are ordered by a natural
domination relation, and the shorter a prefix is, the weaker is its type. An important detail
is that one needs to make sure that the replacement can be modeled by minor operations.
For this, Lagergren uses the notion of linked path decompositions, also known as lean path
decompositions; cf. [Tho90].

To prove Theorem 1, we perform a similar analysis of prefixes of an optimum ordering
of a minimal obstruction. We show that prefixes can be categorized into a bounded number
of types, each comprising prefixes that have the same “behavior”. Provided two prefixes
with equally strong type appear one after the other, we can “unpump” the part of the graph
in their difference. To make sure that unpumping is modeled by taking an immersion, we
introduce lean orderings for cutwidth and prove the analogue of the result of Thomas [Tho90]
for treewidth: there is always an optimum-width ordering that is lean (see also [BD02]).

The proof of the upper bound on the number of types essentially boils down to the following
setting. We are given a graph G and a subset X of vertices, such that at most ` edges have
exactly one endpoint in X. The question is how X can look like in an optimum-width ordering
of G. We prove that there is always an ordering where X is split into at most O(k`) blocks,
where k is the optimum width. This allows us to store the relevant information on the whole
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X in one of a constant number of types (called bucket interfaces). The swapping argument
used in this proof holds the essence of the typical sequences technique of Bodlaender and
Kloks [BK96], while being, in our opinion, more natural and easier to understand.

3 Obstructions to edge-removal distance to cutwidth
As an interesting byproduct, we can also use our understanding to treat the problem of
removing edges to get a graph of small cutwidth. More precisely, for parameters w, k, we say
that a graph G is at distance w from cutwidth k if k edges can be removed from G to obtain
a graph of cutwidth at most k.

We prove that for every constant k, the minimal strong immersion obstructions for this
class have sizes bounded linearly in w.

Theorem 2 Let k be a fixed integer. Suppose a graph G is at distance larger than w from
cutwidth k, but every graph with fewer vertices or edges strongly immersed in G has distance
w from cutwidth k. Then G has at most O(w) vertices.

Moreover we give an exponential lower bound to the number of these obstructions.

Theorem 3 Let k and w be positive integers, and let us consider the set C of graphs that are
at distance larger than w from cutwidth k, and such that every graph with fewer vertices or
edges immersed in G has distance w from cutwidth k. Then C contains at least

(
3k−7+w+1

w+1

)
non-isomorphic graphs.
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Extended Abstract

Edge-intersection graphs of paths on a grid (or EPG graphs) are graphs whose vertices can
be represented as (not necessarily distinct) simple paths on a rectangular grid such that two
vertices are adjacent in the graph if and only if the corresponding paths share at least one edge
of the grid. For two boundary vertices u and v on two adjacent boundaries of a rectangular
grid G, we call the unique single-bend path connecting u and v in G using no other boundary
vertex of G as the path generated by (u, v). A path in G is called boundary-generated, if it
is generated by some pair of vertices on two adjacent boundaries of G. In this article, we
study the edge-intersection graphs of boundary-generated paths on a grid or ∂EPG graphs.
The motivation for studying these graphs comes from some problems in the context of circuit
layout.

We show that ∂EPG graphs can be covered by two collections of vertex-disjoint cobipartite
chain graphs. This leads us to a linear-time testable characterization of ∂EPG trees and also
a tight upper bound on the equivalence covering number of general ∂EPG graphs. We also
study the cases of two-sided ∂EPG and three-sided ∂EPG graphs, which are respectively, the
subclasses of ∂EPG graphs obtained when all the boundary vertex pairs which generate the
paths are restricted to lie on at most two or three boundaries of the grid. For the former case,
we give a complete characterization.

We do not know yet whether one can efficiently recognize ∂EPG graphs. Though the
problem is linear-time solvable on trees, we suspect that it might be NP-hard in general.

Background
EPG graphs were first introduced by Golumbic, Lipshteyn and Stern in [12] where the authors,
having shown that every graph is an EPG graph, proposed limiting the number of bends (90◦

turns) that are permitted for each path. This restriction on EPG graphs was motivated by
real-life constraints in circuit layout problems. As such, much of the current research today
focuses on subclasses of EPG graphs constrained in this way, seeking both structural and
algorithmic results.

The graph class Bk-EPG is defined as those graphs having an EPG representation where
all paths are allowed at most k bends, i.e., direction changes. The case of k = 1 are the single
bend EPG graphs, studied further in [3, 6, 8, 12, 13]. The B0-EPG are easily seen to be
equivalent to the well known family of interval graphs (see [10]). In [4], the authors show that
for any k, only a small fraction of all labeled graphs on n vertices are Bk-EPG. Improving a
result of [5], it was shown in [15] that every planar graph is a B4-EPG graph. It is still open
whether k = 4 is best possible. So far it is only known that there are planar graphs that
are B3-EPG graphs and not B2-EPG graphs. It was also shown in [15] that all outerplanar
graphs are B2-EPG graphs, thus proving a conjecture of [5]. Recently, [1] have shown that
circular-arc graphs are B3-EPG graphs, and that this is best possible.

For the case of B1-EPG graphs, Golumbic, Lipshteyn and Stern [12] showed that every
tree is a B1-EPG graph, and in [13] they showed that single bend paths on a grid have strong
Helly number 4. Asinowski and Ries [3] proved that every B1-EPG graph on n vertices
contains either a clique or a stable set of size at least n1/3. In [3], the authors also give a
characterization of the B1-EPG graphs among some subclasses of chordal graphs, namely,
chordal bull-free graphs, chordal claw-free graphs, chordal diamond-free graphs, and special
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cases of split graphs. In [8], a characterization of the sub-family of cographs that are B1-EPG
graphs is given by a complete family of minimal forbidden induced subgraphs.

No characterization is known for Bk-EPG graphs (for any k ≥ 1 ) and the recognition
problems are NP-complete [14], remaining so even if just one of the four single bend shapes is
allowed, the so called L-shaped B1-EPG graphs [6]. Golumbic, Epstein and Morgenstern [9]
proved that the minimum coloring problem and maximum independent set problem for B1-
EPG graphs are NP-complete, and then presented polynomial time approximation algorithms
for them, and later for the minimum dominating set problem. The same questions may also
be interesting for other subclasses B1-EPG graphs.

In this paper, we consider a further restriction coming from applications in circuit design,
where the endpoints of each path are on the boundary of a rectangular grid. This notion was
first proposed for investigation in [11].

Preliminaries
All graphs considered are finite and undirected. The complement of a graph G is denoted by
G. Two non-adjacent vertices with the same neighborhood are called false twins. The reduced
graph of a graph G is the graph obtained from G by deleting one vertex from each false twin
as long as there is one.

An equivalence graph is a vertex disjoint union of cliques, or equivalently, the graph where
the adjacency relation is an equivalence relation. The equivalence covering number eq(G) of a
graph G is the minimum number of equivalence graphs whose union is G [2]. For triangle-free
graphs, equivalence covering number is the same as edge-chromatic number.

The product dimension or Prague dimension of a graph is a parameter which is closely
related to the equivalence covering number. A product k-encoding of a graph G is obtained by
an associating to each vertex v a unique vector f(v) = (v1, . . . , vk) over the natural numbers
so that for xy ∈ E(G) the vectors f(x) and f(y) differ in all coordinates and for xy /∈ E(G)
the vectors f(x) and f(y) agree in at least one coordinate. The product dimension or Prague
dimension of a graph G, pdim(G), is the smallest number k such that G has a product
k-encoding.

It is easy to see that
eq(G) ≤ pdim(G) ≤ eq(G) + 1.

The difference of 1 occurs because a product k-encoding needs to associate a unique vector
to each vertex. For instance, the product dimension of the empty graph G on two vertices is
2 where as G can be covered by one clique.

The concept of product dimension of a graph was first used by Nešetřil and Rödl to prove
the Galvin-Ramsey property of the class of all finite graphs [19]. Lovász, Nešetřil and Pultr
showed that the product dimension of a path on n+1 vertices (length n) is dlg ne [17]. We use
the same technique to show the existence of ∂EPG graphs with arbitrarily large equivalence
covering number.

A bipartite graph is called a chain graph if, for each color class, the neighborhoods of the
vertices in that color class can be linearly ordered with respect to inclusion. Equivalently
it is a bipartite graph which is 2K2-free. A cobipartite chain graph is the complement of a
bipartite chain graph. Note that the linear orderings of neighborhoods of vertices of each part
is still preserved (there is a reversing).

Our results
Theorem 1 If G is a ∂EPG graph then G can be covered by two graphs Gh and Gv, where
both Gh and Gv are vertex-disjoint unions of cobipartite chain graphs.

Moreover, if G is three-sided ∂EPG, then Gv can be further restricted to be an equivalence
graph and if G is two-sided ∂EPG, then both Gh and Gv can be restricted to be equivalence
graphs.
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We explore several consequences of this theorem. Firstly, we obtain the following complete
characterization for 2-sided ∂EPG graphs. Without loss of generality, we may assume that
all the paths are restricted to start from the top boundary and bend towards the right
boundary. Then one obtains a subclass of the L-shaped B1-EPG graphs. We show that
this subclass, the two-sided ∂EPG graphs, are precisely linegraphs of bipartite multigraphs.
It is known that these graphs are recognizable in polynomial time and have a forbidden
subgraph characterization [18].

Theorem 2 The following conditions are equivalent for a graph G:

(i) G is a two-sided ∂EPG graph,
(ii) G has equivalence covering number at most 2,
(iii) The reduced graph of G has Product dimension at most 2.
(iv) G is the linegraph of a bipartite multigraph
(v) G contains no claw, no gem, no 4-wheel, and no odd hole.
(vi) The clique graph of G, i.e.. the intersection graph of maximal cliques in G, is bipartite.

Once we discovered that two-sided ∂EPG graphs have equivalence covering number at
most 2, it was natural to investigate the equivalence covering number of three-sided and
general (i.e., four-sided) ∂EPG graphs. We establish that, unlike the case with two-sided
∂EPG graphs, the equivalence covering number of three-sided and four-sided ∂EPG graphs
can be unbounded. In particular, we prove that the maximum possible equivalence covering
number of an n-vertex ∂EPG graph is Θ(lg n).

Theorem 3 If G is a ∂EPG graph on n vertices, then eq(G) ≤ 2dlg ne + 2. Further, if G
has a 3-sided ∂EPG representation then eq(G) ≤ dlg ne+ 2.

Moreover there exists n-vertex three-sided ∂EPG graphs Gn with equivalence covering num-
ber at least dlg ne − 1.

The lower bound in the theorem above uses a result of Lovász, Nešetřil and Pultr [17] on
product dimension. In order to establish the upper bound in the above result, apart from
Theorem 1, we also needed to prove the following tight upper bound on the product dimension
of bipartite chain graphs. This result may be of independent interest.

Theorem 4 If H is a bipartite chain graph on n vertices, then the product dimension of H
is at most dlg ne + 1. Hence, a co-bipartite chain graph on n vertices can be covered by at
most dlg ne+ 1 clique partitions.

Notice that two-sided ∂EPG trees, being claw-free are simply paths. For three-sided and
four-sided ∂EPG trees, we give a characterization which is similar in spirit to linear arboricity.
A linear forest is a forest in which every connected component is a path. A k-linear forest is
a linear forest in which every path has length at most k. The linear k-arboricity of a graph
G is the minimum number of linear k-forests whose union is G.

Theorem 5 A tree T is a ∂EPG graph if and only if T can be covered by two linear 3-forests.
Moreover, T has a 3-sided ∂EPG representation if and only if we can restrict one of the above
forests to be a disjoint collection of edges.

One side of the above theorem is an easy consequence of Theorem 1. For the other
direction we had to work more delicately with some new partial-order extension questions.

Theorem 5 tells us that the problem of recognizing ∂EPG trees is the same as deciding
whether the linear 3-arboricity of a tree is at most 2. In [7], Chang et al., gives a linear
time algorithm to find the linear k-arboricity of a tree. We can use the same algorithm to
recognize ∂EPG trees. The case with three-sided ∂EPG trees gets a bit more dirty because of
the asymmetry in the cover. Still, extending the idea in [7], we give a linear-time algorithm
for recognizing three-sided ∂EPG trees.
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Extended Abstract

A k-colouring of a graph G is a function f : V (G) → {1, 2, . . . , k} such that f(x) 6= f(y)
whenever xy ∈ E(G). Thus, k-colourings f1 and f2 are different whenever there exists
a vertex x such that f1(x) 6= f2(x). Every k-colouring, f, is equivalent to a k-tuple,
(f−1(1), f−1(2), . . . , f−1(k)), in which the set of non-empty components is a partition of
V (G) into independent sets.

A k-colouring f : V (G) → {1, 2, . . . , k} is canonical with respect to a vertex ordering
π = v1, v2, . . . , vn if, whenever f(vi) = c, every colour less than c has been assigned to some
vertex that precedes vi in π. Thus v1 is necessarily assigned colour 1, and colour 3 can only
be assigned to some vertex after colour 2 has been assigned to a vertex that appears earlier
in the sequence π. Note that canonical colourings may be very different than the colourings
arising from applying the usual greedy colouring algorithm to G using the vertex ordering π.

Define an equivalence relation ∼ on the set of k-colourings of G by f1 ∼ f2 if and only if
f1 and f2 determine the same partition of V (G) into independent sets. The set of canonical
k-colourings of G with respect to π is the set of representatives of the equivalence classes of
∼ that are lexicographically least with respect to π.

The canonical k-colouring graph of G with respect to the vertex ordering π is the graph
Canπk (G) with vertex set equal to the set of canonical k-colourings of G with respect to π,
where two of these are adjacent if and only if they differ in the colour assigned to exactly one
vertex. While every vertex ordering gives a set of representatives of the equivalence classes of
k-colourings, different orderings π can lead to different canonical k-colourings graphs. When a
canonical colour graph is connected, any given canonical k-colouring can be reconfigured into
any other via a sequence of recolourings which each change the colour of exactly one vertex.
When it is Hamiltonian, there is a cyclic list that contains all of the canonical k-colourings
of G and in which consecutive elements of the list differ in the colour of exactly one vertex,
that is, there is a cyclic Gray code of the canonical k-colourings of G.

The canonical k-colouring graph is an example of a reconfiguration graph: the vertices of
any such graph are the allowed configurations and there is an edge between two of them if
one can be transformed to the other by some reconfiguration rule. There is a vast literature
on the complexity of reconfiguration problems, for example see [7, 8].

We now briefly mention some other colouring graphs. The k-colouring graph of G, denoted
Ck(G), has vertex set equal to the set of k-colourings of G, with two k-colourings being
adjacent if and only if they differ in the colour of exactly one vertex. There is a least integer
c0 ≤ col(G)+1, such that k-colouring graph of G is connected for all k ≥ c0 [4]. The quantity
col(G) = 1 + maxH⊆G δ(H) is the colouring number of G. Results concerning connectivity
of k-colouring graphs are surveyed in [7]. Hamiltonicity of the k-colouring graph was first
considered in [3], wherein it was proved that there is always a least integer k0 ≤ col(G) + 2
such that the k-colouring graph of the graph G is Hamiltonian for all k ≥ k0. The number k0
is known for a variety of graph families, see [1] for a survey. The Bell k-colouring graph of G,
denoted Bk(G), has as vertices the partitions of V (G) into at most k independent sets, with
two of these being adjacent when there is a vertex x such that these partitions are equal when
restricted to G− x. The Bell k-colouring graph is studied in [5], as is the Stirling `-colouring
graph of G, the subgraph of B|V |(G) induced by the partitions with exactly ` cells. It is proved
that B|V |(G) is Hamiltonian for every graph G except Kn and Kn − e, and the quantity |V |
is best possible. It is also proved that the Bell k-colouring graph of a tree with at least four
vertices is Hamiltonian for all k ≥ 3, and the Stirling `-colouring graph of a tree on at least
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n ≥ 1 vertices is Hamiltonian for all ` ≥ 4. Other colouring graphs that have been considered
include the graph of L(2, 1)-labellings [9], and colour graphs where the reconfiguration rule is
a Kempe-chain exchange, see [7].

The graph Canπk (G) is a spanning subgraph of Bk(G); the restriction to canonical colour-
ings eliminates some edges of Bk(G). Since at most n colours can be assigned to the vertices
of an n-vertex graph G, it follows that Bk(G) = Bn(G) and Canπk (G) = Canπn(G) for all k ≥ n.
Notice that if Canπk (G) is connected for some vertex ordering π, then Bk(G) is connected.

Canonical k-colouring graphs were first considered in [6]. For every tree T there exists an
ordering π of the vertices such that the canonical k-colouring graph of T with respect to π is
Hamiltonian for all k ≥ 3. The canonical 3-colouring graph of the cycle Cn is disconnected
for all vertex orderings π, while for each k ≥ 4 there exists an ordering π for which Canπk (Cn)
is connected. If G is connected, but not complete then there is always a vertex ordering π
such that Canπk (G) is disconnected for all k ≥ χ(G)+1 [6]. In particular, the graph Canπk (G)
is disconnected whenever the first three vertices u, v, w of the vertex ordering π are such that
uw, vw ∈ E but uv 6∈ E. It is an open problem to find general conditions on k and π such
that Canπk (G) is connected.

Our focus in this work is connectivity and Hamiltonicity of canonical colouring graphs of
bipartite graphs, and complete multipartite graphs. In both cases, we find the best possible
lower bound on the number, k, of colours needed such that there exists a vertex ordering
for which the canonical k-colouring graph is connected. We then show that a canonical k-
colouring graph of a complete multipartite graph rarely has a Hamilton cycle, and there is a
Hamilton path only when the graph is complete or complete bipartite.

Proposition 1 Let H be a complete multipartite graph with p parts. For any k ≥ p, there
exists a vertex ordering π such that Canπk (H) is connected.

Theorem 2 Let G be a bipartite graph on n vertices, then there exists an ordering π of the
vertices such that Canπt (G) is connected for t ≥ n/2 + 1.

Consider the graph Ln = Kn,n − F , where F is a perfect matching. In the n-colouring
of Ln where the opposite ends of edges in F are assigned the same colour, every vertex has
a neighbour of any different colour. Thus, if c is the canonical version of this colouring with
respect to a vertex ordering π, then c is an isolated vertex in Canπn(Ln). Since Ln has 2n
vertices, it follows that the lower bound in the above theorem is best-possible.

We now consider Hamilton paths and cycles in canonical k-colouring graphs of complete
multipartite graphs. A canonical k colouring graph of a complete graph is either empty, or a
single vertex. We show that it suffices to consider the case where each independent set has at
least two vertices. Recall that the join of the disjoint graphs G1 and G2 is the graph G1 ∨G2

obtained from G1 ∪ G2 by inserting all possible edges with one end in V (G1) and the other
in V (G2).

Proposition 3 If Canπt (G) is connected (resp. has a Hamilton path, has a Hamilton cycle)
then there exists an order π′ such that Canπ

′

t+r(G ∨Kr) is connected (resp. has a Hamilton
path, has a Hamilton cycle).

Proposition 4 Let G = Kn1,n2,...,nr , where ni ≥ 2, for all i. Then, for all vertex orderings
π and k ≥ r + 1,

1. Canπk (G) has a cut vertex and hence has no Hamilton cycle;

2. if r ≥ 3 then Canπk (G) has no Hamilton path.

By Proposition 4, for m,n ≥ 2 and k ≥ 3, the graph Canπk (Km,n) has a cut vertex,
and hence no Hamilton cycle. On the other hand, for n ≥ 2, the graph Canπk (K1,n) has a
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Hamilton cycle for all k ≥ 3 [6]. The possibility remains that the canonical k-colouring graphs
of complete bipartite graphs which are not stars have a Hamilton path.

Observe that the canonical k-colouring graph ofKn = K1∪K1∪· · ·∪K1 is a reconfiguration
graph of partitions of an n-set into at most k parts. The number of vertices is the sum of
Stirling numbers of the second kind, S(n, 1)+S(n, 2)+ · · ·+S(n, k). A Hamilton cycle in this
graph corresponds a cyclic Gray code for set partitions. Many different Gray codes, cyclic
and otherwise, for set partitions are known to exist [10]. The properties of the Hamilton
paths in the next theorem are similar, but not identical, to those studied by various authors
in the context of Gray codes for set partitions [10].

Theorem 5 For all n ≥ 2 and k ≥ 2, and any vertex ordering π, the graph Canπk (Kn) has a
Hamilton path x1, x2, . . . , xt such that:

1. the colouring x1 = 11 . . . 1, and the colouring xt uses all k colours.

2. For each 1 < i < t, the set of colours used by xi is the same as to the set used by xi−1,
or xi+1.

Using these Hamilton paths, we show that Canπk (Kn,m) has a Hamilton path for all ad-
missible values of m,n, k.

Theorem 6 Canπk (Kn,m) has a Hamilton path for n,m ≥ 2, k ≥ 3.

We conclude by considering the case where each independent set has size two. For n ≥ 1,
let T2n,n be the complete n-partite graph on 2n vertices in which each independent set has
size two. Then T2,1 ∼= K2, T4,2 ∼= K2,2

∼= C4, T6,3 ∼= K2,2,2, and so on. We show that a
canonical k-colouring graph of T2n,n is either disconnected, or isomorphic to a particular tree.

Theorem 7 Let n ≥ 1. Then

1. Canπn(T2n,n)
∼= K1 for any vertex ordering π.

2. If k ≥ 2n, then Canπk (T2n,n)
∼= Canπ2n(T2n,n) for any vertex ordering π.

3. If n < k and the subgraph of T2n,n induced by the first n vertices in the vertex ordering
π is not complete, then Canπk (T2n,n) is disconnected.

4. If n < k and the subgraph of T2n,n induced by the first n vertices in the vertex ordering
π is complete, then Canπk (T2n,n) is a tree. Further, if Canπk (T2n,n) and Canφk(T2n,n) are
both trees, then Canπk (T2n,n)

∼= Canφk(T2n,n).

We now describe the tree which arises in point 4 of the previous theorem. In any colouring
of T2n,n, a pair of independent vertices either has the same colour, or different colours. In
the latter case, each vertex in the pair is the only vertex to be assigned that colour. Suppose
that the last n vertices of π are x1, x2, . . . , xn. A canonical 2n-colouring with respect to π
can be encoded as a binary sequence b1b2 . . . bn of length n in which the i-th element is 0 if
vertex xi is assigned the same colour as its unique non-neighbour (which is one of the first
n vertices of π), and 1 if it is assigned the first colour not used on a vertex earlier in the
sequence. Because of canonicity, an element bi of the binary sequence can change (from 0 to
1, or 1 to 0) if and only if bj = 0 for all j > i. It follows that the vertices of Canπk (T2n,n)
are the binary sequences of length n with at most t = k − n ones. Two such sequences are
adjacent if and only if they differ in exactly one position, and all entries to the right of that
position are zero. Observe that Canπk (T2n,n) is the subgraph of Canπ2n(T2n,n) induced by the
sequences with at most t ones.

For an ordering π such that the subgraph induced by the first n vertices is complete, the
tree Canπ6 (T6,3) is shown in Figure 1. For any such ordering, the tree Canπ8 (T8,4) is constructed
from two copies of this tree, one arising from concatenating a 1 on the left of each sequence
and the other arising from concatenating a 0 on the left of each sequence, and then joining
the vertices 0000 and 1000. The tree Canπ10(T10,5) is constructed similarly, and so on.
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Figure 1: The tree Canπ6 (T6,3)
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Extended Abstract

Let G = (V (G), E(G)) be a simple graph with vertex set V (G) and edge set E(G), and
for every vertex v ∈ V (G) let L(v) be a set (list) of available colors. The graph G is called
L-colorable if there is a proper coloring φ of the vertices with φ(v) ∈ L(v) for all v ∈ V (G). A
function f from the vertex set V (G) of G to the positive integers is called a choice function

of G and G is said to be f -list colorable if G is L-colorable for every list assignment L with
|L(v)| = f(v) for all v ∈ V (G). Set size(f) =

∑
v∈V (G)

f(v) and define the sum choice number

χsc(G) as minimum of size(f) over all choice functions f of G.

For some classes of graphs the sum choice number has been determined, for example for
cycles, trees, complete graphs, and all graphs with at most 6 vertices. If T is a tree then
χsc(T ) = 2|V (T )| − 1 [1].

It is easy to see that χsc(G) ≤ |V (G)| + |E(G)| for every graph G and that there is a
greedy coloring of the vertices of G for the corresponding choice function f and every list
assignment L with |L(v)| = f(v) for all v ∈ V (G) (see, e.g., [1]).

Obviously, if χsc(G) ≤ k and H is a subgraph of G, then χsc(H) ≤ k. Therefore, this
property is a hereditary graph property. This implies χsc(G) ≥ 2|V (G)| − 1 for a connected
graph G since χsc(T ) = 2|V (G)| − 1 for a spanning tree T of G.

In this talk we will improve the above mentioned upper and lower bounds for the sum
choice number. We will present several general lower and upper bounds on χsc(G) in terms
of subgraphs of G, for example

Theorem 1 Let V (G) = V1 ∪ · · · ∪ Vp be a partition of V (G). Then

χsc(G) ≤

p∑

i=1

χsc(G[Vi]) + |E(G)| −

p∑

i=1

|E(G[Vi])|.

Theorem 2 (Harant, Kemnitz ’2016 [2]) Let G be a connected graph and G1, . . . , Gr be

nonempty, connected, and pairwise vertex-disjoint subgraphs of G. Then

χsc(G) ≥

r∑

i=1

χsc(Gi) + (r − 1) + 2(|V (G)| −

r∑

i=1

|V (Gi)|).
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Extended Abstract

We consider a hypergraph version of a graph-theoretical problem that has been initially
proposed by Erdős and Rothschild [5], and which has been studied and generalized by several
authors in the last few years. Originally, for a fixed number r ≥ 2 of colors and a fixed graph
F , Erdős and Rothschild were interested in n-vertex graphs that allow the largest number
of edge-colorings avoiding a monochromatic copy of F . (We observe that edge-colorings in
this work are not necessarily proper.) Alon, Balogh, Keevash and Sudakov [1] showed that,
whenever r ∈ {2, 3} and n is sufficiently large, the n-vertex `-partite Turán graph T (2)

` (n)
admits the largest number of colorings avoiding a monochromatic copy of the complete graph
K`+1 (see also Yuster for the case ` = 2), while Pikhurko and Yilma [16] have found the
extremal graphs for K3 and for K4 when r = 4, which turn out to be neither K3-free nor
K4-free. Very recently, two groups of authors [3, 17] have shown that, for any r, ` ≥ 2, the
graph allowing the largest number of r-colorings avoiding monochromatic copies of K`+1 is
always a complete multipartite graph. In fact, the work in [3] deals with the more general
problem of edge-colorings avoiding a copy of a forbidden graph F colored according to some
fixed color pattern, which was initiated by Balogh [2]. We should also mention that three of
the current authors [9] considered a version of this problem for colorings avoiding rainbow
copies of the complete graph K`+1, namely copies of K`+1 in which every edge is colored
differently.

