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Invited talks

Ross Kang – The global structure of large locally sparse graphs

Radboud University Nijmegen

The structure of triangle-free graphs has long played an in�uential role in the development of combina-

torics and graph theory. Both Mantel’s (1907) and Ramsey’s (1930) theorems yield global structure from

the local property of having no edges in any neighbourhood. I have recently made some basic explorations

in this classic area, both beginning and ending in list colouring problems.

The �rst part concerns a recent conjecture on bipartite induced density in triangle-free graphs, which

innocently originated in the study of separation choosability. I will discuss how the conjecture has stim-

ulated and coincided with a small burst of related activity and new directions.

The second part presents a new structural framework (that includes list colouring) for locally sparse

graphs. This generalises and strengthens many landmark results in the area, including for example those of

Ajtai, Komlós, Szemerédi (1981), Shearer (1983), Johansson (1996), Alon (1996), Alon, Krivelevich, Sudakov

(1999), and Molloy (2019). It is built around a technique inspired by statistical physics –namely, a local

analysis of the hard-core model.

This covers joint work with, variously, Wouter Cames van Batenburg, Ewan Davies, Louis Esperet,

Rémi de Joannis de Verclos, François Pirot, Jean-Sébastien Sereni, and Stéphan Thomassé.

Łukasz Kowalik – Algebraic methods in parameterized graph algorithms

University of Warsaw

Connections between graph theory and algebra have lead to several elegant and powerful algorithms, with

perhaps most prominent examples being counting spanning trees using Kircho�’s matrix tree theorem

and Lovasz’ algorithm for testing if a graph admits a perfect matching using the Tutte matrix. In the

recent ten years, a number of algortihms of similar �avour have appeared in the area of parameterized

algorithms. In the lecture I will describe an algorithm for �nding a k-vertex path in an n-vertex graph

due to Björklund, Husfeldt, Kaski and Koivisto, running in timeO(1.66kn). Next, I will show a number of

adaptations of the basic technique to get even faster algorithms in restricted settings (like bounded degree

graphs) or to related problems including �nding trees instead of paths, the graph motif problem.

Joint work with A. Björklund, V. Kamat, P. Kaski, and M. Zehavi.

Jaroslav Nešetřil – Graphs representing algebras

Charles University

Groups, monoids and categories by graphs in relationship to sparse hierarchy of classes of graphs. A

joint work with P. Ossona de Mendez.
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Martin Škoviera – Projective �ows, con�gurations, and the structure of cubic graphs

Comenius University

We present a unifying approach to several important conjectures in graph theory in terms of nowhere-

zero �ows on cubic graphs where �ow-values are points of a con�guration of lines in a projective space

and out�ow-patterns are triples of points sharing a line of the con�guration. We then concentrate on two

conjectures where this approach proves useful.

The Berge conjecture suggests that every bridgeless cubic graph can have its edges covered by at

most �ve perfect matchings. It turns out that graphs that cannot be covered with four perfect matchings

are extremely rare and di�cult to �nd. We show that they can be e�ciently studied by means of �ows

whose out�ow patterns form a con�guration of six lines spanned by four points of the 3-dimensional

projective geometry PG(3, 2) in general position. We employ this knowledge to providing a great variety

of constructions of cubic graphs that require (at least) �ve perfect matchings to cover their edges, thereby

extending and generalising all previously known constructions of such graphs.

The shortest cycle conjecture of Alon, Tarsi, and Jaeger states that every bridgeless graph has a cycle

cover of length at most 7/5 ·mwherem is the number of edges. This conjecture is particularly interesting

for cubic graphs, where the largest values of the ratio between the length of a shortest cycle cover and the

number of edges are known. Although the 7/5 bound is reached by in�nitely many graphs, all cyclically

4-edge-connected cubic graphs where the length of a shortest cycle cover is known have covering ratio

close to the natural lower bound which equals 4/3. A conjecture of Brinkmann et al. even states that

every such graph has a cycle cover of length at most 4/3 · m + o(m). We disprove this conjecture by

displaying a family of graphs whose shortest cycle cover has length at least (4/3 + 1/69) ·m. The family

was found by using �ows with values in the 6-line con�guration in PG(3, 2) mentioned above.

The talk is based on a joint work with Edita Máčajová.

Maya Stein – Variants of the Erdős–Sós Conjecture

University of Chile

This talk will revolve around the question of what type of degree conditions can force the existence of

all trees of a certain size as subgraphs. A well-known conjecture in this direction, namely the Erdős–Sós

Conjecture, suggests that every graph of average degree > k − 1 contains each tree with k edges as a

subgraph. Note that k ∈ N is just any number, not necessarily related to the order of the host graph.