The hypergraph counterpart of this problem has also been studied. The third author, along
with co-authors, determined uniform n-vertex hypergraphs that allow the largest number
of hyperedge-colorings avoiding monochromatic copies of some fixed hypergraph F . This
includes the Fano plane [12], matchings [8], and linear hypergraphs such as expanded complete
graphs and Fan(k)-hypergraphs [14], where by a linear hypergraph we mean a hypergraph
whose hyperedges pairwise intersect in at most one vertex. Typically, the results in these
papers establish that, for r ∈ {2, 3} and large n, the n-vertex Turán hypergraph associated
with the forbidden hypergraph F (i.e., the n-vertex hypergraph with the largest number of
edges avoiding F as a subhypergraph) admits the largest number of colorings, while this is
not the case for r ≥ 4.

Here, we focus on rainbow hyperedge-colorings of hypergraphs. More precisely, for k-
uniform hypergraphs F and H, and an integer r, let cr,F (H) denote the number of r-
colorings of the set of hyperedges of H with no rainbow copy of F , that is, with no sub-
hypergraph isomorphic to F such that the colors assigned to its hyperedges are all distinct.
Let cr,F (n) = maxH∈Hn,k

cr,F (H), where the maximum runs over the family Hn,k of all
k-uniform hypergraphs on n vertices. As usual, let ex(n, F ) be the maximum number of
hyperedges e(H) of an n-vertex k-uniform hypergraph H which contains no subhypergraph
isomorphic to F .

Clearly, determining cr,F (n) is trivial if r ≤ e(F ) − 1, as no coloring will ever produce a
rainbow copy of F and the complete k-uniform n-vertex hypergraph will admit the largest
number of colorings. For r ≥ e(F ), it is clear that choosing any subset of (e(F ) − 1) of
the r colors, and coloring the complete k-uniform n-vertex hypergraph with colors in this
subset cannot produce a rainbow F , thus cr,F (n) ≥ (e(F ) − 1)(

n
k). On the other hand, it is

also clear that every hyperedge-coloring of an F -free hypergraph H contains no rainbow copy
of F , and consequently cr,F (n) ≥ rex(n,F ) for all r ≥ 2. Note that (e(F ) − 1)(

n
k) ≥ rex(n,F )

for smaller values of r, while the opposite is true for larger values of r. We will show that,
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for some classes of hypergraphs, we indeed have cr,F (n) = rex(n,F ) for all fixed r ≥ r0 and
n sufficiently large; in particular, this holds for the linear 3-uniform hypergraph Fano plane,
and two families of linear k-uniform hypergraphs. These two families are expanded complete
graphs and Fan(k)-hypergraphs.

Fano Plane. The Fano plane FA is the unique linear 3-uniform hypergraph on 7 vertices
with 7 hyperedges. For n sufficiently large, the unique n-vertex extremal hypergraph for the
Fano plane is Bn, whose vertex set is partitioned into two classes of cardinality as equal as
possible, and the set of hyperedges consists of all those 3-element sets that intersect each class
in at most two vertices. The extremality of Bn has been proved by Keevash and Sudakov,
and by Füredi and Simonovits (see, for example, [7]).

We have the following results.

Theorem 1 Let FA be the 3-uniform Fano plane. There exists r0 such that the following
holds for all r ≥ r0. There exists a positive integer n0, such that, for every 3-uniform
hypergraph H on n ≥ n0 vertices, we have

cr,FA(H) ≤ rex(n,FA).

Moreover, for r ≥ r0 and n sufficiently large, the only 3-uniform hypergraph H on n vertices
with cr,F (H) = rex(n,FA) is Bn (up to isomorphism).

For a hypergraph H = (V,E) and a subset V1 ⊆ V , let e(V1) be the number of hyperedges
e ∈ E with e ⊆ V1. For the proof of Theorem 1 we use the following stability result for
colorings.

Lemma 2 Let δ > 0 be fixed. Then there exists r0(δ) such that the following holds for all
r ≥ r0(δ). Let H = (V,E) be a 3-uniform hypergraph on n ≥ n0 vertices with

cr,FA(H) ≥ rex(n,FA).

Then, there exists a partition V = V1 ∪ V2 of its vertex set such that e(V1) + e(V2) ≤ δn3.

For the proof of Lemma 2 we use a colored version of the weak Regularity Lemma for
hypergraphs (see [4]), which is an extension of the well-known Szemerédi Regularity Lemma
to hypergraphs. Moreover, we need a counting lemma associated with this type of regularity,
which holds for linear hypergraphs [11], and a stability result in the sense of Simonovits for
the (uncolored) 3-uniform Fano plane, which is given, for instance, in [10].

Using Lemma 2, we may prove Theorem 1 by contradiction, along the general lines of the
proof of [1, Theorem 1.1] and [12, Theorem 1]. We choose n0 appropriately and we let H 6= Bn
be a hypergraph on n > n3

0 vertices with at least rex(n,FA)+m rainbow-FA-free r-hyperedge
colorings, for some m ≥ 0. We show that H contains a vertex x such that the hypergraph
H−x obtained by deleting vertex x has at least rex(n−1,FA)+m+1 rainbow-FA-free r-hyperedge
colorings, or it contains two vertices x and y such that H−x−y has at least rex(n−2,FA)+m+2

rainbow-FA-free r-hyperedge colorings. Repeating this argument iteratively, we obtain a
hypergraph on n0 vertices whose number of rainbow-FA-free r-hyperedge colorings is at least
rex(n0,FA)+m+n−n0 > rn

3
0 . However, a 3-uniform hypergraph on n0 vertices has at most n30/6

hyperedges and hence the number of such colorings is at most rn
3
0/6, which is the desired

contradiction.

Other Hypergraphs. Let [`] := {1, . . . , `} and [`]k := [{1, . . . , `}]k. For integers `, k ≥ 2,
the so-called expanded complete graph Hk

`+1 is a k-uniform hypergraph defined as follows.
Take

(
`+1
2

)
edges of the complete graph K`+1, which is called the core of Hk

`+1, and enlarge
every edge of K`+1 by a set of (k − 2) new vertices. Thus, the vertex set of Hk

`+1 has size
(`+ 1) +

(
`+1
2

)
· (k − 2) and the number of hyperedges is

(
`+1
2

)
.

Similarly, for integers `, k ≥ 2, ` ≥ k − 1, the Fan(k)-hypergraph F k
`+1 is the k-uniform

hypergraph that contains (` + 1) vertices v1, . . . , v`+1, called the core of F k
`+1. Moreover, k
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vertices of this core, say the vertices v1, . . . , vk, form a hyperedge, the core-hyperedge, so that
for each {i, j} ∈ [`+ 1]2 \ [k]2 the two-element set {vi, vj} is enlarged by a set of (k − 2) new
vertices. Thus, the vertex set of F k

`+1 has size (`+ 1) + (
(
`+1
2

)
−
(
k
2

)
) · (k− 2) and it contains

1 +
(
`+1
2

)
−
(
k
2

)
hyperedges.

These two families of linear hypergraphs have been studied by Mubayi and Pikhurko
(see [15] and the references therein), who showed that, for large n and ` ≥ k, the unique
extremal hypergraph for Hk

`+1 and F k
`+1 as well is the so-called Turán hypergraph T (k)

` (n),
which is a k-uniform n-vertex hypergraph, whose vertex set is partitioned into ` classes of
cardinality as equal as possible and whose set of hyperedges consists of all those k-element
sets that intersect each class in at most one vertex. Stability results in the sense of Simonovits
have also been proved there.

Theorem 3 Let F = Hk
`+1 be the k-uniform, expanded complete 2-graph or F = F k

`+1 the
Fan(k)-hypergraph, each with core of size (`+ 1), where 2 ≤ k ≤ `. There exists r0 such that
the following holds for all r ≥ r0. There exists a positive integer n0, such that, for every
k-uniform hypergraph H on n ≥ n0 vertices, we have

cr,F (H) ≤ rex(n,F ).

Moreover, for r ≥ r0, and n sufficiently large, the only hypergraph H on n vertices with
cr,F (H) = rex(n,F ) is isomorphic to T (k)

` (n), the k-uniform Turán hypergraph on n vertices
with ` classes.

For k = 2 we have Hk
`+1 = F k

`+1 = K`+1 and T (k)
` (n) is the usual Turán graph with ` classes.

We prove Theorem 3 with arguments as in the proof of Theorem 1. We first obtain a
(color)-stability result of the type of Lemma 2, which establishes that the structure of any
n-vertex hypergraph that admits at least rex(n,F ) colorings is similar to that of the extremal
graph. This may be proved in a more general framework, which considers families F of
forbidden linear hypergraphs such that the vertex set of an extremal configuration admits
a partition such that e ∈ [n]k is a hyperedge if and only if it satisfies some intersection
pattern with the different partition classes. There must also be a stability result for F , that
is, a result stating that any F-free hypergraph with a large number of hyperedges admits
a partition such that only a small number of hyperedges fail to have the given intersection
pattern. The second ingredient of the proof is showing that, among all hypergraphs with this
structure, the (uncolored)-extremal hypergraph admits the largest number of colorings.

One natural problem is to improve the value of the lower bound r0 in Theorems 1 and 3
obtained in this paper. Here, given a k-uniform linear hypergraph F , the size of r0 depends on
the interplay between the constants ε and δ in stability results for F -free hypergraphs, which
establish that any F -free n-vertex hypergraph with at least ex(n, F )−εnk hyperedges admits
a partition of its vertex set that differs from the structure of the extremal configuration by at
most δnk ‘bad edges’. Much better bounds may be derived when the dependence between ε
and δ is made explicit as was done for graphs in [6]. Another natural line of research would
be to consider non-linear forbidden hypergraphs F , but to address this case we would require
stronger versions of the Regularity Lemma for hypergraphs, as has been done in [13].

In general, the problem of determining cr,F (n) and the n-vertex graphs and hypergraphs
that achieve this extremal value has only been solved in very special cases. One interesting
feature of the monochromatic case is the emergence of extremal graphs that are neither
complete nor isomorphic to the extremal graph in the uncolored case. So far, there are no
known examples of such alternative extremal configurations for rainbow patterns.
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Extended Abstract

Throughout this contribution, we consider connected graphs without loops or multiple
edges. Given a graph G = (V,E), the degree d(v) of a vertex v ∈ V is the number of edges
incident with v. For an edge e = uv ∈ E, the weight w(e) of e is the sum d(u) + d(v). The
minimum vertex degree of G is the number δ(G) = min{d(v) : v ∈ V }, and the minimum
edge weight of G is w(G) = min{w(e) : e ∈ E}. The girth g(G) of G is the length of a
shortest cycle of G and the double girth of G is defined as the minimum sum of lengths of
two distinct cycles of G which share a common edge; it will be denoted as dg(G) (note that
g(G) =∞ if G is a tree, and dg(G) =∞ if none two cycles of G share an edge).
A graph is called planar if it can be drawn in the plane without crossing of edges (such
a drawing is called a plane graph and it is determined by the triple (V,E, F ), where F is
the set of faces). The face size d(α) of a face α ∈ F is the number of edges incident with
α (incident cut-edges being counted twice). The minimum face size of G, denoted ρ(G),
is defined as min{d(α) : α ∈ F} and the minimum dual edge weight of G is the number
w∗(G) = min{d(α) + d(β) : α, β ∈ F, α 6= β, α, β have a common edge}. Note that
g(G) ≤ ρ(G) and dg(G) ≤ w∗(G).

For a general graph G, there are no special dependencies of the above mentioned graph
invariants apart of the trivial ones: w(G) ≥ 2δ(G) and dg(G) ≥ 2g(G). On the other hand,
these invariants are strongly dependent when additional conditions are considered.
Particularly, if G is a simple plane graph, then min{δ(G), ρ(G)} ≤ 5; additionally δ(G) ≥ 4
implies ρ(G) = 3 and ρ(G) ≥ 4 implies δ(G) ≤ 3. These facts follow easily from Euler’s
formula for the numbers of vertices, edges and faces of a plane graph. A more subtle analysis
of consequences of Euler’s formula yields another dependence: if δ(G) ≥ 3 then w(G) ≤ 13,
whereas δ(G) ≥ 4 gives w(G) ≤ 11, see [1]. By considering dual versions of these results,
we obtain a dependance between the minimum face size ρ(G) and the minimum dual edge
weight w∗(G): if ρ(G) ≥ 3 then w∗(G) ≤ 13 and, for ρ(G) ≥ 4, w∗(G) ≤ 11. Furthermore,
the results of the classical paper [5] give that if δ(G) ≥ 3 and ρ(G) ≥ 4, then w(G) ≤ 8 and
δ(G) ≥ 3 together with ρ(G) = 5 yield w(G) = 6.

The mutual dependance of all four values δ(G), ρ(G), w(G) and w∗(G) for 3-connected
plane graphs (i.e. δ ≥ 3) was studied in [3] giving the characterization of all quadruples
(δ, ρ, w,w∗) for which the corresponding families G(δ, ρ, w,w∗) of minimum vertex degree at
least δ, girth at least ρ, minimum edge weight at least w and double girth at least w∗ are
empty or non-empty, respectively. Euler theorem implies that G(4, 4, 8, 8) is empty. From
Kotzig theorem (see [6]), it follows that G(3, 3, 14, 6) and G(4, 3, 12, 6) are empty and from [5]
follows the emptiness of families G(3, 4, 9, 8) and G(3, 5, 7, 10). Using the duality, we get that
the families (3, 3, 6, 14), (3, 4, 6, 12), (4, 3, 8, 9), and (5, 3, 10, 7) are also empty. Ferencová and
Madaras moreover proved the following:

Theorem 1 (B. Ferencová, T. Madaras [3]) The families G(3, 3, 7, 10), G(3, 3, 8, 9), and
G(3, 4, 7, 9) are empty.

The aim of our work was to extend the results of [3] for wider families of plane graphs
with δ = 2. The graph K2,r shows that w(G) is unbounded for ρ(G) = 4. On the
other hand, recent results by Jendroľ and Maceková [4] and results from [2] show that if
g(G) ∈ {5, 6} then w(G) ≤ 7 and, further, if g(G) ∈ {7, 8, 9, 10}, then w(G) ≤ 5 as well as
g(G) ≥ 11 implies w(G) = 4. The equivalent formulation of these results is that the families
G(2, 5, 8, 10),G(2, 7, 6, 14) and G(2, 11, 5, 22) are empty.

We state the following:

165



Theorem 2 The families G(2, 3, 7, 15), G(2, 3, 9, 11), G(2, 3, 13, 9), G(2, 5, 5, 27), G(2, 5, 6, 17),
G(2, 5, 7, 13), and G(2, 7, 5, 23) are empty.

For the non-empty families arising from admissible quadruples, we are interested in de-
termining the extremal ones, that is, the families G(δ, ρ, w,w∗) such that the increase of any
of the values δ, ρ, w and w∗ results in an empty family:

Theorem 3 The families G(2, 4, 8, 14), G(2, 4, 12, 10), G(2, 6, 5, 26), G(2, 6, 6, 16), G(2, 6, 7, 12),
G(2, 10, 5, 22) are non-empty and extremal. The families G(2, 4, 6, r) and G(2, 4, s, 8) are
nonempty for arbitrary r ≥ 8 and s ≥ 4.

A possible common way how to visualize the dependance of δ, ρ, w,w∗ for families of
plane graphs is to construct the diagram of a partially ordered set depicting the hierarchy of
all non-empty families (generated by quadruples (δ, ρ, w,w∗)) under the set inclusion partial
ordering. For δ ≥ 3, the partially ordered set of generated families of polyhedral graphs is
shown in Figure 1:

Figure 1: The hierarchy of families of polyhedral graphs generated by (δ, ρ, w,w∗)

The results for δ = 2 are presented in Table 1 indexed by values of girth (rows) and edge
weight (columns) such that, the corresponding table entry shows the maximal admissible
value of dual edge weight. The value ∞ in the first column is due to the fact that, in the
graph obtained from Cn (n arbitrarily large) by replacing every edge with two disjoint paths
of length 2, the dual edge weight is unbounded. The value 8 in the last column results from
the graph K2,r for large r. The bold values correspond to extremal families.
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4 5 6 7 8 9 10 11 12 w ≥ 13

3 ∞ ∞ ∞ 14 14 10 10 10 10 8
4 ∞ ∞ ∞ 14 14 10 10 10 10 8
5 ∞ 26 16 12 − − − − − −
6 ∞ 26 16 12 − − − − − −
7 ∞ 22 − − − − − − − −
8 ∞ 22 − − − − − − − −
9 ∞ 22 − − − − − − − −
10 ∞ 22 − − − − − − − −

ρ ≥ 11 ∞ − − − − − − − − −

Table 1: The table of admissible values for quadruples (2, ρ, w,w∗)
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Extended Abstract

Given a graph G = (V,E) with fixed (but arbitrary) orientation of the edges and an abelian
group Γ, we define a Γ-flow (alternatively just a flow) as a mapping f : E → Γ satisfying
Kirchhoff’s law at each vertex, i.e. for each vertex total in-flow equals total out-flow. More
formally, f satisfies

∑

e=•→v

f(e) =
∑

e=v→•

f(e)

for each vertex v ∈ V . A k-flow is a Z-flow using only values strictly between −k and k.
Finally, a flow is nowhere-zero if no edge has value 0. It is an easy observation that the
existence of any flow is independent on the orientation of G – whenever we reverse some edge
we also change the corresponding value to its negative.

The concept of (nowhere-zero) flows was introduced by Tutte in 1954 [6] while studying
a coloring of planar graphs. He observed that a plane graph G admits a nowhere-zero k-flow
if and only if its dual G∗ is k-colorable. Tutte also proved that the existence of a Γ-flow does
not depend on the structure of Γ as long as the number of elements is the same.

Theorem 1 (Tutte ’54 [6]) For a given graph G and an abelian group Γ with k elements,
G admits a k-flow if and only if G admits a Γ-flow.

Therefore, the problems of existence of a (nowhere-zero) k-flow and a (nowhere-zero)
Zk-flow are equivalent.

As a consequence of 4-Color Theorem [1], each bridgeless planar graph admits a nowhere-
zero 4-flow. Tutte conjectured the following generalization.

Conjecture 2 (Tutte ’54 [6]) Each bridgeless graph admits a nowhere-zero 5-flow.

This conjecture is still open and the closest result is due to Seymour.

Theorem 3 (Seymour ’81 [5]) Each bridgeless graph admits a nowhere-zero 6-flow.

Recently, Kochol [2, 3, 4] studied a hypothetical minimal counterexample to Tutte’s
5-Flow Conjecture. He introduced so-called forbidden networks, i.e. graphs that cannot be
a subgraph of any such counterexample. He also used Tutte’s contraction/deletion formula
to count flows on a network using a given values on specific edges. Using these counts, he
transformed the exclusion of a forbidden subgraph to the problem of equality of vector spaces
and proved that such minimal counterexample cannot contain circuits of length at most 10.

We have verified the results by Kochol using an independent implementation of the com-
putations and have improved the best known result.

Theorem 4 Every minimal counterexample to the 5-Flow Conjecture has girth at least 12.

It seems that we have reached the boundaries where this method can be used.

Overview of the method. Let H = (V,E) be a graph and U ⊆ V such that each vertex
v ∈ U has degree 1, then the pair (H,U) is a network and U is a set of terminals. We can
assign a value s(v) to each terminal v ∈ U and ask if there exists a flow on (H,U) such that
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Kirchhoff’s law is satisfied for each non-terminal v ∈ V \ U and the out-flow of any terminal
v ∈ U is s(v). A necessary condition of such flow is

∑

v∈U

s(v) = 0 (1)

Denote the number of such flows by FH,U (s).
A partition P = {Q1, . . . , Qr} of terminals U , i.e. a family of pairwise disjoint sets Qi

where U = Q1 ∪ · · · ∪ Qr, such that each set Qi contains at least 2 vertices is called proper.
For such partition P and an assignment s satisfying condition (1), we define a compatibility
function χ(s, P ):

χ(s, P ) =

{

1 if
∑

v∈Qi
s(v) = 0 holds for each i ∈ {1, . . . , r},

0 otherwise.

Let P be the set of all proper partitions and χ(s) be the vector of χ(s, P ), P ∈ P in some
fixed order.

Lemma 5 (Kochol ’04 [2]) Let (H,U) be a network. Then there exist integers xP for each
P ∈ P such that FH,U (s) =

∑

P∈P
xPχ(s, P ) for every s satisfying condition (1).

Let (H ′, U ′) be a network such that H ′ is smaller than H and |U ′| = |U | and G be a graph
containing H as a subgraph. Then we can delete all non-terminal vertices of H and identify
terminal vertices of H and H ′ (see Figure 1) to obtain a smaller graph G′. Naturally, we
require that this replacement does not create any bridge.

H 0

G0

v1

v2

v3 = v4

v5

G

H

v1

v2

v3 = v4

v5

v0
4

v0
3

v0
5

v0
1

v0
2

H 0

Figure 1: Graph G′ obtained from G by replacing H by H ′.

For the network (H,U), let SH be the set of all assignments s satisfying condition (1) such
that FH,U (s) > 0 and VH be the linear hull of {χ(s) : s ∈ SH}. Similarly, we define linear
hull VH′ for the network (H ′, U ′).

Theorem 6 (Kochol ’10 [4]) If there exists some graph H ′ smaller than H such that re-
placement of H by H ′ does not create any bridge in the class of cyclically 6-connected graphs
and VH′ ⊆ VH then H cannot be a subgraph of any minimal counterexample to the 5-Flow
Conjecture.

Computations. We can formulate the problem of determining whether VH′ ⊆ VH in terms
of matrices: Let MH and MH′ be the matrices where rows are exactly χ(s) for s ∈ SH and
s ∈ SH ∪SH′ , respectively. Then VH′ ⊆ VH if and only if the ranks of MH and M ′

H are equal.
To prove Theorem 4, we have used circuits (lengths up to 14) with a unique new edge from

each vertex as a graph H and shorter circuits with one isolated edge (again with a unique
new edge from each vertex) as a graph H ′ (see Figure 2).
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H = extended C10 H 0 = extended C8 + e
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Figure 2: Example of H and H ′ used in computations.

Up to length of 11, the ranks of both matrices were the same but, starting with circuit
C12, there are some vectors in VH′ that are not in VH (see Table 1). We have also tried to use
other graphs, e.g. a perfect matching or two shorter circuits, as H ′ for H = C12 and H = C13

but the rank of MH′ has always exceeded the rank of MH .

H size of MH size of MH′ rankMH rankMH′ note

C8 122× 81 176× 81 62 62
C9 262× 238 430× 238 151 151 [4]
C10 792× 1 079 1 415× 1 079 539 539 [4]
C11 1 972× 4 752 3 937× 4 752 1 699 1 699
C12 5 697× 25 421 12 112× 25 421 5 550 6 226
C13 15 183× 141 772 34 969× 141 772 15 033 21 945 (a)

Table 1: The sizes and ranks of some matrices MH and M ′
H . (a) In this case, computations

modulo 251 were used and matrix M ′
H contained only rows for s ∈ SH′ .

Since the size of the matrices rises exponentially, we have used permutation group to
reduce the size as presented by Kochol [4]. Moreover, we have computed larger matrices
modulo appropriate prime number (instead of in rational numbers) to reduce the time and
space needed for the rank computations.
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Group Connectivity: Z4 v. Z2
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Extended Abstract

A flow in a digraph G = (V,E) is an assignment of values of some abelian group Γ to
edges of G such that Kirchhoff’s law is valid at every vertex. Formally, f : E → Γ satisfies∑

e ends in v

f(e) =
∑

e starts in v

f(e)

for every vertex v ∈ V . We say a flow is nowhere-zero if it does not use value 0 at any edge.
Tutte [5] started the study of nowhere-zero flows by observing, that a plane digraph G has

a nowhere-zero flow in Zk if and only if its plane dual G∗ is k-colorable (we do not consider
orientation of the edges for the coloring). This motivated several famous conjectures, we
mention just the 5-flow conjecture (due to Tutte): every bridgeless graph has a nowhere-
zero flow in Z5. A motivating feature of the theory of nowhere-zero flows are several nice
properties, starting with the following discovered by Tutte. In particular, the following one:

Theorem 1 (Tutte ’54 [5]) Let Γ be an abelian group with k-elements. Then for every
digraph the existence of a nowhere-zero Γ-flow is equivalent with the existence of a nowhere-
zero Zk-flow.

Theorem 2 (Tutte ’54 [5]) The existence of Zk-flow is equivalent with the existence of a
nowhere-zero integer flow, that uses only values ±1, ±2, . . . , ±(k − 1).

Jaeger et al. [3] introduced a variant of nowhere-zero flows called group connectivity.
Among several equivalent definitions we choose the one most convenient for us. A digraphG =
(V,E) is Γ-connected if for every mapping h : E → Γ there is a Γ-flow f on G that satisfies
f(e) 6= h(e) for every edge e ∈ E. As we may choose the “forbidden values” h ≡ 0, every
Γ-connected digraph has a nowhere-zero Γ-flow; however, the converse is false. While the
notion of group connectivity is stronger than the existence of nowhere-zero flows, it is also
more versatile, in particular the notion lends itself more easily to proofs by induction. This is
a consequence of an alternative definition of group connectivity: instead of looking for a flow,
we may check existence of a mapping E → Γ that has prespecified surplus at each vertex.
A celebrated recent example of this is the solution to the Jaeger’s conjecture by Thomassen
et al. [4], but there are many more. Thus, it is worthwhile to understand the properties of
group connectivity in more detail.

It is easy to see that both the existence of a nowhere-zero Γ-flow and Γ-connectivity do
not change when we reverse the orientation of an edge of the digraph (we only need to change
the corresponding flow value from x to −x). Thus, we will say that an undirected graph G
has a nowhere-zero Γ-flow (is Γ-connected) if some (equivalently every) orientation of G has a
nowhere-zero Γ-flow (is Γ-connected). Also, using the definition of group connectivity working
with vertex surpluses, we observe that group connectivity is monotone with respect to edge
addition – if G is Γ-connected then G + e is Γ-connected for any edge e.

Some results on nowhere-zero flows extend to the stronger notion of group connectivity.
Seymour proved that every edge 3-connected graph is Z6-connected. Thomassen et al. [4]
proved that every edge 6-connected graph is Z3-connected.

However, some nice properties of group-valued flows are not shared by group connectivity.
In particular [3], there is a graph that is Z5-connected, but not Z6-connected. This contrasts
with the situation for flows: Suppose G has a nowhere-zero flow in Z5 but not in Z6. Using
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twice Theorem 2, we find that G has a nowhere-zero integer flow with values bounded in
absolute value by 5, but not one bounded by 6, a clear contradiction.

An analogy of Theorem 1 is more subtle. Indeed, in Section 3.1 of [3] the authors mention:
“. . . we do not know of any Z4-connected graph which is not Z2×Z2-connected, or vice versa.
Neither can we prove that such graphs do not exist.” Our main result is the resolution to this
natural question.

Theorem 3

1. There is a graph that is Z2
2-connected but not Z4-connected.

2. There is a graph that is Z4-connected but not Z2
2-connected.

The Group Connectivity Conjecture and Results. When looking for graphs certify-
ing Theorem 3, we only need to consider graphs that do have nowhere-zero Z2

2-flow (equiv-
alently [5], nowhere-zero Z4-flow). We decided to try cubic graphs (and their subdivisions).
In contrary to the usual case, however, we are not interested in snarks (cubic graphs that fail
to be edge 3-colorable), as those do not have nowhere-zero Z2

2-flow.
We note that subdividing an edge has no effect on existence of a nowhere-zero flow (the

new edge can have the same flow value as before). It makes the group connectivity stronger –
in effect, we are forbidding one more value on an edge. This suggests the following strategy:

1. find a (random) 3-regular graph and

2. repeatedly subdivide an edge and check Z2
2-connectivity and Z4-connectivity.

This procedure yielded the graph in the Figure 1, during work for the master thesis of
the second author. This graph is Z4- but not Z2

2-connected. Later, with more effective
implementation (see next section) by the first author, we found graphs that are Z2

2- but not
Z4-connected. The smallest among them are (threefold) subdivisions of cubic graphs on 12
vertices.

Figure 1: A subdivision of cube which is Z4-connected but not Z2
2-connected

Group connectivity testing. We fix a digraph G = (V,E). We let n be the number of
vertices and m the number of edges of G. For a fixed abelian group Γ, the set of all Γ-flows
on G is denoted F .

The most straightforward way of testing whether a graph is Γ-connected, is using the
definition: We can enumerate all h : E → Γ assignments of forbidden values and for each of
them (try to) find a satisfying flow. Finding a satisfying flow by itself is a hard problem: A
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cubic graph has nowhere-zero Z4-flow (equivalently, Z2
2-flow) if and only if it has an edge 3-

coloring. The edge 3-colorability of cubic graphs was shown to be NP-complete by Holyer [2].
An easy observation about the structure of forbidden assignments is:

Observation 4 Let h, h′ : E → Γ be assignments of the forbidden values such that h′−h = ∆
is a flow. Then h is satisfied by flow f if and only if h′ is satisfied by f + ∆.

Definition 5 We say that h, h′ : E → Γ be assignments of forbidden values are flow-
equivalent, denoted h ∼f h′, if and only if h′ − h is a flow.

Hence we can split all assignments of the forbidden values into equivalence classes of
∼f and test existence of satisfying flow only for one member of each class. This improves
algorithm from finding |Γ|m flows to finding |Γ|n−1 flows.

A bit smarter algorithm – used to find Z2
2-connected graphs which are no Z4-connected

– can be obtained by looking at Observation 4 the other way around. It follows that each
equivalence class of ∼f is exactly a coset generated by adding some its fixed member to all
flows. Therefore if a equivalence class [x]∼f

is satisfied then for every flow f there is h ∈ [x]∼f

such that f satisfies h.
So we can fix a flow – everywhere-zero flow being the obvious candidate – and for each

equivalence class we test whether some of its members is satisfied by it. This increases number
of tests back to |Γ|m but now each test is just a simple comparison instead of an NP-complete
problem.

We can also trade some space for time: We keep table of all groups and instead of enu-
merating members of all groups we enumerate all assignments of forbidden values that are
satisfied by given flow. For each of them we determine its group and mark that group as
satisfied. After enumerating them all we just check whether every group is satisfied. This
decreases number of enumerated elements to (|Γ| − 1)m but consumes extra 2n−1 bits of
memory.

Because we were testing subdivisions of cubic graphs we would like to optimize cases of
once and twice subdivided edges. Without any additional optimization each subdivision of
an edge increases number of edges by one and hence slows down the described method by
factor |Γ| − 1. But a subdivision creates an edge 2-cut.

Without loss of generality we may assume that edges of a 2-cut – denote them e1 and e2

– are oriented in opposite directions. Value of any flow must be the same on both of them.
Hence swapping forbidden values for edges e1 and e2 does not change set of satisfying flows.
Moreover we may assume that forbidden values for e1 and e2 are different because it is more
restrictive than the case when they are the same. This reduces number of cases from |Γ|2 to(|Γ|

2

)
(i.e., from 16 to 6 for groups of size four). Double subdivision is in our case even simpler

because we have three forbidden values and again the most restrictive case is when they all
are distinct. So such double-subdivided edge has only one possible value (in our case, where
|Γ| = 4).

Now we need to plug this observations into above-described algorithm. Observe that the
groups used in the algorithm do not have to be equivalence classes of ∼f but we can use
classes of any equivalence ∼ which is congruence with respect to satisfiability and which is
coarser than ∼f . Being congruence with respect to satisfiability means that either all elements
of equivalence class are satisfiable or none of them is. Being coarser than ∼f ensures that
[x]∼f

⊆ [x]∼ and so if class [x]∼ is satisfiable that for every flow f there is some y ∈ [x]∼
satisfied by f .

We begin with equivalence ∼f . For each 2-cut we remove all classes that forbid the same
value on both edges of the cut and merge classes which differ only by swapping values on
edges of the cut. For double-subdivided edges we remove all classes that do not forbid 3
different values on each double-subdivided edge and than merge all classes that differ only by
order of forbidden values on given subdivided edge.
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Conclusions and open problems. We have found graphs that show that Z2
2- and Z4-

connectivity are independent notions. All of the graphs that we have found to certify this do
have vertices of degree 2. Therefore, it is natural to ask, whether such graphs exist that are
edge 3-connected.

Another challenging task is to find a proof that does not use computers. The main obstacle
is to find efficient techniques to show that a particular graph is Γ-connected. To prove the
converse is much easier: we guess forbidden values h : E → Γ and then show non-existence
of a flow.

Our final question is the complexity of testing group connectivity. The algorithm we have
developed is fast enough for our purposes, however, the required time is exponential. To test
for group connectivity seems harder than to test for existence of a nowhere-zero flow, which
suggests the problem is NP-hard. In fact, we believe it is Πp

2-complete. For choosability,
an analogous notion for the dual of the graph, the Πp

2-completeness was proved by Erdős et
al. [1]. For testing group connectivity we do not know any hardness results, though.
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Extended Abstract

Let us model a sensor network using a finite, simple and undirected graph G = (V,E). We
consider sensor networks where in each vertex we have a sensor which can be turned on or
off as in [1]. Denote the set of active sensors by C ⊆ V . An observer (in x ∈ V ) wishes to
determine her location with the aid of ID packets sent from the active sensors in its closed
neighbourhood N [x], that is, she wants to find out x by knowing the set

I(x) = I(C;x) = N [x] ∩ C.

In addition, we would like to cope with the situation that some, say at most s, of the sensors
are malfunctioning. In other words, we want our system to tolerate any s broken sensors. We
call a subset C ⊆ V a code and its elements codewords.

Previously, in the literature, this situation has been handled using robust identifying codes
(see different variants in [3, 5, 6, 10]). This approach requires from the code C that

|I(x) △ I(y)| ≥ s+ 1,

where the symmetric difference I(x) △ I(y) = (I(x) \ I(y)) ∪ (I(y) \ I(x)), and

|I(x)| ≥ s+ 1.

These codes, however, are usually of large size, which implies signal interference and unnec-
essary energy consumption [8]. However, they have importance, for example, in applications
where sensors are considered highly expensive.

In this paper, similar to [1, 8], we study situations where sensors are relatively cheap.
Now there is a sensor in each vertex of the network and the sensor can be turned on or off.
In order to minimize signal interference and energy consumption, we optimize the number
of sensors that are turned on simultaneously. For this purpose, we consider a collection of
codes — only one of the codes have its corresponding sensors active at any given time. Each
code is required to be such that when the observer determines her location using the code
it is correct. There must also be a way to determine when we need to change the code to
another one in the collection if the current code has been damaged by some broken sensors.
Moreover, for any s malfunctioning sensors, there has to be at least one working code in the
collection. Naturally, we also wish to have as small codes as possible.

If a code C satisfies the following property

⋂

c∈I(C;x)

N [c] = {x} for all x ∈ V , (1)

then it gives us a way to determine when to switch to another code as well as gives a correct
position for the observer if the code C is not damaged by the broken sensors. Indeed, if after
receiving the set I(C;x), it is deduced that

⋂

c∈I(C;x)N [c] = {x}, then the unique vertex x
from the intersection is the sought position of the observer. If, on the other hand,

∣

∣

∣

∣

∣

∣

⋂

c∈I(C;x)

N [c]

∣

∣

∣

∣

∣

∣

≥ 2,

it is declared that the current code C in the collection is useless and another code from the
collection is needed. We also make the convention that if I(x) = ∅, then

⋂

c∈I(x)N [c] = V .
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A code satisfying (1) is called self-identifying (or 1+-identifying). Moreover, a self-
identifying code C is minimal if removing any element of C implies that (1) no longer holds.
The size of the smallest possible self-identifying code in G is denoted by γ+ = γ+(G). A
self-identifying code attaining the size γ+ is called optimal.

Definition 1 A collection of codes L = {C1, C2, . . . , Ch} is called an s-tolerant identifying
collection in G = (V,E) if

(i) Ci ⊆ V is minimal self-identifying code for all i = 1, . . . , h and

(ii) for any S ⊆ V of size at most s we have

S ∩ Ci = ∅ for at least one i = 1, . . . , h. (2)

In the previous definition, a self-identifying code guarantees that the searched location can be
found and a possible malfunctioning of sensors can be detected. The minimality requirement
is motivated by the efforts for efficiency (regarding energy consumption). Moreover, the
condition (2) guarantees that there always exists a code without malfunctioning vertices (or
sensors). Naturally, we prefer a collection with less codes and also strive for as small self-
identifying codes as possible (often using optimal codes).

A code C ⊆ V is called 1-identifying if I(x) is non-empty and I(x) 6= I(y) for all x 6= y
[7]. Here the idea is that the location of the observer is determined by comparing received
set I(x) with the other sets. We call the code satisfying (1) self -identifying, because the
vertex x can be uniquely determined using only the set I(x) without knowledge of other I(y)
sets. Earlier, in [8], a collection of disjoint 1-identifying codes were used in a different (but
inspiring) manner. The reason we do not utilize the usual 1-identifying codes in the collection
is because then we could end up determining a wrong position for the observer (due to broken
sensors) and we do not know when to change our code to a new one in the collection. In our
model, we also loosen the previous restriction of the codes being disjoint by allowing them to
overlap.

The following theorem connects the self-identifying codes with the (1,≤ 1)+-identifying
codes in [4] designed for another purpose of detecting several observers. Thus, the self-
identifying codes were also called 1+-identifying.

Theorem 2 Let C ⊆ V be a code. Then the following two conditions are equivalent:

(i)
⋂

c∈I(C;x)N [c] = {x} for all x ∈ V

(ii) I(C;x) \ I(C; y) 6= ∅ for all distinct x, y ∈ V .

1 On existence of the collection

Let us start with an existence result for the s-tolerant identifying collections in a graph.

Theorem 3 There always exists an s-tolerant identifying collection L with |L| ≤
(

|V |
s

)

for
any s in a graph G = (V,E) provided that

s < min
x 6=y

|N [x] \N [y]|.

Moreover, if s ≥ minx 6=y |N [x] \N [y]|, then no s-tolerant identifying collection exists.

A (v, k, t) covering design is a family of k-subsets, called blocks, chosen from a set of v
elements, such that each t-subset is contained in at least one of the blocks. The minimum
size of such covering design is denoted by C(v, k, t).

In the following theorem, we present a lower bound on the size of a self-identifying collec-
tion.

Theorem 4 For s ≥ 1, we have a lower bound

|L| ≥ C(|V |, |V | − γ+, s).
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2 Smallest collections for two families of graphs

Let us first consider s-tolerant identifying collections in the Cartesian product Kn�Km, where
Kn and Km are complete graphs of order n and m, respectively. The graph Kn�Km is also
known as the rook’s graph. Notice that the rook’s graph can be viewed as a chess board with
n rows and m columns, and the neighbourhood of a vertex is determined by the movement
of a rook. Previously, identification and related problems in the rook’s graphs have been
considered, for example, in [2, 9]. In the following theorem, we give a characterization for
self-identifying codes in Kn�Km as well as determine the sizes of optimal codes.

Theorem 5 Let n ≥ 2 and m ≥ 2 be integers. Then a code C is self-identifying in Kn�Km if
and only if there exist at least two codewords in each row and column of the graph. Moreover,
we have the following result for the size of an optimal self-identifying code in the graph:

γ+(Kn�Km) = 2 ·max{m,n}.

In the following theorem, we determine the smallest number of codes in an s-tolerant
identifying collection in the rook’s graph, when s ≥ 2. In the case s = 1, it is clear that two
disjoint self-identifying codes are enough. By Theorem 3, it is immediate that no s-tolerant
identifying collection exists if s ≥ min{m,n} − 1.

Theorem 6 Let n, m and s be integers such that n,m, s ≥ 2, n ≥ m and s ≤ m − 2. Now
the following statements hold:

(i) There exists an s-tolerant identifying collection in Kn�Km with C(m,m−2, s) optimal
self-identifying codes.

(ii) Any s-tolerant identifying collection has at least C(m,m− 2, s) minimal self-identifying
codes.

Let us then consider s-tolerant identifying collections in binary hypercubes of length n,
denoted by F

n. In this extended abstract, we restrict our study to the lengths n = 2r − 1,
where r ≥ 2 is an integer. Combining Theorem 2 and [4], we obtain the following result.

Theorem 7 Let n ≥ 2 be an integer and C a code in F
n. Then C is self-identifying if and

only if C is a 3-fold 1-covering, i.e., |I(x)| = |N [x] ∩ C| ≥ 3 for all x ∈ F
n. Moreover, if

r ≥ 2 is an integer and n = 2r−1, then we have the following result for the size of an optimal
self-identifying code in F

n:

γ+(Fn) = 3 ·
2n

n+ 1
.

In the following theorem, we determine the smallest number of codes in an s-tolerant
identifying collection in the binary hypercube, when s ≥ 2. As in the case of the rook’s
graph, two disjoint self-identifying codes are enough if s = 1. By Theorem 3 (as above), it is
immediate that no s-tolerant identifying collection exists if s ≥ n− 1.

Theorem 8 Let r, s ≥ 2 be integers such that n = 2r − 1 and s ≤ n− 2. Now the following
statements hold:

(i) There exists an s-tolerant identifying collection in F
n with C(n + 1, n − 2, s) optimal

self-identifying codes.

(ii) Any s-tolerant identifying collection has at least C(n+1, n−2, s) minimal self-identifying
codes.
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Comparing our new model to existing ones, we first recall that previously, in [8], collec-
tions of disjoint identifying codes have been studied. As stated above, self-identifying codes
are special type of identifying codes with the additional requirement that the observer can
determine its location without comparison to other vertices. They also have the nice property
that malfunctioning sensors can be detected solely based on the sets I(x). In our model, we
do not restrict ourselves to collections of disjoint codes. This has the benefit that we can han-
dle greater values s of malfunctioning sensors. Indeed, if we consider binary hypercubes with
n = 2r − 1 and r ≥ 2, then using disjoint collections of self-identifying codes the maximum
number of malfunctioning sensors that can be handled is s ≤ ⌊(n+ 1)/3⌋. By Theorem 8, in
our model, we can handle up to s ≤ n− 2 malfunctioning sensors.

Our model can also be compared to robust identifying codes, which have been designed
to handle possible malfunctioning of sensors (see [3, 5, 6, 10]). As stated earlier, a single
identifying code C is robust against s malfunctions if for all x 6= y we have |I(x)△ I(y)| ≥ s+1
and |I(x)| ≥ s+ 1. This implies that, for example in F

n, we have the following lower bound
for identifying codes robust against s = n− 2 malfunctions:

|C| ≥
n− 1

n+ 1
· 2n =

(

1−
2

n+ 1

)

2n

This further means that almost all the sensors have to be on; hence implying high signal
interference and energy consumption. However, in our model, if n = 2r − 1, the size of
(optimal) self-identifying code is only γ+(Fn) = 3 · 2n/(n + 1). Thus, giving significantly
smaller construction, although now we have to be ready to switch the set of operating sensors
if errors occur.
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Extended Abstract

1 Introduction

Intersection graphs of families of geometric objects attracted much attention of researches
both for their theoretical properties and practical applications (c.f. McKee and McMorris
[10]). For example intersection graphs of families of discs, and in particular discs of unit
diameter (called unit disk intersection graphs), play a crucial role in modeling radio networks.
Apart from the classical coloring, other labeling schemes such as T -coloring and distance-
constrained labeling of such graphs are applied to frequency assignment in radio networks
[9, 13].

In this paper we consider the classical coloring and the L(2, 1)-labeling. The latter
asks for a vertex labeling with non-negative integers, such that adjacent vertices get labels
that di�er by at least two, and vertices at distance two get di�erent labels. The span of
an L(2, 1)-labeling is the maximum label used. The L(2, 1)-span of a graph G, denoted by
λ(G), is the minimum span of an L(2, 1)-labeling of G (note that the number of available
labels is λ(G) + 1, but some may not be used).

We say that a graph coloring algorithm is on-line if the input graph is not known a priori,
but is given vertex by vertex (with all edges adjacent to already revealed vertices). Each vertex
is colored at the moment when it is presented and its color cannot be changed later. On the
other hand, o�-line coloring algorithms know the whole graph before they start assigning
colors. The on-line coloring can be much harder than o�-line coloring, even for paths. For
an o�-line coloring algorithm (o�-line L(2, 1)-labeling algorithm, resp.), by the approximation
ratio we mean the worst-case ratio of the number of colors used by this algorithm (the largest
label used by this algorithm, resp.) to the chromatic number of the graph (λ(G), resp.). For
on-line algorithms, the same value is called the competitive ratio.

A unit disk intersection graph G can be colored o�-line in polynomial time with 3ω(G)
colors [12] (where ω(G) denotes the size of a maximum clique) and on-line with 5χ(G) colors
[11, 12]. Fiala et al. [3] presented an on-line algorithm that �nds an L(2, 1)-labeling of
a unit disk intersection graph with span not exceeding 25ω(G). The algorithm is based on
a special pre-coloring of the plane, that resembles colorings studied by Exoo [2], inspired
by the classical Hadwiger-Nelson problem [8]. Our main results are on-line algorithms for
coloring and L(2, 1)-labeling of unit disc intersection graphs with better competitive ratios
than previous algorithms. They are inspired by [3], although a b-fold coloring of the plane
(see [7]) is used instead of a classical coloring. In particular, in the case of using 1-fold
coloring we obtain the algorithm from [3]. Our algorithm colors (in the classical sense) unit
disc intersection graphs with large maximum clique, using less than 5ω(G) colors and hence
it is the best currently known approximation on-line coloring algorithm for such graphs. For
L(2, 1)-labeling, in the case of 1-fold coloring of the plane, our algorithm gives a labeling with
span not exceeding 20ω(G). Using b-fold coloring for b > 1 we obtain even better results.

For general graphs, Griggs and Yeh proved that λ(G) ≤ ∆(G)2 + 2∆(G) and conjectured
that λ(G) ≤ ∆(G)2. Shao et al.[14] showed λ(G) ≤ 4

5∆(G)2 + 2∆(G) if G is a unit disk inter-
section graph. Actually, they gave an on-line algorithm that �nds an L(2, 1)-labeling of G with
span at most 4

5∆(G)2+2∆(G). We managed to improve this bound to 3
4∆(G)2+3(∆(G)−1),
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in the o�-line case. Moreover, we show that the algorithm from [3] implies the bound
18∆(G) + 18, which is better for ∆(G) ≥ 22.

Throughout the paper we always assume that the input unit disk intersection graph is
given along with its geometric representation. In practical application for mobile Wi-Fi
routers, a representation can be found with methods from [5].

2 Preliminaries

For an integer n, we de�ne [n] := {1, . . . , n}. A function c : V → [k] is a k-coloring of
G = (V,E) if for any xy ∈ E holds c(x) 6= c(y). By d(u, v) we denote the number of edges on
the shortest u-v�path in G.

For a sequence of unit discs in the plane (Di)i∈[n] we de�ne its intersection graph by
G((Di)i∈[n]) = ({vi : i ∈ [n]}, E), where vi is the center of Di for every i ∈ [n] and vivj ∈ E
i� Dvi ∩Dvj 6= ∅. Notice that vivj ∈ E if and only if the Euclidean distance between vi and
vj , denoted by dist(v1, v2), is at most one. By UDG we mean the class of graphs that admit
a representation by intersecting unit disks.

For an on-line algorithm alg, let alg(G) be the value of the solution given by the algorithm
for instance G and opt(G) be the optimal solution for instance G. If alg is a minimization

algorithm, we denote by cr(alg) the competitive radio of alg, which is the supremum of alg(G)
opt(G)

over all instances G. For the classic coloring, we use the fact that any coloring requires at
least ω(G) colors, where ω(G) denotes the size of the largest clique of G. By Gω we denote
the class of graphs with largest clique of size at least ω and by cr(alg(Gω)) we denote the

supremum of alg(G)
opt(G) over all graphs G ∈ Gω.

A tiling is a partition of the plane into convex polygons with partially removed boundary,
called tiles, such that every two points from one tile are at distance less than one. If we have
b tilings, then by a subtile we mean a non-empty intersection of b tiles, one from each tiling.
We will use a hexagon as a tile and hexagon tiling, just as Fiala et al. [3].

A function ϕ : R2 → [k] is called a coloring of the plane with the color set [k] if for any
two points p1, p2 ∈ R2 with dist(p1, p2) = 1 holds ϕ(p1) 6= ϕ(p2). A function ϕ = (ϕ1, . . . , ϕb)
where ϕi : R2 → [k] for i ∈ [b] is called a b-fold coloring of the plane with color set [k] if:
� for any point p ∈ R2 and i, j ∈ [b], if i 6= j, then ϕi(p) 6= ϕj(p);
� for any two points p1, p2 ∈ R2 with dist(p1, p2) = 1 and i, j ∈ [b] it holds ϕi(p1) 6= ϕj(p2).
The function ϕi for i ∈ [b] is called an i-th layer of ϕ. Notice that a coloring of the plane is
a 1-fold coloring of the plane. A coloring of the plane ϕ is called tiling-based if there exists a
tiling such that each tile is monochromatic and adjacent tiles have di�erent colors. A b-fold
coloring of a plane ϕ = (ϕ1, . . . , ϕb) is called tiling-based if for every i ∈ [b] coloring ϕi is
tiling-based.

For technical reasons, we shall consider L(2, 1)-labelings with labels starting with one.
To avoid confusion, we shall call such labelings L(2, 1)-colorings. A b-fold coloring of the
plane ϕ is called a b-fold L∗(2, 1)-coloring of the plane with color set [k] if for any two points
p1, p2 ∈ R2 the following two statements are true:
� if dist(p1, p2) = 1 then for any i1, i2 ∈ {1, ..., b} it holds 2 ≤ |ϕi1(p1)− ϕi2(p2)| < k − 1;
� if 1 < dist(p1, p2) ≤ 2 then for any i1, i2 ∈ {1, ..., b} it holds 1 ≤ |ϕi1(p1)− ϕi2(p2)|.
By L∗(2, 1)-coloring of the plane we mean 1-fold L∗(2, 1)-coloring of the plane.

3 On-line coloring

The main idea of the algorithm is as follows. We start with some �xed tiling-based b-fold
coloring ϕ = (ϕ1, . . . , ϕb) of the plane with colors [kϕ]. When a disc D is read, it is assigned
to one of the b layers of ϕ (we try to distribute discs to layers as uniformly as possible). Then
a tile from this layer that contains a center of D is found. The vertex corresponding to D
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is colored with the color of this tile plus kϕ multiplied by the number of vertices previously
assigned to this tile.

Algorithm Colorϕ((Di)i∈[n])
1. ForEach i ∈ [n]
2. Read Di, let vi be the center of Di

3. ForEach r ∈ [b] let Tr(vi) be the tile from the layer r containing vi
4. `(vi)← 1 + (|{v1, . . . vi−1} ∩

⋂
r∈[b] Tr(vi)| (mod b))

5. t(vi)← |{u ∈ {v1, . . . vi−1} ∩ T`(vi)(vi) : `(u) = `(vi)}|
6. c(vi)← ϕ`(vi)(vi) + kϕ · t(vi)
7. Return c

Theorem 1 Let ϕ be a tiling-based b-fold coloring of the plane with color set [kϕ], and
(Di)i∈[n] be a sequence of unit discs. Algorithm Colorϕ((Di)i∈[n]) returns a coloring of

G := G((Di)i∈[n]) with the highest color not exceeding kϕ · bω(G)+(b−1)γϕ
b c, where γϕ is the

maximum number of subtiles in one tile. Moreover, if ϕ is a b-fold L∗(2, 1)-coloring of the
plane, then Algorithm Colorϕ((Di)i∈[n]) returns an L(2, 1)-coloring of G.