There are some newer conjectures aiming at the same conclusion (containment of each trees with

k edges). These conjectures replace the condition on the average degree with similar conditions either

on the median degree, or on both the maximum and minimum degree, or on other invariants related to

the degree sequence. There are also generalizations of the Erdős–Sós Conjecture to hypergraphs and to

digraphs.

We will survey the known results and open conjectures of this type, with special emphasis on acces-

sible open questions, and giving some insight into the methods employed in the di�erent approaches.

Kristina Vušković – Algorithms for (theta, wheel)-free graphs

University of Leeds

A theta is a subdivision ofK2,3 and a wheel is a graph that consist of a chordless cycle of length at least

4 and a vertex that has at least 3 neighbors on the cycle. In joint work with Trotignon and RadovanoviÄĞ

we obtained a structure theorem for graphs that do not contain thetas and wheels as induced subgraphs

(i.e. (theta, wheel)-free graphs) and several of its algorithmic consequences.

We decompose (theta, wheel)-free graphs using clique cutsets and 2-joins into graphs that are essen-

tially formed of a line graph of a triangle-free chordless graph plus a (possibly empty) clique (that attaches

to the rest of the graph in a particular way). A 2-join is an edge cutset that appears in decomposition the-

orems for several complex hereditary classes, such as perfect graphs, even-hole-free graphs and others. In

these decomposition theorems 2-joins are used together with vertex cutsets that are stronger than clique

7
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cutsets, such as star cutsets and their generalizations (which are much harder to use in algorithms). This

is a �rst example of a decomposition theorem that uses just the combination of clique cutsets and 2-joins.

This has several consequences.

First, we can easily transform our decomposition theorem into a complete structure theorem for (theta,

wheel)-free graphs, i.e. we show how every graph in the class can be built starting from basic graphs that

can be explicitly constructed, and gluing them together by prescribed composition operations, and all

graphs built this way are in the class. Such structure theorems are rare for hereditary graph classes, only

a few examples are known.

Next, we construct a polynomial-time decomposition based recognition algorithm. Recognizing classes

of graphs de�ned by excluding di�erent combinations of Truemper con�gurations (i.e. wheels, thetas,

prisms and pyramids) is a much studied problem. For some combinations the problem is known to be

polynomial (e.g. recognizing pyramids and thetas), whereas for others it is NP-complete (e.g. recogniz-

ing prisms and wheels). The class of (theta, wheel)-free graphs was the last of these types of recognition

problems that was open, which we have now resolved.

We then use the decomposition theorem to obtain polynomial-time algorithms for weighted stable

set, weighted clique and vertex coloring problems. For the weighted stable set problem, it was essential

to decompose the graph using a sequence of non-crossing 2-joins. The weighted clique problem we solve

by �rst showing the existence of a bisimplicial vertex (a vertex whose neighborhood partitions into 2

cliques). This is done elegantly by using the existence of an extreme 2-join (a 2-join whose one block of

decomposition does not have a 2-join). We also prove that every (theta, wheel)-free graph with maximum

clique size w admits a coloring with at most maxw,3 colors.

Finally, we obtain a polynomial-time algorithm for induced version of k-linkage problem (for �xed

k): given k distinct pairs of vertices (si, ti) of a graph G, decide whether there are k vertex-disjoint paths

Pi = si . . . ti, i = 1, . . . , k, such that there are no edges between the vertices of these paths.
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Colourings of cubic graphs inducing monochromatic subgraphs
Marien Abreu 1∗, Jan Goedgebeur 2†, Domenico Labbate 1∗ and Giuseppe Mazzuoccolo 3,

1 Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della
Basilicata – Potenza, Italy.

2 Department of Applied Mathematics, Computer Science and Statistics, Ghent University,
Ghent, Belgium.

3 Dipartimento di Informatica, Università degli Studi di Verona, Italy.

Extended Abstract

A k–bisection of a bridgeless cubic graph G is a 2–colouring of its vertex set such that
(i) the colour classes have the same cardinality and (ii) all connected components in the two
subgraphs induced by the colour classes (monochromatic components in what follows) have
order at most k. Note that the colourings not necessarily have to be proper.

There are several papers in literature considering 2–colourings of regular graphs which
satisfy condition (ii), but not necessarily condition (i), see [3, 6, 11, 13]. In particular, it
is easy to see that every cubic graph has a 2–colouring where all monochromatic connected
components are of order at most 2, but, in general, such a colouring does not satisfy condition
(i) and so it is not a 2–bisection. Thus, the existence of a 2–bisection in a cubic graph is not
guaranteed. For instance, the Petersen graph does not admit a 2–bisection. However, the
Petersen graph is an exception since it is the only known bridgeless cubic graph without a
2–bisection. This led Ban and Linial to state the following conjecture:

Conjecture 1 (Ban–Linial [5]) Every bridgeless cubic graph admits a 2–bisection, except
for the Petersen graph.