This shows that is it crucial to construct good b-fold colorings of the plane.

Theorem 2 ([7]) For h ∈ N+ there exists a tiling-based h2-fold coloring of the plane with⌈
( 2√

3
+ 1) · h

⌉2
colors and γϕ = 6h2.

Directly from Theorems 1 and 2 we obtain:

Corollary 3 For the h2-fold ϕ coloring of the plane from Theorem 2 we have

cr(Colorϕ(Gω)) ≤

⌈
( 2√

3
+ 1) · h

⌉2
ω

·
⌊
ω + (h2 − 1)6h2

h2

⌋
= 4.65 +O

(
1

h

)
+O

(
h4

ω

)
.

Notice that for h = 5 and graphs G with ω(G) ≥ 108901, the competitive ratio of the
algorithm is less than 5.

Analogously to Theorem 2, we are able to construct a good b-fold L∗(2, 1)-coloring of the
plane.

Theorem 4 There exists b-fold tiling-based L∗(2, 1)-coloring ϕ of the plane for

1. b = 1 with color set [20] (see Figure 1a),

2. b = 2 with color set [34] and the parameter γϕ = 4 (see Figure 1b),

3. b = 3 with color set [49] and the parameter γϕ = 6,

4. b = h2 for h ∈ N with 3ρ2 + 1 colors, where ρ =
⌈
h( 2√

3
+ 1) + 1

⌉
, and γϕ = 6h2

Corollary 5 For b ∈ N and b-fold L∗(2, 1)-colorings ϕ of the plane from Theorem 4, the
value cr(Colorϕ(Gω)) is at most:

1. 10 + 10
2ω−1 for ϕ from Theorem 4.1,

2. 8.5 + 76.5
2ω−1 for ϕ from Theorem 4.2,

3. 8 1
6 + 204.17

2ω−1 for ϕ from Theorem 4.3,

4. (3dh( 2√
3

+ 1) + 1e2 + 1)ω+6h2(h2−1)
h2(2ω−1)

= 6.97 +O
(
1
h

)
+O

(
h4

ω

)
for ϕ from Theorem 4.4.
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(a) 1-fold L∗(2, 1)-coloring of the plane
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(b) 2-fold L∗(2, 1)-coloring of the plane

Figure 1: Ilustration of Theorem 4

4 O�-line L(2, 1)-labeling

In this section we give an improvement for a theorem by Shao et al. [14], which partially
answers the question of Calamoneri [1, Section 4.7.1]. Namely, Shao et al. [14] proved that If
G ∈ UDG, then λ(G) ≤ 4

5∆2 + 2∆.
We obtained our �rst improvement by analysing a greedy colouring with respect to in-

creasing x-coordinate. We showed that if G ∈ UDG and ∆ ≥ 7, then λ(G) ≤ 3
4∆2 +3(∆−1).

Moreover, using result of Fiala et al. [3], we observed that a linear bound λ(G) ≤ 18∆ + 18 is
true for G ∈ UDG. Combining our bounds with the bound λ(G) ≤ ∆2 +2∆−2 by Gonçalves
[4], we get the following theorem.

Theorem 6 If G ∈ UDG, then λ(G) ≤ f(∆) for

f(∆) =


∆2 + 2∆− 2 if ∆ < 7,
3
4∆2 + 3∆− 3 if 7 ≤ ∆ < 22,

18∆ + 18 if ∆ ≥ 22.
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Extended Abstract

Introduction. A circuit cover of a bridgeless graph G is a collection of circuits such that
each edge of G belongs to at least one of them. One of the most studied problems concerning
circuit covers is finding a circuit cover with small total length for a given graph. A conjecture
by Alon and Tarsi [1] bounds the length of the shortest circuit cover of a bridgeless graph
from above.

Conjecture 1 (Short Cycle Cover conjecture) Every bridgeless graph G has a circuit
cover of total length at most 7/5 · |E(G)|.

The best general upper bound on the length of shortest cycle cover is a result obtained
independently by Bermond, Jackson, and Jaeger [2] and by Alon and Tarsi [1].

Theorem 2 If G is a bridgeless graph, then it admits a circuit cover of total length at most
5/3 · |E(G)|.

In parallel to the classical graph theory there is a fast-growing theory of signed graphs.
A signed graph is a graph where each edge has either a positive or a negative sign. More
formally, a signed graph (G, σ) is a graph G with a function σ called signature which assigns
values either 1 (positive edges) or −1 (negative edges) to the edges. A switching at a vertex v
is an operation that inverts exactly the signs on the edges incident to the vertex. Two signed
graphs are equivalent if one can be obtained from another one by a series of switchings.
Equivalent signed graphs are in many aspects considered to be the same and in the context
of circuit covers we feel free to replace a signature of a signed graph with a signature of any
equivalent signed graph. We say that a signature σ is a minimal signature of (G, σ) if there
is no equivalent signed graph of (G, σ) with fewer negative edges.

We study a problem of short circuit covers for signed graphs introduced by Máčajová,
Raspaud, Rollová and Škoviera in [6]. They defined a signed circuit of a signed graph to be
one of the following subgraphs: (1) a balanced circuit, which is a circuit with even number
of negative edges, (2) the union of two unbalanced circuits which meet at a single vertex—a
short barbell, or (3) the union of two disjoint unbalanced circuits with a path which meets
the circuits only at it ends—a long barbell. A barbell is either a short or a long barbell. It is
easy to see that equivalent signed graphs have the same set of signed circuits.

The definition of signed circuit is chosen so that several important correspondences are
preserved. A signed circuit in a signed graph G forms a signed circuit in the signed graphic
matroidM(G) and vice versa [7, Theorem 5.1]. Moreover, a signed graph is flow-admissible,
that is it admits a signed nowhere-zero flow, if and only if every edge of the signed graph
belongs to a signed circuit [3, Proposition 3.1]. This implies that signed circuits are minimal
graphs that are flow-admissible. All these properties are satisfied also for circuits in ordinary
graphs.

Let C be a collection of signed circuits of a signed graph G. We say that C is a signed
circuit cover if each edge of G is covered by C (i.e. it is contained in at least one subgraph
from C). The length of C is the sum

∑
F∈C |E(F )|.

Máčajová et al. [6] proved that every flow-admissible signed graph with m edges has a
signed circuit cover of length at most 11 ·m. Cheng, Lu, Luo and Zhang [4] announced in
2015 an improvement of the bound to 14/3 ·m− 5/3 · ε− 4 for flow-admissible signed graphs
with ε negative edges in a minimal signature. A combination of their proof idea with our key
lemmas enabled us to prove the bound 11/3 ·m.
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A weighted signed graph (G, σ) is a signed graph with a weight function that asigns each
edge a non-negative real value. By w(G) we denote the sum of weights of the edges of G. As
the results of weighted signed graphs is slightly more general and it is technically convenient
for us to use weighted graphs we state our main result as follows:

Theorem 3 Let (G, σ) be a flow-admissible signed graph and let w : E(G)→ R+ be a weight.
Then there is a signed circuit cover of (G, σ) with total weight at most (3 + 2/3) · w(G).

To our knowledge, no weighted signed graph that requires weight more than (1 + 2/3) ·w(G)
to cover all the edges is known. The signed Petersen graph with five negative edges forming
a 5-cycle and with edges of the same weight is an example of a graph that requires circuits
of total weight at least (1 + 2/3) · w(G) to cover all the edges.

Covering auxiliary structures. We obtain the main improvement compared to the
approach of Cheng, Lu, Luo and Zhang [4] by covering several auxiliary structures more
effectively. Several ideas used in the proof of Theorem 3 are based on the work of Máčajová,
Rollová, and Škoviera on signed circuit covers of Eulerian graphs [5].

Let E be a signed graph. Delete all bridges of E to obtain E∗. If each component of E∗ is
either an isolated vertex or a circuit, then E is a tree of circuits. If each component of E∗ is
an Eulerian graph, then E is a tree of Eulerian graphs. Let L be the set of unbalanced loops
of E∗. The components of E∗−L together with loops in L are balloons of E . A leaf balloon is
a balloon of E that is either a loop from L or a component of E∗−L that is incident to either
one bridge and no loops or one loop and no bridge. A balloon is an even balloon (odd balloon,
respectively) if it contains an even (odd, respectively) number of negative edges. In case we
know that a balloon is a circuit we use terms leaf circuit, even circuit, and odd circuit.

First, we examine trees of circuits.

Lemma 4 Let E be a weighted tree of circuits of weight w(E) with even number of odd circuits.
Then there is a collection of signed circuits of weight at most 4/3 ·w(E) that covers all edges
in the circuits of E.

Lemma 5 Let E be a tree of circuits with at least two leaf circuits, and let every leaf circuit
of E be odd. Then E admits a signed circuit cover that covers leaf circuits and bridges twice
and all other edges once.

We generalise the results to trees of Eulerian graphs.

Lemma 6 Let E be a weighted tree of Eulerian graphs that contains even number of odd
balloons. Then there is a collection of signed circuits of weight at most 4/3 ·w(E) that covers
all edges in balloons of E.

The following lemma provides the crucial tool that allows us to improve the result of
Cheng, Lu, Luo and Zhang [4].

Lemma 7 Let E be a weighted tree of Eulerian graphs with at least two leaf balloons, and let
every leaf balloon of E be odd. Then E admits a signed circuit cover of weight at most 2 ·w(E)
that covers every loop of E exactly twice.

Sketch of the proof of Lemma 7. We proceed by induction on size of E . If E has a
cut-vertex, we can easily split E as follows. If one of the parts is balanced, then we cover
the part separately, and use induction hypothesis on the rest of the graph. If both parts
are unbalanced, we add an unbalanced loop to each part and use induction hypothesis twice.
The condition of the lemma that loops are covered twice, allows us to merge the covers of the
parts to the cover of E .

Thus we may assume that E is 2-vertex-connected (E may contains loops as we do not
consider the incident vertex to be a cut-vertex). By the assumption of the lemma, E has at
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least two leaf balloons. Due to connectivity of E , there is at most one balloon that is not
a loop. Therefore E has at least one loop. If E has exactly one loop, a slight variation of
Lemma 6 applies. The main part of the proof deals with the case when E has at least two
loops.

Let a and b be two loops of E . We find two internally vertex-disjoint paths P1 and P2

connecting the vertices of a and b. Let E− = E − P1 − P2 − a− b. Note that the components
of E− are Eulerian graphs. If E− is empty, then Lemma 5 applies. If the number of negative
edges of a component E− is even, then we cover the component separately by Lemma 6 and
the rest of the graph by induction hypothesis. If a component E of E− intersects one of the
paths, say P1, in two different vertices x and y, then we consider the segment of P1 between
x and y and a segment of an Eulerian tour of E between x and y containing the same number
of negative edges as the path segment. The union of these subgraphs is an Eulerian graph
with even number of negative edges that can be covered by Lemma 6. The rest of the graph
is covered by induction hypothesis. If there are two components E1 and E2 of E− such that
E1 intersects P1 closer to a and P2 closer to b compared to E2, then, again, we are able to
find an Eulerian subgraph with even number of negative edges and use the same trick. This
analysis gives us a very precise characterisation of E . By 2-vertex-connectivity, except for
unbalanced loops and isolated vertices, each component of E− intersects P1 and P2, both. We
attach two loops to each component of E− at the vertices where the component intersected
P1 and P2 and we cover the components by induction hypothesis. It is straightforward to
extend the covers of the modified components to the cover of E .

Sketch of the proof of Theorem 3. Without loss of generality let G be connected. We
follow the ideas of Cheng et al. [4]. Let σ be a minimal signature of G and X be the set of
negative edges of (G, σ). If X = ∅, by Theorem 2 the result follows. If |X| = 1, then (G, σ) is
not flow-admissible. Hence |X| ≥ 2. Let B be the set of such edges b of (G, σ) that G− b has
two components, each of them being unbalanced. Note that since (G, σ) is flow-admissible,
B is the set of all bridges of G. Moreover, as σ is minimal, we have B ∩ X = ∅. Let S be
the set of such edges s of (G, σ) that there exists a 2-edge-cut {s, t}, where t ∈ X. Note that
S ∩ X = ∅, because σ is minimal. Observe that G − X − B − S is a bridgeless balanced
graph. By Theorem 2, G − X − B − S has a signed circuit cover of total weight at most
5/3 · w(G−X −B − S).

Let T be a spanning tree of the connected graph G−X, and we denote T ∪X by (G′, σ′),
where σ′ = σ|G′ . Note that σ′ may not be a minimal signature of (G′, σ′). Let X ′, B′, S′
be defined on (G′, σ′) in the same way as X,B, S on (G, σ), respectively. We have X ′ = X,
B′ ⊇ B and S′ ⊇ S. We find a set of signed circuits C that covers the edges of X ′ ∪ B′ ∪ S′
in the following lemma.

Lemma 8 If |X ′| ≥ 2, then there is a set of signed circuits C′ in G′ of weight at most 2·w(G′)
that covers the edges of X ′ ∪ B′ ∪ S′. Moreover, C′ covers every unbalanced loop of (G′, σ′)
exactly twice.

The lemma can be easily reduced to 2-vertex-connected graphs, similarly as in the proof
of Lemma 7. Thus B′ = ∅. Let Cx be the circuit of T ∪ x for x ∈ X ′. For A ⊆ X ′, let CA

be the symmetric difference of all circuits Ca for a ∈ A. Note that CX′ contains all edges of
X ′ ∪ S′.

Suppose first that G′ contains at least two loops. We connect the components of CX′

into several trees of Eulerian graphs in such a way that the trees that contain loops satisfy
the conditions of Lemma 7 and trees without loops are Eulerian graphs with even number of
negative edges. Lemma 7 and Lemma 6 give the desired circuit covers.

Suppose now that G′ contains at most one loop. Cases when G′ has even number of
negative edges are straightforward, so we assume that |X ′| is odd. If G′ contains one loop l,
we choose two negative edges a and b. We cover CX′−a using Lemma 6 and we cover either
Ca,b or Cl,a by a single signed circuit (we choose to cover Ca,b if l is covered twice by the first
cover, otherwise we choose Cl,a). This may produce a cover of length (2 + 1/3) · w(G′), but
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up to several cases where |X ′| is small the choice of a, b, and the cover of CX′−a can be made
in such a way that the total weight of the cover is at most 2 ·w(G′). For the exceptional cases
we find the covers satisfying Lemma 8 directly. The case when G′ contains no loop is solved
similarly.
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Chromatic number of ISK4-free graphs
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Extended Abstract

We say that a graph G is H-free if G does not contain any induced subgraph isomorphic
to H. For n ≥ 1, denote by Kn the complete graph on n vertices. A graph is called complete

bipartite (resp. complete tripartite) if its vertex-set can be partitioned into two (resp. three)
non-empty stable sets that are pairwise complete to each other. If these two (resp. three) sets
have size p, q (resp. p, q, r) then the graph is denoted by Kp,q (resp. Kp,q,r). A subdivision of
a graph G is obtained by subdividing edges into paths of arbitrary length (at least one). We
say that H is an ISK4 of a graph G if H is an induced subgraph of G and H is a subdivision
of K4. A graph that does not contain any subdivision of K4 is said to be ISK4-free. For
instance, series-parallel graphs and line graph of cubic graphs are ISK4-free. A triangle is a
graph isomorphic to K3.

The chromatic number of a graph G, denoted by χ(G), is the smallest integer k such
that G can be partitioned into k stable sets. Denote by ω(G) the size of a largest clique in
G. A class of graphs G is χ-bounded with χ-bounding function f if, for every graph G ∈ G,
χ(G) ≤ f(ω(G)). This concept was introduced by Gyárfás [2] as a natural extension of
perfect graphs, that forms a χ-bounded class of graphs with χ-bounding function f(x) = x.
The question is: which induced subgraphs need to be forbidden to get a χ-bounded class of
graphs? One way to forbid induced structures is the following: �x a graph H, and forbid
every induced subdivision of H. We denote by Forb∗(H) the class of graphs that does not
contain any induced subdivision of H. The class Forb∗(H) has been proved to be χ-bounded
for a number of graph H. Scott [6] proved that for any forest F , Forb∗(F ) is χ-bounded. In
the same paper, he conjectured that Forb∗(H) is χ-bounded for any graph H. Unfortunately,
this conjecture has been disproved by [5]. However, there is no general conjecture on which
graph H, Forb∗(H) is χ-bounded. This question is discussed in [1]. We focus on the question
when H = K4. In this case, Forb∗(K4) is the class of ISK4-free graphs. Since K4 is forbidden,
proving that the class of ISK4-free graphs is χ-bounded is equivalent to proving that there
exists a constant c such that for every ISK4-free graph G, χ(G) ≤ c. Remark that the
existence of such constant was pointed out in [4] as a consequence of a result in [3], but it is

rather large (≥ 22
225

) and very far from these two conjectures:

Conjecture 1 (Lévêque, Ma�ray, Trotignon '2012 [4]) Let G be an ISK4-free graph.

Then χ(G) ≤ 4.

Conjecture 2 (Trotignon, Vu²kovi¢ '2016 [8]) Let G be an {ISK4, triangle}-free graph.

Then χ(G) ≤ 3.

No better upper bound is known even for the chromatic number of {ISK4, triangle}-free
graphs. However, certain attempt is made toward these two conjectures. A hole of a graph is
an induced cycle on at least four vertices. For n ≥ 4, we denote by Cn the hole on n vertices.
A wheel is a graph consisting of a hole H and a vertex x /∈ H which is adjacent to at least
three vertices on H. The girth of a graph is the length of its smallest cycle. The optimal
bound is known for chromatic number of {ISK4, wheel}-free graphs and {ISK4, triangle,
C4}-free graphs:

1This work was performed within the framework of the LABEX MILYON (ANR-10-LABX-0070) of Uni-
versité de Lyon, within the program �Investissements d'Avenir� (ANR-11- IDEX-0007) operated by the French
National Research Agency (ANR). Partially supported by ANR project Stint under reference ANR-13-BS02-
0007.
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Theorem 3 (Lévêque, Ma�ray, Trotignon '2012 [4]) Any {ISK4, wheel}-free graph is

3-colorable.

Theorem 4 (Trotignon, Vu²kovi¢ '2016 [8]) Every ISK4-free graph of girth at least 5
contains a vertex of degree at most 2 and is 3-colorable.

The proof of Theorems 3 and 4 relies on structural decomposition. Now, we need several
de�nitions before stating some helpful decomposition lemmas. A cutset in a graph is a subset
S ( V (G) such that G \ S is disconnected. For any k ≥ 0, a k-cutset is a cutset of size k. A
cutset S is a clique cutset if S is a clique. When X ⊆ V (G), we denote by G[X] the subgraph
of G induced by X. A proper 2-cutset of a graph G is a 2-cutset {a, b} such that ab /∈ E(G),
V (G) \ {a, b} can be partitioned into two non-empty sets X and Y so that there is no edge
between X and Y and each of G[X ∪ {a, b}] and G[Y ∪ {a, b}] is not a path from a to b. In
[4], it is proved that clique cutsets and proper 2-cutsets are useful for proving Conjecture 1
in the inductive sense. If we can �nd such a cutset in G, then we immediately have a bound
for chromatic number of G, since χ(G) ≤ max{χ(G1), χ(G2)}, where G1 and G2 are two
blocks of decomposition of G with respect to that cutset. Therefore, we only have to prove
Conjecture 1 for the class of {ISK4, K3,3, prism, K2,2,2}-free graphs since the existence of
K3,3, prism or K2,2,2 implies a good cutset by the following lemmas:

Lemma 5 (Lévêque, Ma�ray, Trotignon '2012 [4]) Let G be an ISK4-free graph that

contains K3,3. Then either G is a complete bipartite or complete tripartite graph, or G has a

clique cutset of size at most 3.

Lemma 6 (Lévêque, Ma�ray, Trotignon '2012 [4]) Let G be an ISK4-free graph that

contains a rich square or a prism. Then either G is the line graph of a graph with maximum

degree 3, or G is a rich square, or G has a clique cutset of size at most 3 or G has a proper

2-cutset.

One way to prove Conjectures 1 and 2 is to �nd a vertex of small degree. This approach
is successfully used in [8] to prove Theorem 4. Two following stronger conjectures will imme-
diately imply the correctness of Conjectures 1 and 2:

Conjecture 7 (Trotignon '2015 [7]) Every {ISK4, K3,3, prism, K2,2,2}-free graph con-

tains a vertex of degree at most three.

Conjecture 8 (Trotignon, Vu²kovi¢ '2016 [8]) Every {ISK4, K3,3, triangle}-free graph

contains a vertex of degree at most two.

However, we �nd a new bound for the chromatic number of ISK4-free graphs using another
approach. Our main results are the following theorems:

Theorem 9 Let G be an {ISK4, triangle}-free graph. Then χ(G) ≤ 4.

Theorem 10 Let G be an ISK4-free graph. Then χ(G) ≤ 24.

Remark that the bounds we found are much closer to the bound of the conjectures than
the known ones. The main tool that we use to prove these theorems is classical. It is often
used to prove χ-boundedness results relying on the layers of neighborhood. The distance

between two vertices x, y in V (G) is the length of the shortest path from x to y in G. Let
u ∈ V (G) and i be an integer, denote by Ni(u) the set of vertices of G that are of distance
exactly i from u. Note that there is no edge between Ni(u) and Nj(u) for every i, j such that
|i − j| ≥ 2. We �nd a bound for χ(G) by looking at the forbidden structure in each layer
Ni(u) and the following lemma:
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Lemma 11 Let G be a graph and u ∈ V (G). Then:

χ(G) ≤ max
i odd

χ(G[Ni(u)]) + max
j even

χ(G[Nj(u)]).

Now, we describe brie�y the proof of Theorems 9 and 10. For Theorem 9, we consider the
class of {ISK4, triangle, K3,3}-free graphs and prove that for any i ≥ 1 and any u ∈ V (G),
G[Ni(u)] does not contain any hole. Suppose that there is a hole C in some layer Ni(u), we
show that there must be some vertices from layer Ni−1(u) which see very few neighbors on C
(this is a bit technical). It can then be proved that connecting them through the upper layers
yields an ISK4, contradiction. Therefore, there is no hole in every layer Ni(u) and since our
class is triangle-free, each layer induces a forest, the theorem follows by Lemma 11. Not only
the bound we found is very close to the one stated in Conjecture 2, but the simple structure
of each layer is also interesting. We believe that it is very promising to settle Conjecture 2
by this way of looking at our class.

Now, we introduce some de�nitions for the proof of Theorem 10. A boat is a graph
consisting of a hole C and a vertex v that has exactly four consecutive neighbors in C. A
4-wheel is a particular boat when its hole is of length 4. In this proof, we try to look at
the layers of neighborhood of our graph several times to exclude more and more structures.
In the course of proving Theorem 10, we have some lemmas which might be of independent
interest:

Lemma 12 Let G be an {ISK4, K3,3, prism, boat}-free graph. Then χ(G) ≤ 6.

Lemma 13 Let G be an {ISK4, K3,3, prism, 4-wheel}-free graph. Then χ(G) ≤ 12.

We believe that the bound 24 we found could be slightly improved by this method if we
look at each layer more carefully and exclude more structures, but it seems hard to reach the
desired bound mentioned in Conjecture 1.
Acknowledgement. The author would like to thank Nicolas Trotignon for his help and
useful discussion.
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Extended Abstract

All the graphs we consider are finite and simple. For a graph G, we denote by V (G), E(G),
δ(G) and ∆(G) its vertex set, edge set, minimum degree and maximum degree, respectively.

A proper vertex (respectively, edge) coloring of G is an assignment of colors to the vertices
(respectively, edges) of G such that no two adjacent vertices (respectively, edges) receive the
same color. A star coloring of G is a proper vertex coloring of G such that the union of
any two color classes induces a star forest in G, i.e. every component of this union is a star.
The star chromatic number of G, denoted by χs(G), is the smallest integer k for which G
admits a star coloring. This notion was first mentioned by Grünbaum [7] in 1973 (see also [6]).

In 2008, Liu and Deng [9] proposed to study a natural variation of the star coloring prob-
lem: coloring the edges of a graph under the same constraints (alternatively, to investigate
the star chromatic number of line graphs). In this context, they defined a star-edge coloring
of a graph G as a proper edge coloring such that every 2-colored connected subgraph of G is
a path of length at most 3. In other words, we forbid bi-colored 4-cycles and 4-paths in G (by
a d-path we mean a path with d edges). We say that G is star-edge k-colorable if it admits a
star-edge coloring with k colors. The star chromatic index of G, denoted by χ′

st(G), is thus
defined as the smallest integer k such that G is star-edge k-colorable.

A proper edge coloring of a graph G is called acyclic (respectively, strong) if there is no
bi-colored cycle (respectively, 3-path) in G. The acyclic (respectively, strong) chromatic index
of G, denoted by χ′

a(G) (respectively, χ′
s(G)), is the minimum number of colors needed for a

acyclic (respectively, strong) edge-coloring of G. Let us give an immediate remark : for any
graph G, we have :

χ′
a(G) ≤ χ′

st(G) ≤ χ′
s(G)

By using Lovász’s Local Lemma [4], Liu and Deng [9] proved the following upper bound.

Theorem 1 [9] For every G with maximum degree ∆ ≥ 7, χ′
st(G) ≤ ⌈16(∆− 1)

3
2 ⌉.

The star-edge coloring has been recently investigated by many authors. Deng and Liu [2]
(see also [1]) proved that any tree may be star-edge colored with ⌊ 3

2∆⌋ colors. Moreover, the
bound is tight. Bezegovà et al [1] showed that χ′

st(G) ≤ ⌊ 3
2∆⌋ + 12 for every outerplanar

graph G, and conjectured that χ′
st(G) ≤ ⌊ 3

2∆⌋ + 1 for every such G of maximum degree at
least 3. In [3], Dvořák, Mohar and Šámal, showed that even determining the star chromatic
index of the complete graph Kn with n vertices is a hard problem. They gave the following
bounds:

2n(1 + o(1)) ≤ χ′
st(Kn) ≤ n

22
√
2(1+o(1))

√
log(n)

log n
1
4

.

They also studied the star chromatic index of subcubic graphs, that is, graphs with maxi-
mum degree at most 3. They proved that χ′

st(G) ≤ 7 for every subcubic graph G, and they
made the following conjecture

Conjecture 2 [3] For every subcubic graph G, χ′
st(G) ≤ 6.
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If the Conjecture 2 is confirmed, then this bound is best possible. Indeed, they saw that
the cubic complete bipartie graph K3,3 is not star-edge 5-colorable.

A natural generalization of star-edge coloring is the list star-edge coloring. An edge list
L for a graph G is a mapping that assigns a finite set of colors to each edge of G. Given an
edge list L for a graph G, we say that G is L-star-edge colorable if it has a star-edge coloring
c such that c(e) ∈ L(e) for every edge of G. The list-star chromatic index, ch′

st(G), of a graph
G is the minimum k such that for every edge list L for G with |L(e)| = k for every e ∈ E(G),
G is L-star-edge colorable.

For any graph G, it is obvious that ch′
st(G) ≥ χ′

st(G). Dvořák, Mohar and Šámal [3,
Question 3] asked whether ch′

s(G) ≤ 7 for every subcubic G? Kerdjoudj, Kostochka and
Raspaud [8], gave a partial answer to this question. They proved that:

Theorem 3 [8] For every subcubic graph G, ch′
st(G) ≤ 8.

They also gave sufficient conditions for the list-star chromatic index of a subcubic graph to
be at most 5 and 6 in terms of the maximum average degree mad(G) = max

{
2|E(H)|
|V (H)| , H ⊆ G

}
.

Theorem 4 [8] Let G be a subcubic graph.

1. If mad(G) < 7
3 then, ch′

st(G) ≤ 5.

2. If mad(G) < 5
2 then, ch′

st(G) ≤ 6.

We complete Theorem 4 by proving:

Theorem 5 Let G be a subcubic graph. If mad(G) < 30
11 then, ch′

s(G) ≤ 7.

No bounds are known for general graphs except the one given for complete graphs given in [3].
We consider graphs with any maximum degree, we are able to give bounds for the chromatic
index of sparse graphs in terms of the maximum degree. We prove the following Theorems:

Theorem 6 Let G be a graph with maximum degree ∆.

1. If mad(G) < 7
3 then ch′

st(G) ≤ 2∆− 1.

2. If mad(G) < 5
2 then ch′

st(G) ≤ 2∆.

3. If mad(G) < 8
3 then ch′

st(G) ≤ 2∆ + 1.

The girth of a graph G is the size of a smallest cycle in G. As every planar graph with girth
g satisfies mad(G) < 2g

g−2 , Theorem 6 yields the following.

Corollary 7 Let G be a planar graph with girth g.

1. If g ≥ 14 then ch′
st(G) ≤ 2∆− 1.

2. If g ≥ 10 then ch′
st(G) ≤ 2∆.

3. If g ≥ 8 then ch′
st(G) ≤ 2∆ + 1.

In this talk we will present our theorems and give some hints for the proofs.

Sketch of proof of the Theorem 6. We use an idea that we used already in [8].
Suppose on the contrary that Theorem 6 is not true. Let H be a minimum counterexample.
In each of the cases, first of all we prove that H does not contain a vertex v adjacent to
dH(v) − 1 vertices of degree 1 (where dH(v) is the degree of a vertex v in H). After that,
we consider a graph H∗ obtained from H by deleting all vertices of degree 1. Then, we can
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observe that H∗ does not contains a 1-vertex and mad(H∗) < m (where m ∈ R is the value
of the upper bound on the maximum average degree given by Theorem 6). Now, for each of
the cases, we prove the non-existence of some set of subgraphs C in H∗. In the next step, we
use a discharging procedure in H∗ to get a contradiction and then prove the theorem.
We define the weight function ω : V (H∗) −→ R by ω(x) = d(x) − m. It follows from
hypothesis on the maximum average degree, the total sum of weights must be strictly negative.
We define discharging rules and redistribute weights accordingly. Once the discharging is
finished, a new weight function ω∗ is produced. However, the total sum of weights is kept fixed
when the discharging is finished. Nevertheless, we show that ω∗(x) ≥ 0 for all x ∈ V (H∗).
This lead us to the following contradiction :

0 ≤
∑

x∈V (H∗)

ω∗(x) =
∑

x∈V (H∗)

ω(x) < 0.

Therefore, such a counterexample cannot exist.

�

We will also give in this talk a bound for k-degenerate graphs.
Let k ∈ N. A graph G is k-degenerate if every subgraph has minimum degree at most k.
Recently, Wang [10] proved:

Theorem 8 [10] The strong chromatic index for each k-degenerate graph with maximum
degree ∆ is at most (4k − 2)∆− k2 + 2.

As a corollary, it holds immediately that for every integer k, a k-degenerate graph G is
star-edge ((4k − 2)∆− k2 + 2)-colorable. We improve this bound by proving:

Theorem 9 The list star chromatic index for each k-degenerate graph with maximum degree
∆ is at most (3k − 2)∆− k2 + 2.

Since every K4-minor free graph is 2-degenerate, we deduce the following corollary

Corollary 10 If G is a K4-minor free graph, then ch′
st(G) ≤ 4∆− 2, where ∆ is maximum

degree of G.

Remark 11 In [5], it is proven that the strong chromatic index of any planar graph G is
bounded by 4∆(G) + 4. This gives a bound for the star chromatic index of planar graphs. It
leads to the following question: Is-it possible to find a constant C (not too big) such that for
any planar graphs χ′

st(G) ≤ 2∆(G) + C?
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Extended Abstract

Comparability Graphs. A comparability graph X is derived from a poset: xy ∈ E(G) if
and only if x < y or x > y. Equivalently, the edges of X have a transitive orientation →: if
x → y and y → z, then xz ∈ E(X) and x → z; see Fig 1a. This class was first studied by
Gallai [8] and we denote it by COMP.

An important structural parameter of a poset P is its Dushnik-Miller dimension [5]. It
is the least number of linear orderings L1, . . . , Lk such that P = L1 ∩ · · · ∩ Lk. (For a finite
poset P , its dimension is always finite since P is the intersection of all its linear extensions.)
Similarly, we define the dimension of a comparability graph X , denoted by dim(X), as the
dimension of any transitive orientation of X . (Every transitive orientation has the same
dimension.) By k-DIM, we denote the subclass consisting of all comparability graphs X with
dim(X) ≤ k. We get the following infinite hierarchy of graph classes: 1-DIM ( 2-DIM (

3-DIM ( 4-DIM ( · · · ( COMP. For instance, the bipartite graph of the incidence between
the vertices and the edges of a planar graph belongs to 3-DIM [19].

Function and Permutation Graphs. An intersection representation of a graph assigns one
set to each vertex in such a way that two vertices are adjacent if and only if their sets intersect.
Intersection-defined graph classes are obtained when these sets are restricted to a particular
class of (geometric) objects. For instance, function graphs (FUN) are intersection graphs
of continuous real-valued function on the interval [0, 1]. Permutation graphs (PERM) are
function graphs representable by linear functions called segments [1]; see Fig. 1b and c. They
are related to comparability graphs: FUN = co-COMP [9] and PERM = COMP∩ co-COMP =
2-DIM [6], where co-COMP are the complements of comparability graphs.

Automorphism Groups of Graphs. The automorphism group Aut(X) of a graph X

describes its symmetries. Every automorphism is a permutation of the vertices which preserves
adjacencies and non-adjacencies. Frucht [7] proved that every finite group is isomorphic to
Aut(X) of some graph X . Many graph theory results rely on highly symmetrical graphs.

Definition 1 For a graph class C, let Aut(C) = {G : X ∈ C, G ∼= Aut(X)}. The class C is
called universal if every abstract finite group is in Aut(C), and non-universal otherwise.

In 1869, Jordan [12] characterized the automorphism groups of trees (TREE):

Theorem 2 (Jordan [12]) The class Aut(TREE) is defined inductively as follows:

(a) {1} ∈ Aut(TREE).

(b) If G1, G2 ∈ Aut(TREE), then G1 ×G2 ∈ Aut(TREE).

(c) If G ∈ Aut(TREE), then G ≀ Sn ∈ Aut(TREE).

Graph Isomorphism Problem. This famous problem asks whether two input graphs X

and Y are the same up to a relabeling. It obviously belongs to NP, and it is not known
to be polynomially-solvable or NP-complete. It is related to computing generators of an
automorphism group: X and Y are isomorphic if and only if there exists an automorphism
swapping them in X ∪̇ Y , and generators of Aut(X) can be computed using O(n4) instances

4Research supported by project P202/12/G061 of the Czech Science Foundation.
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Figure 1: (a) A comparability graph with a transitive orientation. (b) A function graph and
one of its representations. (c) A permutation graph and one of its representations.

of graph isomorphism [17]. By GI, we denote the complexity class of all problems that can be
reduced to graph isomorphism in polynomial time.

As a rule of thumb, graph classes with very restricted automorphism groups have rela-
tively easy polynomial-time algorithms solving their graph isomorphism; for instance, interval
graphs [14, 15] and planar graphs [13, 10], circle graphs [14, 11] and permutation graphs [3].
On the other hand, when automorphism groups are very rich, testing graph isomorphism is
GI-complete (e.g., chordal graphs [15], trapezoidal graphs [21]), or polynomial-time algorithms
are quite involved (e.g., graphs of bounded degree [16]).

Our results. Since 1-DIM consists of all complete graphs, Aut(1-DIM) = {Sn : n ∈ N}. The
automorphism groups of 2-DIM = PERM are the following:

Theorem 3 The class Aut(PERM) is described inductively as follows:

(a) {1} ∈ Aut(PERM),

(b) If G1, G2 ∈ Aut(PERM), then G1 ×G2 ∈ Aut(PERM).

(c) If G ∈ Aut(PERM), then G ≀ Sn ∈ Aut(PERM).

(d) If G1, G2, G3 ∈ Aut(PERM), then (G4

1
×G2

2
×G2

3
)⋊ Z2

2
∈ Aut(PERM).

In comparison to Theorem 2, there is the operation (d) which shows that Aut(TREE) (

Aut(PERM). Geometrically, the group Z2

2
in (d) corresponds to the horizontal and vertical

reflections of a symmetric permutation representation.
Colbourn [3] described an O(n3) algorithm for graph isomorphism of permutation graphs.

This was improved by Spinrad [20] to O(n2) by computing modular decompositions and
testing tree isomorphism on them. The bottleneck of this algorithm is computing the modular
decomposition, so by combining with [18], the running time is improved to O(n+m).

Combining this and the results of Mathon [17] one obtains a polynomial-time algorithm
for computing automorphism groups of permutation graphs. We are not aware of any previ-
ous polynomial-time algorithm that computes automorphism groups of permutation graphs
directly. We describe a linear-time algorithm, by combining the modular decomposition and
computing automorphism groups of trees.

Corollary 4 There exists a linear-time algorithm for computing automorphism groups of
permutation graphs.

CATERPILLAR

TREE INT

CHORCIRCLE
FUN

IFA

UNIT INT

PERM

BIP PERM CLAW-FREE

co-BIP

PLANAR

co-4-DIM

TRAPEZOID

universal

non-universal

Figure 2: The inclusions between the considered graph classes. We characterize the automor-
phism groups of the classes in gray.
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Further, using Theorem 3, our algorithm implicitely computes a structural decomposition
of Aut(X), which is better and faster than outputting permutation generators of Aut(X).
(These generators might be superlinear in size of X , but they can be computed compressed
as in [4].) Also, our algorithm can be easily modified to solve graph isomorphism and canon-
ization of permutation graphs, so it gives a more detailed description than [20].

Our characterization also easily gives the automorphism groups of bipartite permutation
graphs (BIP PERM), in particular Aut(CATERPILLAR) ( Aut(BIP PERM) ( Aut(PERM).
(For a description of Aut(CATERPILLAR), see [14].)

Corollary 5 The class Aut(connected BIP PERM) consists of all abstract groups G1, G1 ≀
Z2 × G2 × G3, and (G4

1
× G2

2
) ⋊ Z2

2
, where G1 is a direct product of symmetric groups, and

G2 and G3 are symmetric groups.

Comparability graphs are universal since they contain bipartite graphs; we can orient all
edges from one part to the other. Since the automorphism group is preserved by comple-
mentation, FUN = co-COMP implies that also function graphs are universal. We explain
the universality of FUN and COMP in more detail using the induced action on the set of all
transitive orientations.

Bipartite graphs have arbitrarily large dimensions: the crown graph (Kn,n without a
matching) has the dimension n. We give a construction which encodes any graph X into a
comparability graph Y with dim(Y ) ≤ 4, while preserving the automorphism group.

Theorem 6 For every k ≥ 4, the class k-DIM is universal and its graph isomorphism is
GI-complete. The same holds for posets of the dimension k.

Yannakakis [23] proved that recognizing 3-DIM is NP-complete by a reduction from 3-
coloring. For a graph X , a comparability graph Y is constructed with several vertices rep-
resenting each element of V (X) ∪ E(X). It is proved that dim(Y ) = 3 if and only if X is
3-colorable. Unfortunately, the automorphisms of X are lost in Y since it depends on the
labels of V (X) and E(X) and Y contains some additional edges according to these labels.
We give a simple different construction which achieves only the dimension 4, but preserves
the automorphism group: for a given graph X , we create Y by replacing each edge with a
path of length eight. However, it is non-trivial to show that Y ∈ 4-DIM, and the constructed
four linear orderings are inspired by [23]. A different construction follows from [2, 22].
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Extended Abstract

We begin with the definition of the Partition into H problem. We will then present
the problem in the light of some well-known problems from computational complexity—for
example Perfect Matching or Equitable Coloring—thus demonstrating it as a natural
generalization of these and other problems. Finally, we give the summary of our results
presented in this paper.
The Partition into H problem For graphs G = (V,E), H = (W,F ) with |V | = |W | · r, we
say that it is possible to partition G into copies of H if there exist disjoint sets V1, V2, . . . , Vr

such that

•
⋃r

i=1 Vi = V, and

• G[Vi] ' H for every i = 1, 2, . . . , r,

where byG[Vi] we mean the subgraph ofG induced by the set of vertices Vi. The corresponding
decision problem is defined as follows.

Problem 1 (Partition into H)
FIXED: Pattern graph H = (W,F ).
INPUT: Graph G = (V,E) with |V | = r · |W | for an integer r.
QUESTION: Is there a partition of G into copies of H?

The complexity of the Partition into H problem has been studied by Hell and Kirk-
patrick [7] and has been proven to be NP-complete for any fixed graph H with at least
3 vertices—they have studied the problem under a different name as the Generalized
Matching problem. There are applications in the printed wiring board design [6] and code
optimization [1].

Some variants of this problem are studied extensively in graph theory. For example when
H ' K2 the problem Partition into K2 is the well known Perfect Matching problem,
which can be solved in polynomial time due to Edmonds [3]—the algorithm works even for
the optimization version, when one tries to maximize the number of copies of K2 in G. The
characterization theorem for H ' K2, that is a characterization of graphs admitting a perfect
matching is known due to Tutte [11].

Another frequently studied case of our problem is the Partition into K3 problem—also
known as the Triangle Partition problem. The Triangle Partition problem arises as a
special case of the Set Partition problem (also known to be NP-complete [5]). Gajarský et
al. [4] pointed out that the parameterized complexity of the Triangle Partition problem
parameterized by the tree-width of the input graph was not resolved so far.
Parameterized complexity results. When dealing with an NP-hard problem it is usual
to study the problem in the framework of parameterized complexity. While in the previous
part we have introduced several problems of the classical complexity, here we give references
to parameterized results for these problems.

A similar but more general problem (called the MSOL Partitioning problem) was
studied by Rao [9]. Here the task is to partition the vertices of the graph G into several
sets A1, A2, . . . , Ar such that ϕ(Ai) holds for every i = 1, 2, . . . , r, where ϕ(·) is an MSO1

formula with one free set variable. If the number r and the clique-width cw(G) are fixed then
the algorithm runs in polynomial time and hence the problem belongs to an XP class with
parameterization by the clique-width.

1Research supported by the CE-ITI grant project P202/12/G061 of GA ČR, by GAUK project 1784214
and by the project SVV–2015–260223.
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Figure 1: A map of assumed parameters. A full arrow stands
for a linear upper bound, while a dashed arrow stands for an
exponential upper bound. For example if a graphG has vc(G) ≤ k
then nd(G) ≤ 2k + k.

Graph parameters and width
Definition 2 (Vertex cover) For a graph G = (V,E) the set U ⊂ V is called a vertex cover
of G if for every edge e ∈ E it holds that e ∩ U 6= ∅.

The vertex cover number of a graph, denoted as vc(G), is the least integer k for which
there exists a vertex cover of size k.

As the vertex cover number is (usually) too restrictive, many authors focused on defin-
ing other structural parameters. Three most well-known parameters of this kind are the
path-width, the tree-width and the clique-width. Classes of graphs with bounded tree-width
(respectively path-width) are contained in the so called sparse graph classes.

There are (more recent) structural graph parameters which also generalize the vertex cover
number but in contrary to the tree-width these parameters focus on dense graphs. First, up
to our knowledge, of these parameters is the neighborhood diversity defined by Lampis [8].
We denote the neighborhood diversity of a graph G = (V,E) as nd(G).

We say that two (distinct) vertices u, v are of the same neighborhood type if they share
their respective neighborhoods, that is when N(u) \ {v} = N(v) \ {u}.

Definition 3 (Neighborhood diversity [8]) A graph G = (V,E) has neighborhood diver-
sity at most w (nd(G) ≤ w), if there exists a partition of V into at most w sets (we call these
sets types) such that all the vertices in each set have the same neighborhood type.

Both previous approaches are generalized by a modular-width, defined by Gajarský et
al. [4]. Here we deal with graphs created by an algebraic expression that uses four following
operations:

1. create an isolated vertex,

2. the disjoint union of two graphs, that is from graphs G = (V,E), H = (W,F ) create a
graph (V ∪W,E ∪ F ),

3. the complete join of two graphs, that is from graphs G = (V,E), H = (W,F ) create a
graph (V ∪W,E ∪ F ∪ {{v, w} : v ∈ V,w ∈W}), note that the edge set of the resulting
graph can be also written as E ∪ F ∪ V ×W.

4. The substitution operation with respect to a template graph T (for an example see
Figure 2) with vertex set {v1, v2, . . . , vk} and graphs G1, G2, . . . , Gk created by algebraic
expression. The substitution operation, denoted by T (G1, G2, . . . , Gk), results in the
graph on vertex set V = V1 ∪ V2 ∪ · · · ∪ Vk and edge set

E = E1 ∪ E2 ∪ · · · ∪ Ek ∪
⋃

{vi,vj}∈E(T )

{{u, v} : u ∈ Vi, v ∈ Vj},

where Gi = (Vi, Ei) for all i = 1, 2, . . . , k.

Definition 4 (Modular-width [4]) Let A be an algebraic expression that uses only oper-
ations 1–4. The width of expression A is the maximum number of operands used by any
occurrence of operation 4 in A.

The modular-width of a graph G, denoted as mw(G), is the least positive integer k such
that G can be obtained from such an algebraic expression of width at most k.
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T

Figure 2: An illustration of the modular-width decomposition of a graph. A schema of a
decomposition is depicted in the left part of the picture. In the right part of the picture there
is the resulting graph—gray edges represent edges from the previous step of the decomposition
(with template graph T ). The resulting graph has nd = 5 (split the leftmost and the right
most parts of the graph into two to obtain neighborhood diversity decomposition) and by the
decomposition mw = 3.

When a graph H is constructed by the fourth operation, that is G = T (G1, G2, . . . , Gk),
we call the graph T the template graph. An algebraic expression of width mw(G) can be
computed in linear time [10].

Our contribution
Our first algorithm is based on the celebrated theorem of Courcelle [2]—an usual starting
point for parameterized algorithm design. We would like to point out, that even though the
result follows easily, the application is not straightforward.

Theorem 5 For any fixed connected graph H the Partition into H problem is expressible
by an MSO2 formula.

Thus, we have solved an open question raised by Gajarský et al. [4].
As the first algorithm is for graphs with bounded tree-width and thus a sparse class of

graphs, we also analyze some variants of the Partition into H problem for a particular class
of dense graphs. Many parameters are suitable for dense graph classes, such as neighborhood
diversity and modular-width. We say that a graph H is a prime graph if no two vertices
of H have the same neighborhood (the set of adjacent vertices). The class of prime graphs
is thoroughly studied in the context of modular decompositions. Equivalently a graph H
is prime graph if its neighborhood diversity equals the number of its vertices. In order to
present our result we have to introduce the following strengthening of prime graphs.

Definition 6 (Strict prime graph) We say that a graph G = (V,E) is strict prime graph
if for every subset of vertices U ( V with at least two vertices there exist v ∈ V \U such that
v is connected to at least one vertex in U and v is not connected to at least one vertex in U.

Indeed, if G is a strict prime graph, then G is a prime graph. To see this assume that a
prime graph contains two vertices, say u, v, with same neighborhood. If we take U = {u, v}
we have contradiction with Definition 6. On the other hand take any strict prime graph
G = (U,E) and add to G a new vertex v and attach v to all vertices of G. It is not hard
to see that the resulting graph G′ is prime graph. However, G′ is not strict prime graph as
witnessed by the set U.

Theorem 7 For any fixed strict prime graph H and a graph G the Partition into H
problem belongs to the FPT class when parameterized by modular width of graph G.

It is worth to mention that even though the condition on strict prime graphs may seem
very restrictive this class of graphs contains for example paths Pk on k ≥ 4 vertices and cycles
Ck on k ≥ 5 vertices. Applications of the Partition into H problem with H being a path
may be found in code optimization [1].
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When it is shown that there is an FPT-algorithm for some problem, it is natural to ask,
whether the problem admits a polynomial kernel—that is a preprocessing routine running in
polynomial time which outputs an equivalent instance of size polynomially bounded in the
assumed parameter. We prove that the Partition into H problem does not have polynomial
kernel parameterized by modular-width for any reasonable graph H, that is when H has at
least 3 vertices and thus the Partition into H problem is NP-hard. More precisely, we
prove the following.

Theorem 8 For any fixed graph H with at least 3 vertices. There is no polynomial kernel
routine for the Partition into H problem when parameterized by modular width of graph
G unless NP ⊆ coNP/poly.

Theorem 9 For any fixed graph H there is an FPT-algorithm for the Partition into H
problem parameterized by neighborhood diversity of graph G.
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Extended Abstract

A repetition in a sequence S is a subsequence ξ1 . . . ξtξt+1 . . . ξ2t of consecutive terms of
S such that ξi = ξt+i for every i = 1, . . . , t. A sequence is called nonrepetitive or Thue if it
does not contain a repetition of any length.

In 1906 Thue [6] showed that using only three symbols one can construct an arbitrarily
long sequence without a repetition. His famous work attracted a considerable attention and
later many applications have been found in various fields of science.

Let us consider the following generalization of Thue sequences introduced by Currie and
Simpson [1]: a (possibly infinite) sequence S is k-Thue (or nonrepetitive up to mod k) if every
j-subsequence of S is Thue, for 1 ≤ j ≤ k. Here, a j-subsequence of S is a subsequence
ξiξi+jξi+2j . . . , for any i. Notice that a 1-Thue sequence is simply a Thue sequence. As an
example, consider a sequence a b d c b c, which is Thue, but not 2-Thue, since the 2-subsequence
b c c is not Thue. On the other hand, a b c a d b is 2-Thue, but not 3-Thue.

Currie and Simpson [1] introduced this notion in connection with nonrepetitive tilings,
i.e. assignments of symbols to the lattice points of the plane such that all lines in prescribed
directions are nonrepetitive.

A natural question arises what is the minimum number of symbols required to construct
an arbitrarily long k-Thue sequence. In [1], the authors showed that four symbols are enough
to create 2-Thue sequences and five symbols suffice for 3-Thue sequences of arbitrary lengths.
The lower bound on the number of symbols needed to construct a k-Thue sequence of an
arbitrary length is obvious; for a positive integer k, at least k + 2 symbols are required to
construct such sequences.

In 2002 Grytczuk conjectured that, in fact, the upper bound is equal to the lower bound
for any k.

Conjecture 1 (Grytczuk, 2002 [3]) For any k, k + 2 symbols suffices to construct a k-
Thue sequence.

This conjecture is hence true for k = 2, 3, and as shown in [2] also for k = 5. However, the
upper bound for general k is still far from the conjectured. The bound of e33k established in [3]
was substantially improved to 2k+O(

√
k) in [4]. The authors in [5] presented a construction

of arbitrarily long k-Thue sequences using at most 2k symbols which improves the previous
bounds and currently it is the best known upper bound.

Theorem 2 (Kranjc et al., 2015 [5]) For an arbitrary k ≥ 3, there is an arbitrarily long
k-Thue sequence using at most 2k symbols.

Notice that this proof is constructive and provides a k-Thue sequence of a given length.
Recently, we solved Conjecture 1 for the cases k = 4 and 6 in two ways.

Theorem 3 (Lužar, Mockovčiaková, Ochem, Pinlou, Soták, 2016) There is an arbi-
trarily long k-Thue sequence using k + 2 symbols for k = 4 and 6.

In this talk we present constructions of 4- and 6-Thue sequences using 6 and 8 symbols,
respectively.
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Extended Abstract

The deletion problems are a standard reformulation of some classical combinatorial prob-
lems and were examined by Yannakakis [5, 6]. For a graph property π we can formulate an
edge-deletion problem in the following way. Given a graph G = (V,E), find a set of edges F
such that the graph G′ = (V,E \ F ) satisfies the property π. The vertex deletion problem
can be formulated analogously.

Additionally, the goal is to find smallest such a set. Many classical combinatorial problems
can be formulated in this way, e.g. Minimum vertex cover, Maximum matching, or
Minimum feedback arc set. For example, Minimum vertex cover can be reformulated
as a deletion problem in the following way: find smallest set of vertices such that the graph
obtained by its deletion contains no edge.

The fair deletion problems change the goal – instead of finding the smallest set, we
want to find a set that is smallest in a local sense. More precisely, in Fair edge-deletion
problem we are given a graph G = (V,E) and a property π and we want to find a set F ⊆ E
which minimizes the maximum degree of graph G∗ = (V, F ) where graph G′ = (V,E \F ) has
the property π. Fair vertex-deletion problem is defined in similar manner.

In our work we only deal with graph properties definable in monadic second order logic
(MSO for short). We also focus on an extension of fair deletion problems that was studied
by Kolman et al. [2]. In this extension, we are given a formula with one free set-variable
representing the set of removed edges F instead of a sentence describing the resulting graph
G \ F . This version is slightly more general, as we can impose constraints not only on the
graph G \ F , but also on the set F itself.

The formal definitions of Fair vertex-deletion problem and Fair edge-deletion
problem follow.

Fair MSO edge-deletion
Input: An undirected graph G, an MSO formula ψ with one free edge-set

variable, and a positive integer k.
Question: Is there a set F ⊆ E(G) such that G |= ψ(F ) and for every vertex v

of G, the number of edges in F incident with v is at most k?

Fair MSO vertex-deletion
Input: An undirected graph G, an MSO formula ψ with one free vertex-set

variable, and a positive integer k.
Question: Is there a set W ⊆ V (G) such that G |= ψ(W ) and for every vertex

v of G, it holds that |N(v) ∩W | ≤ k?

The following notions are useful when discussing fair edge-deletion problems. Given a
graph G = (V,E), the fair cost of a set F ⊆ E is defined as maxv∈V |{e ∈ F | v ∈ e}|.
The function that assigns each set F its fair cost is referred to as fair objective function.
Same notions can be defined for fair vertex-deletion problems. The fair cost of a set W ⊆ V
is defined as maxv∈V |N(v) ∩W |. The fair objective function is defined analogously. Fair
deletion problems can be rephrased as finding a set satisfying given property that minimizes
the fair objective function.

1Research was supported by the project GAUK 338216 and by the project SVV-2016-260332.
2Author was supported by the project CE-ITI P202/12/G061
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Courcelle and Mosbah [1] introduced a semiring homomorphism framework that can be
used to minimize various function over all sets satisfying a given MSO formula. It is therefore
natural to ask if we can use this framework to come up with algorithms for fair deletion
problems. However, direct use of semiring homomorphism framework does not lead to an
FPT algorithm for fair deletion problems; there is a natural choice of semiring that captures
the fair objective function, but the size of such semiring is ntw(G), so we obtain only XP
algorithm in this way. It is unlikely that we can obtain an FPT algorithm by a more clever
choice of semirings, as our results exclude the existence of an FPT algorithm under reasonable
assumptions.

Known results
The fair deletion problems were introduced by Lin an Sahni [4]. In this paper, they showed
that fair deletion problems are NP-hard for certain graph properties.

The main result concerning the parameterized complexity of fair deletion problems is an
XP algorithm for Fair edge-deletion problems for parameterization by tree-width due
to Kolman et al. [2].

Our Contribution
Before going through our results, let us list structural graph parameters used throughout the
paper:

• the tree-width of a graph, denoted by tw(G),

• the path-width of a graph, denoted by pw(G),

• the size of minimum feedback vertex set of a graph, denoted by fvs(G),

• the neighborhood diversity of a graph, denoted by nd(G) (introduced by Lampis [3]),
and

• the size of minimum vertex cover, denoted by vc(G).

In the paper, we show the following hardness results.

Theorem 1 If there is an FPT algorithm for Fair MSO2 edge-deletion parameterized by
the size of the formula ψ, the path-width of G, and the size of smallest feedback vertex set of G
combined, then FPT = W[1]. Moreover, let k denote pw(G)+ fvs(G). If there is an algorithm
for Fair MSO2 edge-deletion with running time f(|ψ|, k)no(

√
k), then Exponential Time

Hypothesis fails.

Theorem 2 If there is an FPT algorithm for Fair MSO1 vertex-deletion parameterized
by the size of the formula ψ, the path-width of G, and the size of smallest feedback vertex
set of G combined, then FPT = W[1]. Moreover, let k denote pw(G) + fvs(G). If there
is an algorithm for Fair MSO1 vertex-deletion with running time f(|ψ|, k)no(

√
k), then

Exponential Time Hypothesis fails.

In other words, we rule out the existence of an FPT algorithm with respect to given
parameters under the assumption W[1] 6= FPT. If we assume that the Exponential Time
Hypothesis holds (this is stronger assumption than W[1] 6= FPT), then we rule out even
existence of an XP algorithms with running time faster than f(k)no(

√
k).

Note that since tree-width can be bounded by either path-width or the size of minimum
feedback vertex set, we obtain corresponding result for parameterization by tree-width.
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Corollary 3 If there is an FPT algorithm for Fair MSO2 edge-deletion parameter-
ized by the size of the formula ψ and the tree-width of G combined, then FPT = W[1].
Furthermore, if there is an algorithm for Fair MSO2 edge-deletion with running time
f(|ψ|, tw(G))no(

√
tw(G)), then the Exponential Time Hypothesis fails.

Corollary 4 If there is an FPT algorithm for Fair MSO vertex-deletion parameter-
ized by the size of the formula ψ and the tree-width of G combined, then FPT = W[1].
Furthermore, if there is an algorithm for Fair MSO vertex-deletion with running time
f(|ψ|, tw(G))no(

√
tw(G)), then the Exponential Time Hypothesis fails.

In addition to these hardness results, we also show that there are FPT algorithms for
certain parameterizations.

Theorem 5 Fair MSO1 vertex-deletion is in FPT with respect to the neighborhood di-
versity nd(G) and the size of the formula ψ.

Theorem 6 Fair MSO2 edge-deletion is in FPT with respect to the minimum size of
vertex cover vc(G) and the size of the formula ψ.
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Extended Abstract

A circuit cover of a graph G is a collection of circuits of G such that every edge of G
belongs to at least one of them. The length of a circuit cover is the sum of lengths of its
circuits. It is a natural problem to look for a circuit cover of minimum length. In 1985, Alon
and Tarsi [1] independently conjectured that every bridgeless graph G admits a circuit cover
of length at most 7/5 · |E(G)|. The best approximation of this conjecture to this date was
given in 1983 by Bermond, Jackson and Jaeger [2] who established the ratio 5/3 instead of
7/5. Note that the requirement that G be bridgeless is necessary � a bridge of a graph does
not belong to any circuit.

The problem of �nding a short circuit cover has its natural counterpart in the theory of
signed graphs. Somewhat surprisingly, a systematic study of signed circuit covers has been
initiated only very recently by Má£ajová, Raspaud, Rollová and �koviera [4]. Recall that a
signed graph is a graph G together with a mapping, the signature of G, which assigns +1 or
−1 to each edge. The sign of each edge will usually be known from the immediate context,
therefore no special notation for the signature will be used. A circuit C of a signed graph G
is said to be balanced if it has an even number of negative edges; otherwise C is unbalanced.
The signature should be regarded only as a means of introducing the concept of balance:
two signatures that give rise to the same list of balanced circuits are therefore considered as
equivalent. A signed graph G is said to be balanced if each circuit in G is balanced; otherwise
G is unbalanced. It is obvious that any balanced signed graph is equivalent to the one with
each edge positive.

A signed circuit cover is de�ned similarly as a circuit cover, however, we need to de�ne a
concept of a signed circuit, which is a natural signed analogue of a circuit. As argued in [4],
a signed circuit is one of three types of signed graphs: (1) a balanced circuit, (2) a union of
two disjoint unbalanced circuits connected by a path which intersects the circuits only at its
end-vertices, and (3) a union of two unbalanced circuits that share exactly one vertex. Signed
circuits of type (2) and (3) are often referred to as barbells. Finally, a signed circuit cover of
a signed graph G is a collection of signed circuits such that each edge of G belongs to at least
one of them. The length of a signed circuit cover is the sum of lengths of its signed circuits.
Note that a signed circuit cover of an all-positive signed graph coincides with a circuit cover
of the underlying unsigned graph. Thus the problem of �nding a shortest circuit cover of a
graph is a special case of the problem of �nding a shortest signed circuit cover of a signed
graph.

Theory of signed circuit covers is closely related to the theory of nowhere-zero integer �ows
on signed graphs, see [4]. In particular, a signed graph admits a signed circuit cover if and
only if it admits a nowhere-zero integer �ow; such a signed graph is called �ow-admissible.
The �ow condition for the existence of a signed circuit cover is completely analogous to the
unsigned case, with one signi�cant di�erence: �ow-admissible signed graphs may have more
complicated structure. For example, there exist bridgeless signed graphs that fail to have a
nowhere-zero integer �ow.

Má£ajová et al. [4] proved that a �ow-admissible signed graph admits a signed circuit
cover of length at most 11 · |E(G)|. This bound has been recently improved by Cheng, Lu,
Luo, and Zhang [3] to approximately 4 · |E(G)|, which is, perhaps, still far from the optimal
bound expected to be smaller than 2 · |E(G)|. The signed Petersen graph whose negative
edges form a 5-circuit is known to require a signed circuit cover of length 5/3 · 15 (see [4]),
the fraction 5/3 being the largest covering ratio of a signed graph known so far.
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As the proofs of Má£ajová et al. [4] and Zhang et al. [3] suggest, for �nding a short signed
circuit cover it is crucial to cover signed eulerian graphs e�ciently. Covering an unsigned
eulerian graph by circuits is trivial because every eulerian graph can be decomposed into
circuits. However, this is not the case for signed graphs and, as our main result shows, the
situation for signed eulerian graphs is much more complicated.

Theorem 1 Let G be a signed eulerian graph. Then

(i) G does not admit a signed circuit cover if and only if it is unbalanced and contains an
edge e such that G− e is balanced;

(ii) If G has an even number of negative edges, then it is �ow-admissible and admits a
signed circuit cover of length at most 4/3 · |E(G)| � this bound is tight;

(iii) If G has an odd number of negative edges and is �ow-admissible, then it admits a signed
circuit cover of length at most 3/2 · |E(G)|, and this bound is tight.

The bound of (ii) is tight for at least two di�erent in�nite families of signed graphs. Here
we provide an example of one of them (see Figure 1; dashed lines in the �gures represent
negative edges).

Example 2 Consider the signed graph Gn resulting from the star K1,n, with n ≥ 2, by
replacing each edge with a pair of positive parallel edges and attaching a negative loop to
every vertex which was pendant in K1,n (see Figure 1). Clearly, Gn has 3n edges. Let C be
a shortest signed circuit cover of Gn. We show that at least n edges of Gn must be covered
twice. There are two ways how a balanced circuit C of Gn can be covered by C. Either C
itself belongs to C or else each edge of C is contained in a barbell from C. If C ∈ C, then a
barbell that covers the loop incident with C contains an edge of C; this edge is covered twice.
If C /∈ C, then there must be two distinct barbells that cover C, and both have to contain
the loop incident with C; in this case the loop is covered twice. Summing up, each balanced
circuit of Gn yields at least one doubly covered edge, and distinct balanced circuits give rise
distinct doubly covered edges. As there are n balanced circuits in Gn, there are at least n
edges of Gn covered by C twice. The length of C is therefore at least 4n, which in turn equals
4/3 · |E(Gn)|.

Figure 1: Example of a signed graph with shortest signed circuit cover of length 4/3 · |E|

The bound of (iii) is tight for the signed graph G of Figure 2 which consists of two vertices
joined by a pair of edges with di�erent signs with one negative loop added at each vertex.
Note that G contains exactly four distinct signed circuits, each of them being a barbell of
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Figure 2: Example of a signed graph with shortest signed circuit cover of length 3/2 · |E|

length 3. Every signed circuit cover of G consists of at least two of the barbells, therefore the
length of the shortest signed circuit cover is at least 6 = 3/2 · 4.

Sketch of the proof of Theorem 1.

(i) The edge e for which G−e is balanced is contained in every unbalanced circuit of G, which
immediately implies that there is no signed circuit containing e.

(ii) Without loss of generality we may suppose that G is connected. Recall that a cactus is a
connected graph in which any two circuits have at most one vertex in common. It follows that
an eulerian graph is a cactus if and only if it has a uniquely determined circuit decomposition.
For a circuit decomposition D, we de�ne an incidence multigraph of D to be a graph J(D)
whose vertices are the circuits from D and whose edges are all triples of the form {C, v, C ′}
where C and C ′ are distinct elements of D and v is a vertex from C ∩ C ′. The incidence
relation in J(D) is de�ned simply by set membership. If D has a pair of circuits with more
than one common vertex, then J(D) will clearly have parallel edges between the corresponding
vertices. Note that the incidence multigraph of any cactus is acyclic.

The proof consists of two steps. At �rst we show that the result holds whenever G is a
cactus, and then �nish the proof by induction with cacti forming the induction basis. We
now sketch the proof for cacti.

Let D be the circuit decomposition of G; clearly, the incidence multigraph J(D) is a
tree. A circuit of G will be called a pendant circuit if the corresponding vertex of J(D) is of
degree 1. We may exclude the case when G is balanced, because G admits a signed circuit
cover of length |E(G)|, and thus G is unbalanced. We may assume that G has no balanced
pendant circuits, because we can cover them separately, and the rest of the graph satis�es the
conclusion of the theorem whenever G does. Since G has even number of negative edges, it
has an even number of unbalanced circuits. Thus J(D) has at least two vertices. If J(D) has
exactly two vertices, then G is a barbell and admits a signed circuit cover of length |E(G)|,
and the theorem follows. Thus we assume that J(D) has at least three vertices.

Our aim is to construct three signed circuit covers C1, C2, and C3 such that each edge of G
is covered at most twice by any Ci and at most four times in total by C1, C2, and C3. If we �nd
such covers, by pigeon hole principle one of the covers must have length at most 4

3 · |E(G)|.
Choose an arbitrary eulerian trail T in G and pick an initial vertex v0 for the traversal

of T . Since any two intersecting circuits in G share exactly one vertex, for any two distinct
circuits K and K ′ there exists a unique subtrail T [K,K ′] of T starting at a vertex v of K
and terminating at a vertex v′ of K ′ such that T [K,K ′] intersects K ∪K ′ only at v and v′;
it may happen that v = v′. Let us order the unbalanced circuits of G in the order as we
proceed along T starting from v0: an unbalanced circuit U is recorded into a list whenever
T uses an edge of U for the �rst time. Let U0, U1, . . . , Ut−1 be the resulting list, with indices
taken modulo t. Since G has even number of negative edges, t is even.

Consider two distinct unbalanced circuits Ux and Uy. Assume that either y = x + 1 or
that Ux is pendant and Uy is the �rst pendant circuit in the list following Ux (taken in cyclic
order); in the latter case we say that Ux and Uy are two consecutive pendant circuits. We
claim that in both cases Ux ∪ T [Ux, Uy] ∪ Uy is a barbell, and we call it the barbell between
Ux and Uy. The sought covers C1, C2, and C3 are the following:
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• C1 contains all barbells between two consecutive pendant circuits.

• C2 contains all balanced circuits of G and all barbells of the form Ui∪T [Ui, Ui+1]∪Ui+1,
where i is an even index from {0, 1, . . . , t− 1}.

• C3 contains all balanced circuits of G and all barbells of the form Ui∪T [Ui, Ui+1]∪Ui+1,
where i is an odd index from {0, 1, . . . , t− 1}.

Note that each of C1, C2, and C3 is a signed circuit cover, and since J(D) has at least three
vertices, they are all distinct. It is not di�cult to see that every edge of G is covered twice
by at most one of C1, C2, and C3, as required.
(iii) We use induction on the maximum number of unbalanced circuits in a circuit decompo-
sition of G. The base case is when G contains three unbalanced circuits. In the induction
step, we �nd two �ow-admissible subgraphs of G, each of them containing fewer unbalanced
circuits than G. For one of them, we apply (ii), because it has even number of negative edges,
for the other one, we apply induction hypothesis.
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Extended Abstract

A decomposition of a graph G is a set D = fG1; G2; : : : ; Gkg of subgraphs of G whose
edge sets partition the edge set of G. Here we are concerned with the case where G is an
eulerian graph (a connected graph with all vertices of even degree) and all the subgraphs Gi

constituting the decomposition are also eulerian. Throughout, all graphs may have multiple
edges and loops.

Decomposing eulerian graphs into eulerian subgraphs, or equivalently, into closed trails,
belongs to typical problems in eulerian graph theory [3]. For example, the classical result
of Veblen [8] states that the existence of a circuit decomposition in a connected graph is
equivalent to the existence of an eulerian trail in it. Several papers have been devoted to
decompositions into closed trails of given lengths. These decompositions are di�cult to �nd
and in most cases the graphs where such decompositions are known are complete multipartite
graphs, thus having a very explicit structure [1, 2, 5].

In contrast, our focus is on the existence of closed trail decompositions in fairly general
graphs, with the only restriction that each member of the decomposition have an odd length.
The motivation for the study of such decompositions comes from nowhere-zero �ows on signed
graphs: our main result, Theorem 4, is crucial for determining the �ow number of a signed
eulerian graph, see [6].

1. Unrooted decompositions

A decomposition D = fG1; G2; : : : ; Gkg of a graph G is an odd closed trail decomposition
if each Gi is a closed trail of odd length; equivalently, if each Gi is an eulerian subgraph with
an odd number of edges. The decomposition D will be called rooted if there exists a vertex r

of G, called a root of D, such that each Gi contains r.
The �rst question about odd closed trail decompositions that suggests itself is obvious:

Given an integer k � 2, which graphs admit a decomposition into k odd closed trails, rooted
or not?

Clearly, every connected graph G that admits a decomposition into k odd closed trails
must be eulerian with jE(G)j � k (mod 2) and has to contain at least k pairwise edge-disjoint
odd circuits, one for each closed trail. We show that this necessary condition is also su�cient.

Theorem 1 An eulerian graph G admits a decomposition into k closed trails of odd length
if and only if it contains at least k edge-disjoint odd circuits and jE(G)j � k (mod 2).

Proof. We sketch the proof of su�ciency. Let C be a set of k pairwise edge-disjoint circuits
of G and let K be a circuit decomposition of G such that C � K. We construct the graph
J(K) whose vertices are the elements of K and edges join pairs of elements that have a vertex
of G in common. Clearly, every connected subgraph of J(K), with vertex set a subset L � K,
uniquely determines an eulerian subgraph of G. The latter subgraph will have an odd number
of edges whenever L contains an odd number of odd circuits. Thus it su�ces to show that
K can be partitioned into k subsets, each containing an odd number of odd circuits and each
inducing a connected subgraph of J(K). In fact, we may assume that J(K) is a tree as the
general case follows with the partition of K obtained from a spanning tree T of J(K). Thus
it remains to prove the following claim.

Claim 1. Let T be a tree, k � 1 an integer, and B � V (T ) a subset with jBj � k vertices.
If jBj � k (mod 2), then V (T ) can be partitioned into k subsets V1; V2; : : : ; Vk such that each
Vi contains an odd number of vertices from B and induces a subtree of T .

The proof of this claim can be performed by induction on k, and for every �xed k by
induction on the order of T . �
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Corollary 2 Let G be a connected 2d-regular graph of odd order with d � 1. Then G admits
a decomposition into k closed trails of odd length for each k 2 f1; 2; : : : ; dg such that k � d

(mod 2).

Proof. By Petersen's 2-factor theorem, G can be decomposed into k pairwise edge-disjoint
2-factors, each containing an odd circuit. The conclusion now follows from Theorem 1. �

2. Rooted decompositions

Our primary interest lies in odd closed trail decompositions which have a root. It is easy
to see that a graph G has a rooted decomposition into k odd closed trails if and only if
it contains an eulerian trail T and a vertex r such that r divides T into k closed subtrails
T1; T2; : : : ; Tk based at r with an odd number of edges each. If a graph G is to have such a
decomposition, then G has to satisfy the conditions of Theorem 1 (so that G has an unrooted
decomposition into k odd closed trails) and the root v must have degree at least 2d. By
Corollary 2, both conditions are satis�ed in 2d-regular graphs of odd order for k = d. Thus
it is a natural question to ask whether for 2d-regular graphs these necessary conditions are
also su�cient. For d = 1 the answer is trivially positive. The next two theorems show that
the answer is positive also for d = 2 and d = 3.

Theorem 3 Every connected 4-regular graph of odd order has a rooted decomposition into
two closed trails of odd length.

Proof. Take a maximal odd closed subtrail of the graph and its complement. �

The following theorem is our main result. Its proof is signi�cantly more involved and will
be sketched in the next section. Details will appear in [7].

Theorem 4 Every connected 6-regular graph of odd order has a rooted decomposition into
three closed trails of odd length.

We believe that these two theorems can be generalised to an arbitrary positive integer and
propose the following conjecture.

Conjecture 5 Every connected 2d-regular graph of odd order, with d � 1, has a rooted
decomposition into d closed trails of odd length.

3. Sketch of proof of Theorem 4

Let G be a connected 6-regular graph of odd order. The proof is by induction on the order
of G. The result is trivial if G has a single vertex. For the induction step, let G have an odd
order greater than 1, and assume that the result is true for all smaller 6-regular graphs of odd
order. Suppose to the contrary that G fails to have a rooted 3-odd decomposition; in other
words, let G be a smallest counterexample. We �rst show that G must be 6-edge-connected.

For convenience, a subgraph H of G will be called even if it has an even number of edges,
and it will be called odd if it has an odd number of edges. Further, we will say that H is
u-v-eulerian if all vertices except possibly u and v have an even degree.

Proposition 6 A smallest counterexample to Theorem 4 must be 6-edge-connected.

Proof. It is straightforward to prove that the smallest counterexample G has no 2-edge-cut.
Suppose that G has a 4-edge-cut S. Since G has an odd number of edges, G � S has two
components H and K, where H is even and K is odd. Let S = fa1b1; a2b2; a3b3; a4b4g with
fa1; a2; a3; a4g � V (H) and fb1; b2; b3; b4g � V (K). We �rst show that H contains an odd
ai-aj-eulerian subgraph Hi;j and an odd ak-al-eulerian subgraph Hk;l such that fHi;j ; Hk;lg
is a decomposition of H and fi; j; k; lg = f1; 2; 3; 4g. Details are quite involved and therefore
omitted here. We only remark that the proof splits into two main cases depending on whether
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H is or is not bipartite. Next, we take the graph K 0 formed from K by adding the edges bibj
and bkbl. Since K 0 is 6-regular, has odd order, and is smaller than G, it has a decomposition
D = fK1;K2;K3g into three odd closed trails with root at some vertex r of K. If we replace
in the subgraphs from D the edge bibj with Hi;j and the edge bkbl with Hk;l, we obtain a
decomposition of G into three closed trails of odd length rooted at r � a contradiction. �

To complete the proof of Theorem 4 it remains to show that every 6-edge-connected 6-
regular graph of odd order has a rooted decomposition into three closed trails of odd length.
The proof of this fact requires a special tool � signed graphs.

Recall that a signed graph is a graph G equipped with a mapping, called the signature of
G, which assigns +1 or �1 to each edge. An edge receiving value +1 is said to be positive
while one with value �1 is said to be negative. The sign of each edge will be known from the
immediate context, therefore no special notation for the signature will be required.

The signature of a signed graph is a means of introducing the concept of balance, which
is more important than the signature itself. A circuit of a signed graph is said to be balanced
if it contains an even number of negative edges, and is unbalanced otherwise. A signed graph
in which all circuits are balanced is itself called balanced ; an unbalanced signed graph is one
that contains at least one unbalanced circuit. In general, the essence of any signed graph is
constituted by the list of all balanced circuits: two signed graphs with the same underlying
graph are therefore considered to be identical if their lists of balanced circuits coincide. The
corresponding signatures are called equivalent. It is well known that any two equivalent
signatures can be turned into each other by a series of vertex-switchings [10]. To switch the
signature of a signed graph G at some vertex v means to change the signs of all edges incident
with v except for loops. In particular, by applying vertex switching su�ciently many times
one can turn any balanced signed graph into the all-positive one.

Let G be a signed eulerian graph. It is easy to see that switching does not change the
parity of the number of negative edges in G. Thus all signed eulerian graphs fall into two
natural classes � even signed eulerian graphs and odd eulerian graphs depending on whether
the number of negative edges is even or odd, respectively. From this point of view, a natural
signed analogue of an odd closed trail is a trail with an odd number of negative edges.

By using signed graphs we can successfully deal with certain parity problems that would
occur in the unsigned case and we can prove the following result.

Theorem 7 Let G be a 6-edge-connected 6-regular signed graph with an odd number of nega-
tive edges. If G contains at least three pairwise edge-disjoint unbalanced circuits, then G has
a rooted decomposition into three closed trails with an odd number of negative edges each.

Proof. The proof is by induction on the number of vertices of G. Again, the result is trivial
if G has a single vertex. If G has n � 2 vertices, we construct a 6-regular signed graph G0

of order n� 1 by removing an arbitrary vertex of G and by reconnecting its neighbours with
three new signed edges in a suitable manner. A result of Frank [4, Theorem A0] implies that
this can always be done in such a way that G0 is again 6-edge-connected. By considering a
number of cases for G, we either �nd the required decomposition directly in G, or construct
one in G0 and transform it to a decomposition of G. �

Now we can return to unsigned graphs.

Corollary 8 Every 6-edge-connected 6-regular graph of odd order has a rooted decomposition
into three closed trails of odd length.

Proof. Let G be a 6-edge-connected 6-regular graph of odd order. Let us endow G with the
all-negative signature. Since G has an odd order, the number of negative edges is odd. By
Petersen's 2-factor theorem G can be decomposed into three pairwise disjoint 2-factors. Each
of them contains an odd cycle, so with respect to the all-negative signature G has at least
three edge-disjoint unbalanced circuits. Thus we can apply Theorem 7 to conclude that G
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has a rooted decomposition into three closed trails with an odd number of negative edges
each. Forgetting the signs, this decomposition has three closed trails of odd length rooted at
some vertex of G. �

4. Final remarks

1. We have shown that every connected 6-regular graph G of odd order has a rooted
decomposition into three odd closed trails. This poses a natural question about the distribu-
tion of roots within the graph. We conjecture that if G is 6-edge-connected, then any vertex
of G occurs as a root of some odd trail decomposition. However, there are examples with
connectivity 2 and 4 where a root cannon be chosen arbitrarily.

2. As already mentioned, rooted decompositions into odd closed trails are closely related
to nowhere-zero integer �ows on signed eulerian graphs. It was proved by Xu and Zhang [9]
that a signed eulerian G graph admits a nowhere-zero 2-�ow if and only if it has an even
number of negative edges. In [6] we prove that a signed eulerian graph has a nowhere-zero
3-�ow if and only if it admits a rooted decomposition into three closed trails with an odd
number of negative edges each. The crucial argument of the proof uses Theorem 4.

3. In contrast to Theorem 4, the assumption of 6-edge-connectivity in Theorem 7 cannot
be relaxed. Examples are not di�cult to �nd.
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Construction of permutation snarks of order 2 (mod 8)
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Extended Abstract

A cycle permutation graph is a cubic graph consisting of two disjoint circuits of equal
length and a perfect matching between them; equivalently, it is a cubic graph which has a 2-
factor consisting of two chordless circuits. A permutation snark is a cycle permutation graph
that has no 3-edge-colouring.

Cycle permutation graphs were introduced in 1967 by Chartrand and Harary in [4] as a
generalisation of the Petersen graph and were subsequently studied by various authors, see
e. g. [7, 10, 11]. Since the Petersen graph is a snark, permutation snarks are a natural family
to investigate. In spite of that, until very recently permutation snarks have attracted only
very little attention, with a notable exception of Zhang's book [13].

Figure 1: A cyclically 5-edge-connected permutation snark of order 34

It is easy to see that every permutation snark has cyclic connectivity at least 4 and
girth at least 5. In [13], Zhang made a conjecture that the only cyclically 5-edge-connected
permutation snark is the Petersen graph. However, in 2013, Brinkmann et al. [2] disproved
this conjecture by exhibiting a cyclically 5-edge-connected permutation snark on 34 vertices
found by an exhaustive computer search. This snark is displayed in Figure 1 in a form rather
di�erent from that in [2]; the de�ning 2-factor is shown in bold lines. Recently, using an ad
hoc construction, Hägglund and Ho�mann-Ostenhof [5] extended this example to an in�nite
series of cyclically 5-edge-connected permutation snarks of order 24n + 10 for each integer
n � 1.

The de�ning 2-factor of every permutation snark consists of two odd circuits. It follows
that the number of vertices of every permutation snark must be 2 (mod 4). However, all cur-
rently known permutation snarks have order 2 (mod 8) while orders 6 (mod 8) are completely
missing. The purpose of this paper is to construct cyclically 4-edge-connected permutation
snarks of every possible order 2 (mod 8) and cyclically 5-edge-connected connected snarks
of order n for every integer n � 2 (mod 8) with n � 34. In contrast to [5], our construc-
tions are very simple as they only use classical operations on snarks � the dot product of
snarks (4-product) and a similar operation (5-product) introduced by Cameron, Chetwynd,
and Watkins [3], which is capable of producing cyclically 5-edge-connected snarks.
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1. Permutation snarks with cyclic connectivity 4

The most common method of constructing snarks with cyclic connectivity 4 is the dot
product of snarks. Given two cubic graphs G and H, a dot product G :H is a cubic graph
de�ned as follows. Choose two independent edges e1 = a1b1 and e2 = a2b2 in G and an edge
e = uv in H. Let a0

1
, b0

1
, and v be the neighbours of u, and let a0

2
, b0

2
, and u be the neighbours

of v. Remove the edges e1 and e2 from G and the vertices u and v from H. Finally, connect
a1 to a0

1
, b1 to b0

1
, a2 to a0

2
, and b2 to b0

2
. Although the notation G :H is common, the result

depends on the choice of the edges e1 and e2 in G and the edge e = uv in H as well as on the
chosen labelling of the neighbours of u and v in H and their counterparts in G. If we need
to be more speci�c, we will write G[e1; e2] : [e]H instead of G :H.

The operation of dot product was introduced by Adelson-Velskii and Titov [1] in 1973 and
independently by Isaacs [6] in 1975. In [1] it was shown that if both G and H are cyclically
4-edge-connected, then so is G :H. Moreover, in both [1] and [6] it was proved that G :H is
non-3-edge-colourable provided that each of G and H is.

Now assume that G and H are permutation snarks. Let P = fP1; P2g be a permutation
2-factor of G, that is, a 2-factor that consists of two chordless circuits P1 and P2. Also let
Q = fQ1; Q2g be a permutation 2-factor of H. Let us perform the dot product G[e1; e2] : [e]H
in such a way that the edges e1 and e2 belong to di�erent circuits of P and that the edge e
is a spoke of Q, that is, an edge of the 1-factor complementary to Q. Since the end-vertices
vertices u and v of e belong to di�erent circuits of Q, there is an index i 2 f1; 2g such that
the dot product operation welds the circuit P1 of P with the circuit Qi of Q and the circuit
P2 of P with Q3�i of Q. In this manner a 2-factor of G :H consisting of two chordless circuits
is produced. Thus G :H is a permutation snark.

It is well known that the dot product operation is essentially reversible (see for example
Cameron et al. [3]). This means that if a snark G has a cycle-separating edge-cut S of size 4,
then there exist snarks G1 and G2 such that G is isomorphic to G1 : G2. If G is a permutation
snark, then the snarks G1 and G2 are uniquely determined by S and both can be shown to
be again permutation snarks. Thus the following result is true.

Theorem 1 Let G and H be permutation snarks. A dot-product G[e1; e2] � [e]H is a permu-
tation snark if and only if the edges e1 and e2 belong to di�erent circuits of a permutation
2-factor of G and e belongs to the 1-factor complementary to a permutation 2-factor of H.
Furthermore, every permutation snark with cyclic connectivity 4 arises in this way.

This theorem can be used to produce huge amounts of permutation snarks with cyclic
connectivity 4. For example, starting from the Petersen graph and applying Theorem 1
repeatedly we can we can construct cyclically 4-edge-connected snarks of every possible order
n � 2 (mod 8).

Corollary 2 For every integer n � 2 (mod 8) with n � 10 there exists a permutation snark
of order n.

By performing dot products more speci�cally we can show that several well-known in�nite
families of snarks are permutation snarks. For example, this is true for generalised Blanu²a
snarks of Type 1 and Type 2 (see [12] for their de�nitions).

Theorem 1 also explains an explosion of permutation snarks observed by Brinkmann et al.
in [2]: there is one permutation snark of order 10, two of order 18, 64 of order 26, and 10771
of order 34. Exluding the Petersen graph, only twelve of all these snarks are cyclically 5-edge-
connected, all of order 34. This naturally directs our interest to cyclically 5-edge-connected
permutation snarks.

2. Permutation snarks with cyclic connectivity 5

The dot product has a lesser-known cyclically 5-connected analogue which we call star
product. This operation was �rst mentioned by Cameron et al. in [3] and can be described
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as follows. Consider two cubic graphs G and H and containing 5-cycles C = v0v1v2v3v4 � G

and D = w0w1w2w3w4 � H. For each vertex x on either of these circuits let x0 denote the
corresponding neighbour not lying on the circuit. De�ne G?H to be the cubic graph obtained
by removing C from G and D from H and by connecting each vertex v0

i
to the vertex w0

2i

with the indices reduced modulo 5. Observe that the result is not uniquely determined as
it depends on the chosen labelling of vertices in the 5-cycles C and D. Furthermore, if Ps
denotes the Petersen graph, then G?Ps �= G and Ps?H �= H, which means that the Petersen
graph serves both as the right and as the left identity of this operation.

It can be shown that G?H is non-3-edge-colourable provided that G and H are (see [3]).
The following result provides another important property of the star product.

Theorem 3 If G and H are cyclically 5-edge-connected cubic graphs, then so is G ? H.

Proof. If G ? H contains a cycle separating edge-cut S with jSj < 5, then S must intersect
the 5-edge-cut T = fv0

i
w0

2i
; i 2 f0; 1; 2; 3; 4gg arising from the star product operation. This

situation gives rise to a number of cases according to the mutual position of S and T , and
each case leads to the conclusion that either G or H is not cyclically 5-edge-connected, which
is a contradiction. �

Figure 2: A cyclically 5-edge-connected permutation snark of order 42

Let G be a snark with a permutation 2-factor P = fP1; P2g and let C be an arbitrary
5-cycle in G. Since each circuit of P is chordless, there exists an index i 2 f1; 2g such that C
has two common edges with Pi and one common edge with P3�i. Hence, precisely one of the
edges connecting C to the rest of G is a spoke.

Now let G and H be permutation snarks with 5-cycles C = v0v1v2v3v4 � G and D =
w0w1w2w3w4 � H. Let us choose the labelling of vertices of the 5-cycles C and D in such a
way that v0v00 and w0w

0

0
are spokes of the respective permutation 2-factors. We will say that

the star product performed with respect to such a labelling is rooted.
The following holds.

Theorem 4 A star product of two permutation snarks is a permutation snark if and only if
it is rooted.

We now apply Theorem 3 and Theorem 4 to construct cyclically 5-edge-connected permu-
tation snarks of every order n � 2 (mod 8) with n � 34. For this purpose it is su�cient to
display cyclically 5-edge-connected permutation snarks of order 34, 42, and 50, each contain-
ing at least two disjoint 5-cycles, and apply rooted star product repeatedly. A pair of disjoint
5-cycles guarantees that the star product can indeed be iterated, because one of the 5-circuits
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is used for the product and the other one survives in each factor of the star product. For the
snark of order 34 we can use the one in Figure 1 since it clearly contains two disjoint 5-cycles.
Next we construct a cyclically 5-edge-connected permutation snark of order 42 from the one
of order 34 by substituting a 7-vertex subgraph isomorphic to Ps� P2 where P2 is a path of
length 2 with a 15-vertex subgraph B2�R obtained from the second Blanu²a snark B2 (also
called Blanu²a double according to [9]) by removing a path R of length 2 that intersects its
unique cycle-separating 4-edge-cut. The resulting snark is shown in Figure 2. A cyclically
5-edge-connected permutation snark of order 50 can be obtained from the one of order 42 by
another similar substitution. Thus we have the following result.

Theorem 5 There exists a cyclically 5-edge-connected permutation snark of order n for each
n � 2 (mod 8) with n � 34.

Full proofs of the presented results and additional results about permutation snarks will
appear in [8].
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Neighbour distinguishing graph colourings - distant generalizations
Jakub Przybyło

AGH University of Science and Technology
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Extended Abstract

In [28] Zhang et al. posed the following problem. Consider a graph G = (V,E) containing
no isolated edges and its proper edge colouring c : E → {1, 2, . . . , k}. For any v ∈ V denote
by Sc(v) the set of colours incident with v, i.e.,

Sc(v) := {c(uv) : u ∈ N(v)},

where N(v) is the set of neighbours of v. We shall also denote Sc(v) simply by S(v) when
this causes no ambiguities, and refer to it as the colour pallet of v. We call vertices u and
v distinguished if S(u) 6= S(v). The least number of colours in a proper edge colouring c
which distinguishes the ends of all edges of G, i.e. such that Sc(u) 6= Sc(v) for every uv ∈ E,
is called the neighbour set distinguishing index or the adjacent strong chromatic index and
denoted by χ′a(G), see [3, 4, 8, 9, 28] (also for other notations used).

Conjecture 1 ([28]) For every connected graph G, χ′a(G) ≤ ∆(G) + 2, unless G is isomor-
phic to K2 or C5.

This problem remains open despite many articles studying it. In particular, it has been
showed that χ′a(G) ≤ 3∆(G), [3], and χ′a(G) ≤ ∆(G) + O(logχ(G)), [4]. Moreover, the
conjecture was verified to hold for special families of graphs, like e.g. bipartite graphs or
graphs of maximum degree 3, see [4]. The following thus far best general upper bound is due
to Hatami.

Theorem 2 ([9]) If G is a graph with no isolated edges and maximum degree ∆ > 1020,
then χ′a(G) ≤ ∆ + 300.

Note that this implies that χ′a(G) ≤ ∆(G)+C for every graph G containing no isolated edges,
where C is some constant.

Let r be any positive integer. Vertices u, v of G shall be called r-neighbours (or r-adjacent)
if 1 ≤ d(u, v) ≤ r, where d(u, v) denotes the distance of u and v in G. In [21], similarly as
e.g. within the concept of distant chromatic numbers (see [14] for a survey of this topic), we
proposed an extension of the study above towards distinguishing not only neighbours, but
also vertices at some limited distance (from each other). The least number of colours in a
proper edge colouring c of G such that Sc(u) 6= Sc(v) for every pair of vertices u, v ∈ V with
1 ≤ d(u, v) ≤ r, so-called r-distant set distinguishing colouring (or r-adjacent strong edge
colouring), shall be called the r-distant set distinguishing index or r-adjacent strong chro-
matic index, and denoted by χ′a,r(G). This graph invariant has already been considered in
[13] and [16] under the name of d-strong chromatic index (see [3, 26, 27] for other notations),
mainly for paths, cycles and circulant graphs, aiming towards providing a series of coun-
terexamples to a conjecture from [27]. Some aspects of this concept were also investigated
in [3] with respect to trees and small values of r. As for general upper bounds, in [26] it
was proved that χ′a,2(G) ≤ 32(∆(G))2 if ∆(G) ≥ 4, χ′a,3(G) ≤ 8(∆(G))

5
2 if ∆(G) ≥ 6 and

χ′a,r(G) ≤ 2
√

2(r − 1)(∆(G))
r+2
2 for r ≥ 4 if ∆(G) ≥ 4. Improvements of these bounds shall

be presented
The cornerstone of the general field of vertex distinguishing colourings, which is rich in

many interesting open problems and conjectures, is the graph invariant called the irregularity
strength. Consider a (not necessarily proper) edge colouring c : E → {1, 2, . . . , k} of a graph
G = (V,E) containing no isolated edges. Denote by

sc(v) =
∑

u∈N(v)

c(uv)
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the sum of colours incident with any vertex v ∈ V . The irregularity strength of G, s(G), is
then the least integer k admitting such c with sc(u) 6= sc(v) for all u, v ∈ V , u 6= v, see [7].
Note that equivalently, it is equal to the minimal integer k so that we are able to construct
an irregular multigraph (a multigraph with pairwise distinct degrees of all the vertices) of G
by multiplying some of its edges, each at most k times. Out of the extensive bibliography
devoted to this parameter, it is in particular worth mentioning [2] and [17], where the sharp
upper bound s(G) ≤ n− 1 (with n = |V |) was settled, and [10], where a better upper bound
s(G) ≤ 6dn/δe for graphs with sufficiently large minimum degree δ is proved. See [15] for
an interesting survey and open problems in this topic as well. This problem is also related
with the study of irregular graphs by Chartrand, Erdős and Oellermann, see [6], and gave
rise to many other intriguing graph invariants. In particular the following concept was closely
related to the later local version of irregularity strength – the well known problem commonly
referred to as 1–2–3–Conjecture, see [12] by Karoński, Łuczak and Thomason (and [11] for
the best result concerning this). Let K be the least integer K so that for every graph
G = (V,E) without isolated edges there exists a (not necessarily proper) edge colouring
c : E → {1, 2, . . . ,K} such that for each edge uv ∈ E, the multisets of colours incident with
u and v are distinct. Note that this problem is a natural correspondent of the concept of
χ′a(G), as the only difference is the requirement concerning the properness of the colourings
investigated. However, by [1] it is known that K ≤ 4, or even K ≤ 3 suffices for graphs with
minimum degree δ ≥ 103, while χ′a is bounded from below by ∆. In fact one of our main
motivations for studying the parameters χ′a,r is a desire to expose the leading impact of the
required properness of colourings on the number of colours needed to distinguish vertices by
their incident (multi)sets, and that usually not many more colours are needed if we wish to
distinguish not only neighbours, but also vertices at distance 2, 3,..., r <∞. We believe, and
prove in many cases that for every fixed r, if only δ(G) is ‘not very small’, then χ′a,r(G) ≤ ∆+C
for each graph G without an isolated edge, where C is some constant dependent on r. We
pose the following general conjecture, where we believe that δ0 should be roughly equal to r
(up to some small additive constant).

Conjecture 3 ([21]) For each positive integer r there exist constants δ0 and C such that

χ′a,r(G) ≤ ∆(G) + C

for every graph without an isolated edge and with δ(G) ≥ δ0.

We also prove that our assumption on δ(G) is unavoidable, and support this conjecture by
showing the following.

Theorem 4 ([21]) For every r ≥ 2 and every graph G of maximum degree ∆ with δ(G) ≥
r + 2 and without isolated edges,

χ′a,r(G) ≤ (1 + o(1))∆.

Theorem 5 ([21]) For every positive ε ≤ 1 and a positive integer r, there exist ∆0 and a
constant C = C(ε, r) such that:

χ′a,r(G) ≤ ∆(G) + C

for every graph G without an isolated edge and with δ(G) ≥ ε∆(G), ∆(G) ≥ ∆0. In particular,
C ≤ ε−2(7r + 200) + r + 6.

Moreover, or maybe even more importantly, by our research, we wish to reveal a difference
between the two main concepts of distinguishing vertices (at a bounded distance) of the field,
i.e., this with respect to sets and this based on sums. Intriguingly this expected difference
was elusive while distinguishing only neighbours. The least integer k so that a proper edge
colouring c : E → {1, 2, . . . , k} exists with sc(u) 6= sc(v) for every edge uv ∈ E is denoted
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by χ′Σ(G). Note that χ′a(G) ≤ χ′Σ(G) for every graph G without isolated edges. Though the
requirement sc(u) 6= sc(v) is much stronger than Sc(u) 6= Sc(v), it was conjectured in [8] that
χ′Σ(G) ≤ ∆(G)+2 for every connected graph non-isomorphic toK2 nor C5 (similarly as for χ′a
in [28], cf. Conjecture 1), what was also asymptotically confirmed in [18], where it was proved
that χ′Σ(G) ≤ (1+o(1))∆. In fact (almost) all exact values of the both parameters, settled for
some special families of graphs coincide, see [8] for further comments. See also [5, 8, 24, 25]
for other results concerning χ′Σ. On the other hand, if we consider a distant version of the
problem in sum environment, even setting aside the properness of colourings, then the number
of colours required grows rapidly with r. For any positive integer r, let sr(G) be the least
integer k so that an edge colouring c : E → {1, 2, . . . , k} exists with sc(u) 6= sc(v) for every
pair of r-neighbours u, v. Then it is known that sr(G) ≤ 6∆r−1 for every graph G without
isolated edges, see [19]. On the other hand, it can be proved that there are graphs for which
the parameter sr(G) cannot be much smaller than ∆r−1 for arbitrarily large ∆, also in the
family of regular graphs, contrary to the parameter χ′a,r – cf. Conjecture 3 and Theorems 4
and 5 above. Using the probabilistic method we provide the following strengthening of the
upper bound above, which also work similarly in the case of proper edge colourings.

Theorem 6 ([20]) For every integer r ≥ 2 there exists a constant ∆0 such that for each
graph G with maximum degree ∆ ≥ ∆0 and minimum degree δ ≥ ln8 ∆,

sr(G) < 4∆r−1

(
1 +

1

ln ∆

)
+ 12,

hence sr(G) ≤ (4 + o(1))∆r−1 for all graphs with δ ≥ ln8 ∆ and without isolated edges.

Similar results hold also in total versions of the problem discussed, see [22, 23].
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Extended Abstract

In an edge-coloured graph G, a path is said to be rainbow if it does not use two edges with
the same colour. Then the graph G is said to be rainbow-connected if any two vertices are
connected by a rainbow path. This concept of rainbow connection in graphs was introduced
by Chartrand et al. in [1]. Since then the rainbow connection number of various graph classes
has been determined. Also, different other parameters similar to rainbow connection were
introduced, such as strong rainbow connectivity, rainbow k-connectivity, k-rainbow index and
rainbow vertex connection. See [7] for a survey about these different parameters.

The notions of rainbow connection and strong rainbow connection readily extend to di-
graphs, using arc-colouring instead of edge-colourings and directed paths instead of paths.
The study of rainbow connection in oriented graphs was initiated by Dorbec et al. in [6] and
then studied by Alva-Samos and Montellano-Ballesteros in [2, 3, 4]. Rainbow connectivity
in digraphs was considered by Ananth, Nasre and Sarpatwar in [5] from the computational
point of view.

A digraph G is strongly connected (strong for short) if there exists a uv-path in G for
every two vertices u and v. The digraph G is minimally strongly connected if G is strong and,
for every arc xy in G, the digraph G − xy (obtained from G by removing the arc xy) is not
strong.

Let G be a digraph. A k-arc-colouring of G, k ≥ 1, is a mapping ϕ : A(G) → {1, . . . , k}.
Note that adjacent arcs may receive the same colour. An arc-coloured digraph is then a pair
(G,ϕ) where G is a digraph and ϕ an arc-colouring of G. A path P in (G,ϕ) is rainbow if no
two arcs of P are coloured with the same colour. An arc-coloured digraph (G,ϕ) is rainbow
connected (or, equivalently, ϕ is a rainbow arc-colouring of G) if any two vertices in G are
connected by a rainbow path.

For any two vertices u, v of G, a rainbow uv-geodesic is a rainbow uv-path of length
distG(u, v). An arc-coloured digraph (G,ϕ) is strongly rainbow connected (or, equivalently,
ϕ is a strong rainbow arc-colouring of G) if there exists a rainbow uv-geodesic for any two
vertices u and v in G.

Note that in order to admit a rainbow arc-colouring, or a strong rainbow arc-colouring, a
digraph must be strong. The rainbow connection number of a strong digraph G, denoted by
~rc(G), is the smallest number k such that G admits a rainbow k-arc-colouring. The strong
rainbow connection number of a strong digraph G, denoted ~src(G), is the smallest number k

such that G admits a strong rainbow k-arc-colouring. Observe that for any strong digraph G

we have ~rc(G) ≤ ~src(G).
Another easy observation is that ~src(G) ≤ n for every digraph G of order n. Let V (G) =

{x1, . . . , xn}. We define an n-arc-colouring ϕ of G by setting ϕ(xixj) = j for every arc xixj in
A(G). Obviously, every elementary path in G is rainbow and, therefore, ϕ is a strong rainbow
arc-colouring of G, which gives ~src(G) ≤ n.

Moreover, we clearly have diam(G) ≤ ~rc(G), since any rainbow uv-path such that (u, v) is
an antipodal pair of vertices must use at least diam(G) colours. We thus have the following
proposition.

Proposition 1 If G is a strong digraph of order n with diameter d, then d ≤ ~rc(G) ≤
~src(G) ≤ n.
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We prove that the value of ~src(G)− ~rc(G) can be arbitrarily large:

Theorem 2 For every integer k there exists a strong digraph Gk with ~src(G)− ~rc(G) = k.

It follows from the definitions that if H is a strong spanning subdigraph of G (that is,
V (H) = V (G)), then ~rc(G) ≤ ~rc(H). However, such an equality does not hold for the
strong rainbow connection number of digraphs. Alva-Samos and Montellano-Ballesteros [2]
showed that there exists digraphs G and H, such that H is a spanning subdigraph of G and
~src(G) > ~src(H). The digraph G constructed in [2] contains pairs of opposite arcs. We can

prove that this property also holds for oriented graphs:

Proposition 3 There exist strong oriented graphs G and H, such that H is a spanning
subdigraph of G and ~src(G) > ~src(H).

The upper bound in Proposition 1 is tight since ~rc(Cn) = ~src(Cn) = n for the cycle Cn

on n vertices. Moreover, we prove the following theorem.

Theorem 4 Let G be a minimally strongly connected digraph of order n. Then ~src(G) = n

if and only if G is a cycle.

Since ~rc(G) ≤ ~rc(H) whenever H is a spanning subdigraph of an oriented graph G,
it follows from Theorem 4 that ~rc(G) ≤ n − 1 for every non-Hamiltonian oriented graph
G of order n (this was already observed in [6]). Although the inequality ~rc(G) ≤ ~rc(H)
does not hold in general for digraphs (see Proposition 3), we can prove a similar result for
non-Hamiltonian digraphs, with an additional assumption on the diameter. However, we
conjecture that this diameter condition can be dropped.

Theorem 5 Let G be a strong digraph of order n. If G is non-Hamiltonian and diam(G) =
n− 1, then ~src(G) ≤ n− 1.

Conjecture 6 Let G be a strong digraph of order n. If G is non-Hamiltonian then ~src(G) ≤
n− 1.

Furthermore, we study the strong rainbow connection number of strong tournaments. We
first prove the following result.

Theorem 7 Let T be a strong tournament of order n ≥ 4. Then 3 ≤ ~src(T ) ≤ n− 1.

Both bounds in Theorem 7 are tight and, moreover, ~src(T ) can take any value between 3
and n− 1, as shown by the following result.

Theorem 8 For every two integers n and k, 3 ≤ k ≤ n−1, there exists a strong tournament
Tn,k of order n with ~src(Tn,k) = k.

In [6], it has been proved that the rainbow connection number of every tournament is
bounded by a function of its diameter, namely ~rc(T ) ≤ diam(T ) + 2. However, such a result
does not hold for the strong rainbow connection number, as shown by the next theorem.

Theorem 9 For every two integers d and k, 3 ≤ d ≤ k, there exists a strong tournament
Fd,k with diam(Fd,k) = d and ~src(Fd,k) = k.

Theorem 9 says that the strong rainbow connection number of a tournament with diameter
at least 3 can be arbitrarily large. We believe that this is no longer true for tournaments with
diameter 2 and thus propose the following:

Conjecture 10 There exists a constant t such that for every strong digraph G with
diam(G) = 2, ~src(G) ≤ t.
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Extended Abstract

A group divisible design GDD(v = v1 + v2 + · · · + vg, g, k;λ1, λ2) is an ordered pair (V,B)
where V is a v-set of symbols and B is a collection of k-subsets (called blocks) of V satisfying
the following properties: the v-set is divided into g groups of sizes v1, v2, . . . , vg; each pair of
symbols from the same group occurs in exactly λ1 blocks in B; and each pair of symbols from
different groups occurs in exactly λ2 blocks in B.

Group divisible designs can be described graphically as follows. Let λKv denote the graph
on v vertices in which each pair of distinct vertices is joined by λ edges. Let G1 and G2 be
vertex disjoint graphs. The graph G1∨λG2 is formed from the union of G1 and G2 by joining
each vertex in G1 to each vertex in G2 with λ edges. Let G and H be graphs with G is a
subgraph of H. A G-decomposition of a graph H is a partition of the edge set of H such that
each element of the partition induces a copy of G. Thus an existence of a GDD(m,n;λ1, λ2)
is easily seen to be equivalent to an existence of a K3-decomposition of λ1Km ∨λ2 λ1Kn.

The problem of the existence of group divisible design has been interested for a long
time. In 1952, Bose and Shimamoto published a work that classified the designs [2]. The
case when g = 2 and k = 3 is of highly interest recently (Specifically, we will use the nota-
tion GDD(m,n;λ1, λ2) to means GDD(v = m + n, 2, 3;λ1, λ2)). Note that the existence of
GDD(m,n;λ1, λ2) is equivalent to the existence of a K3-decomposition of λ1Km ∨λ2 λ1Kn.
In particular, the case where λ1 = λ2 = λ is equivalent to K3-decomposition of λKm+n, such
a result is known as 2-fold triple system and appears in many standard textbooks (See [7]).
Series of research articles had collectively solved the problem of existence of group divisible
design with parameter GDD(m,n;λ1, λ2) where λ1 > λ2. (eg. [4],[6],[8],[11].) The case where
λ1 < λ2 is considered more difficult. The case where λ1 = 1, λ2 = 2 and m < n

2 is established
in 2012 [10]. When λ1 = 1, λ2 = 3, the problem was partially solved recently in 2015 [12]. A
GDD(m,n;λ1, λ2) is called gregarious if each block in the design contains elements from both
groups. El-Zanati et al. found all (m,n) where gregarious GDD(m,n; 1, 2) exists [5]. Up to
date, no other result where λ1 < λ2 has been known.

In this paper we continue along this line of work. In particular, we solve the existence of
a GDD(m,n; 2, λ) where λ > 2.

An existence of a K3-decomposition of λ1Km ∨λ2 λ1Kn yields the following necessary
conditions of the existence of our designs.

Theorem 1 Let (m,n) ∈ N2, if GDD(m,n; 2, λ) exists then

1. 3 | m(m− 1) + n(n− 1) + λmn,

2. 2 | λm and 2 | λn, and

3. λ
2 ≤ m−1

n + n−1
m .

For sufficiency, we have finished the constructions of our designs for almost all the cases.
This paper uses various graph decomposition techniques, for instant, 1-factors, 2-factors,
Hamiltonian cycles and resolvable classes. One of the major tools is the result from the
Alspach’s problem [1]. He asked whether it is possible to decompose the complete graph on n
vertices, denoted Kn, into t cycles of specified lengths m1, ...,mt given the obvious necessary
conditions are satisfied. After series of research articles, Bryant, Horsley and Pettersen finally
solved the problem in [3] as the result of the following theorm.

Theorem 2 [3]
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1. There is a decomposition G1, G2, ..., Gt of Kn in which Gi is an mi-cycle for i = 1, 2, ..., t

if and only if n is odd, 3 ≤ mi ≤ n for i = 1, 2, ..., t and m1 +m2 + ...+mt =
n(n−1)

2 .

2. There is a decomposition G1, G2, ..., Gt, I of Kn in which Gi is an mi-cycle for i =
1, 2, ..., t and I is a one-factor if and only if n is even, 3 ≤ mi ≤ n for i = 1, 2, ..., t and
m1 +m2 + ...+mt =

n(n−2)
2 .

Let S be the set of the residue modulo 6 of all ordered triples, (m,n, λ), where m > n,
that satisfies necessary conditions (1) and (2) in Theorem 1. First, we divide S into seven
groups for the sake of their constructions as followings:

1. S1 = {(m,n, λ) ∈ S | m ̸≡ 2 (mod 3) ∧ n ̸≡ 2 (mod 3) ∧ λ ≡ 0 (mod 2)}

2. S2 = {(m,n, λ) ∈ S | m ≡ 2 (mod 3) ∧ n ̸≡ 2 (mod 3) ∧ λ ≡ 0 (mod 2)}

3. S3 = {(m,n, λ) ∈ S | m ̸≡ 2 (mod 3) ∧ n ̸≡ 2 (mod 3) ∧ λ ≡ 1 (mod 2)}

4. S4 = {(m,n, λ) ∈ S | m ≡ 2 (mod 3) ∧ n ̸≡ 2 (mod 3) ∧ λ ≡ 1 (mod 2)}

5. S5 = {(m,n, λ) ∈ S | n ≡ 2 (mod 3) ∧ λ ≡ 0 (mod 2)}

6. S6 = {(m,n, λ) ∈ S | m ≡ 2 (mod 3) ∧ n ≡ 2 (mod 3) ∧ λ ̸≡ 0 (mod 2)}

7. S7 = {(m,n, λ) ∈ S | m ̸≡ 2 (mod 3) ∧ n ≡ 2 (mod 3) ∧ λ ̸≡ 0 (mod 2)}

Our result yields the following theorems.

Theorem 3 Let (m,n, λ) ∈ N3 and m−1
n ≥ λ

2 . If the residue modulo 6 of (m,n, λ) is in S1

or S2 then GDD(m,n; 2, λ) exists.

Theorem 4 Let (m,n, λ) ∈ N3 and m−1
n ≥ λ

2 . If the residue modulo 6 of (m,n, λ) is in S3

or S4 then GDD(m,n; 2, λ) exists.

Theorem 5 Let (m,n, λ) ∈ N3 and m−1
n − 2

n ≥ λ
2 and n− 1 ≥ λ

2 . If the residue modulo 6 of
(m,n, λ) is in S5 then GDD(m,n; 2, λ) exists.

Theorem 6 Let (m,n, λ) ∈ N3 and m−1
n − 2

n ≥ λ
2 and n(n − 1) ≥ λn − 2. If the residue

modulo 6 of (m,n, λ) is in S6 then GDD(m,n; 2, λ) exists.

Theorem 7 Let (m,n, λ) ∈ N3 and m−1
n − 8

n ≥ λ
2 and n−1

2 ≥ λ. If the residue modulo 6 of
(m,n, λ) is in S7 then GDD(m,n; 2, λ) exists.

We would note further that our techniques in Theorems 3-7 to construct all GDDs under
certain restrictions, for example the assumption m−1

n ≥ λ
2 in Theorem 3. However, according

to the necessary condition (3) in Theorem 1, there should exist the designs for all (m,n, λ) ∈ S
satisfying λ

2 ≤ m−1
n + n−1

m . This means that our construction still could not provide the
complete solution of the problem. But, from further analysis, we essentially have proved that
our construction works most of the cases. The following theorems are our results.

Theorem 8 If n ̸≡ 2 (mod 3) then the necessary condition for the existence of GDD(m,n; 2, λ)
is also sufficient except for possibly the largest λ possible.

Theorem 9 If n ≡ 2 (mod 3), λ ≡ 0 (mod 2) and n >
√
m− 1 then the necessary condition

for the existence of GDD(m,n; 2, λ) is also sufficient except for possibly the largest λ possible.

Theorem 10 If m ≡ 2 (mod 3), n ≡ 2 (mod 3), λ ̸≡ 0 (mod 2) and n >
√
m− 1 then the

necessary condition for the existence of GDD(m,n; 2, λ) is also sufficient except for possibly
the largest λ possible.
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Theorem 11 If m ̸≡ 2 (mod 3), n ≡ 2 (mod 3), λ ̸≡ 0 (mod 2) and n > 2
√
m− 1 then the

necessary condition for the existence of GDD(m,n; 2, λ) is also sufficient except for possibly
the largest λ possible.

Open Problem

Consider a fixed (m,n) and (m,n, λ) ∈ S1 ∪ S2 ∪ S3 ∪ S4. By the necessary condition (3)
in Theorem 1, there will be the largest λ which satisfies m−1

n + n−1
m ≥ λ

2 . We call such λ,
λmax(m,n). Furthermore, there will be the largest λ which satisfies m−1

n ≥ λ
2 , and we call

λt(m,n). Now since m > n and λ > 2, we have λmax(m,n)− λt(m,n) < 2.
Here are the cases which the problem is still open. We list them in the following table.

m\n 0 1 2 3 4 5
0 λmax(m,n) λmax(m,n) λmax(m,n) λmax(m,n)
1 λmax(m,n) λmax(m,n) ∗ λmax(m,n) λmax(m,n) ∗
2 λmax(m,n) ∗ λmax(m,n) ∗
3 λmax(m,n) λmax(m,n) λmax(m,n) λmax(m,n)
4 λmax(m,n) λmax(m,n) †,†† λmax(m,n) λmax(m,n) ∗
5 λmax(m,n) ∗ λmax(m,n) ∗

∗ means If n >
√
m− 1, λmax(m,n). If n ≤

√
m− 1, all λ.

† means If n >
√
m− 1, λmax(m,n). If n ≤

√
m− 1, all λ. (If λt(m,n) ≡ 2 (mod 6))

†† means If n > 2
√
m− 1, λmax(m,n). If n ≤ 2

√
m− 1, all λ. (If λt(m,n) ≡ 5 (mod 6))
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Extended Abstract

The score sequence of a tournament (a directed complete graph) is the sequence of outdegrees
of its vertices. Landau’s theorem characterises those sequences that can be realised as the
score sequence of some tournament.

Theorem 1 ([3]) A sequence (di)
n
i=1 of non–negative integers is the score sequence of some

tournament if and only if ∑
i∈I

di ≥
(
|I|
2

)
for all I ⊆ {1, 2, . . . , n}, with equality for I = {1, 2, . . . , n}.

We will deal with the theory of tournament limits and tournament kernels, with the
ultimate aim of proving a limit and kernel analogue of Theorem 1. The theory of tournament
limits is developed in [2, 4] and is based on the homomorphism numbers of test graphs. Given
a digraph F on k vertices and a tournament G on n vertices, define

t(F,G) =
hom(F,G)

nk
,

where hom(F,G) is the number of homomorphisms of F into G. Roughly speaking, t(F,G)
is the normalised number of “copies” of F inside G. If (Gn)∞n=1 is a sequence of tournaments
such that t(F,Gn) converges for each digraph F , then we say that the sequence (Gn)∞n=1 is
convergent. Corresponding to each convergent tournament sequence is a tournament limit
(which can be constructed by taking the completion of the set of tournaments embedded in a
suitable metric space). If Gn converges to the tournament limit Γ, then it holds by definition
that

t(F,Gn)→ t(F,Γ)

for each digraph F . The tournament limits are very much abstract limit objects, defined
completely in terms of their homomorphism densities, but each tournament limit Γ can be
represented analytically by so–called a tournament kernels, which are measurable functions
W : [0, 1]2 → [0, 1] satisfying W (x, y) +W (y, x) = 1. The functions of this type are precisely
the functional versions of the adjacency matrices of finite tournaments. Put shortly, one can
define homomorphism numbers of kernels via the relation

t(F,W ) :=

∫
[0,1]|V (F )|

∏
ij∈E(F )

W (xi, xj)

|V (F )|∏
i=1

dxi

for any digraph F . The kernels W which represent a given tournament limit Γ are precisely
those which satisfy t(F,W ) = t(F,Γ) for each digraph F . This dual world offers both some
complications (especially in terms of determining which tournament kernels represent the
same limit) but also a great deal of flexibility, since one can often choose to work with limits
or with kernels.

To extend Theorem 1 to tournament kernels and tournament limits, we need to extend
the notion of score sequence to these two settings. For tournament limits, we will use the
degree distribution. The outdegree distribution of a finite tournament G is found by simply
counting the relative frequence of the numbers {0, 1, 2, . . . , |G| − 1} in the score sequence of
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G. This is the same as counting the number of occurences of copies of Sk, k = 0, 1, . . . , |G|,
in G, where Sk denotes the digraph with one vertex joined by outgoing edges to k other
vertices. This defines a distribution on [0, 1], the moments of which are the numbers t(Sk, G).
Since tournament limits are defined in terms of homomorphism densities, we may define the
outdegree distribution, denoted ν+(Γ) of a tournament limit Γ as the (unique) probability
measure on [0, 1] with k:th moment t(Sk,Γ). (One should, of course, check that this is well–
defined.)

For tournament kernels we employ the analogy the adjacency matrix. IfW is a tournament
kernel, the function f(x) =

∫ 1

0
W (x, y)dy is called the score function ofW . (Integrating across

is the analogue of summing the entries of a row in the adjacency matrix, which gives the score
of that vertex.) Since W (x, y) +W (y, x) = 1 almost everywhere, it follows that∫

A

f(x)dx =

∫
A

∫ 1

0

W (x, y)dxdy ≥
∫
A×A

W (x, y)dxdy =
λ(A)2

2
,

for any measurable A ⊆ [0, 1], where λ denotes Lebesgue measure on [0, 1]. It turns out that
this necessary conditions is also sufficient, in the sense of the following thoerem. (Note that
we identify distributions with the corresponding measures.)

Theorem 2 ([5]) Let f : [0, 1]→ [0, 1] be a function. Then the following are equivalent.

1. There exists a tournament limit Γ such that ν+(Γ) = λ(f−1(·)).

2. There exists a tournament kernel W with score function f (almost everywhere).

3. For all measurable A ⊆ [0, 1], ∫
A

f(x)dx ≥ λ(A)2

2
.

with equality if λ(A) = 1.

The main ingredients in the proof of Theorem 2 are discretisations, some results on weak
convergence, and the Hardy–Littlewood inequality.

Avery [1] posed and resolved the question which score sequences are realised by a unique
tournament (up to isomorphism). A natural question to ask is therefore which score functions
or degree distributions are realised by a unique kernel or limit. Since the question of unique-
ness for kernels is rather involved, we state the limit version of the result. It transpires that
the presence of 3–cycles is of importance. Denote by C3 the digraph with vertex set {1, 2, 3}
and edge set {12, 23, 31}.

Theorem 3 ([5]) Let Γ some tournament limit. Then there exists some tournament limit
Γ′ 6= Γ with ν+(Γ) = ν+(Γ′) if and only if t(C3,Γ) > 0.

It should be mentioned that the number t(C3,Γ) is determined by the outdegree distribution;
alternatively by the numbers t(Sk,Γ), k ≥ 1. To see why the presence of 3–cycles should be
critical, one should perhaps consider the situation for finite tournaments. Reversing the arcs
in a 3–cycle in a tournament does not change the score sequence of the tournament. However,
these arc reversals would typically (but not always) result in changing the isomorphism type
of the tournament. A similar situation occurs in the limit setting. Indeed, the proof of
Theorem 3 goes via a more–or–less explicit construction of Γ′ by “reversing arcs” of 3–cycles
in Γ, leading eventually to t(C4,Γ) 6= t(C4,Γ

′), which implies Γ 6= Γ′.
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Square-free graphs are multiplicative
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Extended Abstract

Graph homomorphism is an ubiquitous notion in graph theory with a variety of applications,
and a first step to understanding more general constraints given by relational structures, see
e.g. the monograph of Hell and Nešetřil [5]. We write µ : G→ H if µ is a homomorphism from
the graph G to H, or simply G → H if such a homomorphism exists. For example, a graph
G is k-colorable iff it has a homomorphisms to the complete graph on k vertices, G→ Kk.

The tensor product G×H is a natural operation arising in this context, defined as having a
vertex for every pair (g, h) ∈ V (G)×V (H), and an edge between (g, h) and (g′, h′) whenever
gg′ ∈ E(G) and hh′ ∈ E(H). It coincides with the so called categorical product in the
category of graphs, with homomorphisms as arrows. In particular, for graphs K,G,H we
have that K → G×H if and only if K → G and K → H.

Hedetniemi [4] conjectured the following for the chromatic number of a product of graphs:

Conjecture 1 For any two graphs G, H,

χ(G×H) = min(χ(G), χ(H))

This seemingly innocent statement withstood 50 years of research, and is only known to
hold in very special cases. Seeing colorings as homomorphism, we get the following equivalent
statement: for any graphs G,H and any integer k, G×H → Kk ⇔ G→ Kk or H → Kk.

The same motivations lead to the more general question of which graphs K satisfy that
G×H → K ⇔ G→ K or H → K (for all graphs G,H). Such graphs are called multiplica-
tive. Hedetniemi’s conjecture is then the statement that all cliques Kk are multiplicative.

There are many equivalent definitions. To give one more example, the tensor product
and disjoint union define a distributive lattice, in which multiplicative graphs are precisely
the meet-irreducible elements, crucial for understanding this lattice structure. We refer to
the surveys of Zhu [11], Sauer [8], and Tardif [10] for a variety of results on Hedetniemi’s
conjecture and multiplicative graphs.

Results
Previously, the only graphs shown to be multiplicative were: K1 and K2 (trivially), K3 by
El-Zahar and Sauer [2], a generalization to odd cycles C2i+1 by Häggkvist et al. [3], and,
much later, a further generalization to all circular cliques Kp/q with p

q < 4 by Tardif [9].
We use topology to show the following, giving in particular the first examples of multi-

plicative graphs with arbitrarily high chromatic number.

Theorem 2 Every square-free graph is multiplicative.

Square-free graphs, that is, graphs without the 4-cycle C4 as a subgraph (whether induced
or not), were previously considered by Delhommé and Sauer [1], who showed them to be
multiplicative if we limit ourselves to products of graphs that both contain a triangle. Our
proofs, however, share little with those in [1], instead formalizing and extending the topological
intuitions implicitly used in [2] and [3]. We use the same methods to give a different proof
for circular cliques, which subsumes all previously known cases.

Theorem 3 Every circular clique Kp/q with p
q < 4 is multiplicative.
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Our general approach relies on assigning a topological space to every graph and using
topological invariants to show or improve properties of a given coloring of a product of graphs.
While topology underlies most of the ideas, the formal proofs only need to use relatively
simple, discrete, algebraic descriptions of the invariants.

The topological spaces we use could be equivalently defined with the so called box complex
– one of the basic objects studied in topological combinatorics; we refer to Matoušek’s book [7]
for a gentle, but in-depth introduction to this field. The box complex is usually used to give
lower bounds on the chromatic number of a graph, as in Lovász’ famous proof of Kneser’s
conjecture [6]; however, we use it for square-free graphs, which is precisely the case where
the topological lower bounds are almost trivial. This suggests there are still unexplored
connections of topology with combinatorics and hints at many avenues for generalizations.
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Extended Abstract

1 Logic of the random graph

We study asymptotical probabilities of �rst order and monadic second order properties of
Erd®s�Rényi random graphs G(n, p(n)) [1]�[4]. Recall that edges in this graph on the set
of vertices Vn = {1, . . . , n} appear independently with probability p = p(n) (i.e., for any
undirected graph H = (Vn, E) without loops and multiple edges the equality P(G(n, p) =

H) = p|E|(1− p)(
n
2)−|E| holds).

Formulae in the �rst order language of graphs (�rst-order formulae) [3]�[6] are constructed
using relational symbols ∼ (the symbol of adjacency) and =; logical connectivities ¬,⇒,⇔
,∨,∧; variables x, y, x1, . . . (that express vertices of a graph); and quanti�ers ∀,∃. Monadic
second order formulae [7, 8] are built of the above symbols of the �rst order language and
variables X,Y,X1, . . . that express unary predicates. Following [3]�[6], we call a number of
nested quanti�ers in the longest chain of nested quanti�ers of a formula φ the quanti�er depth

q(φ). For example, the formula

(∀X ([∃x1∃x2 (X(x1) ∧ (¬(X(x2))))]⇒ [∃y∃z (X(y) ∧ (¬(X(z))) ∧ (y ∼ z))]))

has quanti�er depth 3 and expresses the property of being connected. It is known that this
property is not expressed by a �rst order formula (see, e.g., [3]).

We say that G(n, p) obeys FO zero-one law (MSO zero-one law) if for any �rst order
formula (monadic second-order formula) it is either true asymptotically almost surely (a.a.s.)
or false a.a.s. (as n→∞). In 1988, S. Shelah and J. Spencer [9] proved the following zero-one
law for the random graph G(n, n−α).

Theorem 1 Let α > 0. The random graph G(n, n−α) does not obey FO zero-one law if and

only either α ∈ (0, 1] ∩Q or α = 1 + 1/l for some integer l.

Obviously, there is no MSO zero-one law when even FO zero-one law does not hold. In
1993, J. Tyszkiewicz [7] proved that G(n, n−α) does not obey MSO zero-one law for irrational
α ∈ (0, 1) also. When α > 1 and does not equal to any of 1+1/l MSO zero-one law holds. The
last statement simply follows from standart arguments from the theory of logical equivalence.

Theorem 2 Let α > 0. The random graph G(n, n−α) does not obey MSO zero-one law if

and only if either α ∈ (0, 1] or α = 1 + 1/l for some integer l.

For a formula φ, consider the set S(φ) of α such that G(n, n−α) does not obey the zero-
one law for the �xed formula φ. Both theorems do not give any explanation of how the set
S(φ) depends on φ (or even on a quanti�er depth of this formula). However, better insight
into an asymptotical behavior of probabilities of the properties expressed by �rst order and
monadic second order formulae is given by zero-one k-laws (see Section 3), which are well
studied only for the �rst order language and α ≤ 1 (see, e.g., [3]). We obtain new zero-one
k-laws (both for �rst order and monadic second order languages) when α > 1 and give their
statements in Section 3. Proofs of these results are based on the existed study of �rst order
equivalence classes and our study of monadic second order equivalence classes (see Section 2).
The respective results are of interest by themselves.

1This work was carried out with the support of the Russian Science Foundation grant No. 16-11-10014.
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2 Logical equivalence

For two graphs G and H and any positive integer k, the notation G ≡FO; graphs
k H denotes that

any �rst order formula φ with q(φ) ≤ k is true on both G andH or false on both G andH. The

notation G ≡MSO; graphs
k H is de�ned similarly. Obviously, ≡FO; graphs

k and ≡MSO; graphs
k are

both equivalence relations on the set of all graphs. Moreover, for every k there are only �nitely
many equivalence classes (see, e.g., [6]) and an upper bounds for the cardinality rFO; graphs

k of

the set of all ≡FO; graphs
k -equivalence classes RFO; graphs

k is known [10] and given below. Let
T (s) be the tower function: T (s) = 2T (s−1), T (1) = 2. Let log∗(k) = min{i : T (i) ≥ k}.

Theorem 3

rFO; graphs
k ≤ T (k + 2 + log∗(k)) +O(1).

Similarly, rMSO; graphs
k and RMSO; graphs

k are de�ned. In this paper, we prove a similar result

for ≡MSO; graphs
k -equivalence.

Theorem 4 For any positive integer k,

rMSO; graphs
k ≤ T (k + 2 + log∗(k)).

Obviously, from our result it follows that O(1) can me removed in Theorem 3.
In order to prove the results on zero-one laws from Section 3, we also need an extension

of the above theory to the case of rooted trees. Recall that a rooted tree TR is a tree with one
distinguished vertex R, which is called the root. If R, . . . , x, y is a simple path in TR, then x is
called a parent of y and y is called a child of x. The �rst order language for rooted trees has a
constant symbol R (for the root) and the parent�child relation P (x, y). For two rooted trees

TR and T ′R′ and any positive integer k, the notations TR ≡FO; trees
k T ′R′ , TR ≡FO; trees

k T ′R′ ,

rFO; trees
k , rMSO; trees

k , RFO; trees
k , RMSO; trees

k are de�ned in the same way as for graphs. The
following result is proved in [10].

Theorem 5

rFO; trees
k ≤ T (k + 2 + log∗(k)) +O(1).

For any A ∈ RFO; trees
k , the following inequality holds:

min
TR∈A

|V (TR)| ≤ T (k + 4 + log∗(k)) +O(1).

We prove a similar result for ≡MSO; trees
k -equivalence.

Theorem 6 Let k ≥ 4 be an integer. Then

rMSO; trees
k ≤ T (k + 2 + log∗(k)).

For any A ∈ RMSO; trees
k , the following inequality holds:

min
TR∈A

|V (TR)| ≤ T (k + 4 + log∗(k)).

Note that O(1) can be removed in Theorem 5 for all k ≥ 4.
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3 Zero-one k-laws

By Theorem 1, for any rational α ∈ (0, 1] there is a �rst order formula φ which is true on
G(n, p) with probability whose asymptotics either does not exist or does not equal to 0 or 1.
Obviously, this statement need not be true for formulae with bounded quanti�er depth. We
say that G(n, p) obeys FO zero-one k-law (MSO zero-one k-law) if for any �rst order formula
(monadic second-order formula) having quanti�er depth at most k it is either true a.a.s. or
false a.a.s. (as n→∞). In [11]�[13], the following zero-one k-laws are proved.

Theorem 7 For any k ≥ 3 and any

α ∈ (0, 1/(k − 2))

the random graph G(n, n−α) obeys FO zero-one k-law. If α = 1/(k− 2), then G(n, n−α) does
not obey FO zero-one k-law.

For any k ≥ 4 and any

α ∈ (1− 1/(2k − 2), 1)

the random graph G(n, n−α) obeys FO zero-one k-law. If α = 1− 1/(2k − 2), then G(n, n−α)
does not obey FO zero-one k-law.

In this paper, we consider the very sparse case α > 1. From Theorems 1, 2, G(n, n−α)
obeys both zero-one k-laws if α 6= 1 + 1/l for any positive integer l. We get bounds on
the smallest l such that G(n, n−1−1/l) obeys FO zero-one k-law and the largest l such that
G(n, n−1−1/l) does not obey MSO zero-one k-law. Using the statements from Section 2, we
get the following zero-one laws.

Theorem 8 Let l be positive integer, α = 1 + 1/l.

· Let k ≥ 7 be an arbitrary integer. If l ≤ 2T (k − 4), then the random graph G(n, n−α)
does not obey FO zero-one k-law.

· Let k ≥ 4 be an arbitrary integer. If l ≥ T (k + log∗(k) + 4), then the random graph

G(n, n−α) obeys MSO zero-one k-law.

The second (positive) statement of Theorem 8 easily follows from Theorem 6.
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