A similar problem for the edge set of a cubic graph has been studied. A linear forest is
a forest whose components are paths and a linear partition of a graph G is a partition of its
edge set into linear forests (cf. [9, 12]). Wormald made the following conjecture:

Conjecture 2 (Wormald [15]) Let G be a cubic graph with |E(G)| ≡ 0 (mod 2) (or equiv-
alently |V (G)| ≡ 0 (mod 4)). Then there exists a linear partition of G into two isomorphic
linear forests.

Note that the statement of Wormald’s Conjecture is equivalent to the statement that there
exists a 2–edge colouring of E(G) such that the two monochromatic subgraphs are isomorphic
linear forests. We define such a 2–edge colouring to be a Wormald colouring.

The main aim of the paper [2] on which this talk is based is to provide evidence of a strong
relation of the two previous conjectures with the following conjecture proposed by Ando [4]
in the 1990’s.

Conjecture 3 (Ando [4]) Every cubic graph admits a bisection such that the two induced
monochromatic subgraphs are isomorphic.

Note that the statement of Ando’s Conjecture is equivalent to the statement that a cubic
graph G admits a 2–vertex colouring of G, cV : V (G) −→ {B,W}, such that the monochro-
matic induced subgraphs are isomorphic. We call this an Ando colouring. Trivially, in order
to have isomorphic monochromatic induced subgraphs such a 2–colouring is a bisection.

In the paper we use two different approaches: the first one dealing with 2–bisections and
the second one with linear forests using Wormald Colouring. In this talk, we will mainly focus
on the first approach and relations between Ban–Linial and Ando’s Conjectures.

First of all, we provide evidence of a strong relation of the conjectures of Ban–Linial and
Wormald with Ando’s conjecture:
∗The first and third author were partially supported by a grant of the group GNSAGA of INdAM and by the

Italian Ministry Research Project PRIN 2012 “Geometric Structures, Combinatorics and their Applications”.
†The second author was supported by a postdoctoral fellowship of the Research Foundation Flanders

(FWO).
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Proposition 4 Let G be a bridgeless cubic graph. If G is a counterexample for Ando’s
Conjecture, then it is also a counterexample for the Ban–Linial Conjecture.

The previous proposition implies that every cubic graph with a 2–bisection is not a coun-
terexample for Ando’s Conjecture. In particular, note that in the proof we show that a
2–bisection is always a bisection with isomorphic parts.

Furthermore, we also give theoretical and computational evidence in their support. Indeed,
we prove Ban–Linial’s conjecture (and by Proposition 4 also Ando’s Conjecture) for cubic cycle
permutation graphs and in a separate paper [1], we have proved Ban–Linial’s conjecture for
claw–free cubic graphs.

As mentioned before, only one example of bridgeless cubic graph without a 2–bisection is
known (i.e. the Petersen graph). On the other hand, an infinite family of 1–connected cubic
graphs with no 2–bisection is constructed in [8]:

Take the module Lh (h ≥ 0) depicted in Figure 1. Note that L0 is K3,3 with an edge
subdivided with a new vertex.

h copies

Figure 1: The module Lh.

Let Tijk be the graph obtained by taking Li, Lj and Lk and adding a new vertex adjacent
to the three vertices of degree 2.

It is proved in [8] that Tijk does not admit a 2–bisection for all possible non–negative
values of i, j and k. We prove that all members of this family admit a 3–bisection with
isomorphic parts.

Proposition 5 For any i, j, k ≥ 0, the graph Tijk admits a 3–bisection with isomorphic parts.

Computationally we have seen that:

Observation 6 There are exactly 34 graphs among the cubic graphs with at most 32 ver-
tices which do not admit a 2–bisection. All of these graphs, except the Petersen graph, have
connectivity 1.

So this implies that the smallest counterexample to the Ban–Linial Conjecture must have
at least 34 vertices. Ban and Linial [5] have proved that every 3–edge colourable cubic graph
admits a 2–bisection. We have also tested which snarks of order 34 and 36 admit a 2–bisection,
which led to the following observation:

Observation 7 The Petersen graph is the only snark up to 36 vertices which does not admit
a 2–bisection.

So this provides further evidence to support the correctness of Conjecture 1.
Moreover, we pose some open problems stronger than the above mentioned conjectures.

First of all let us remark some properties of bisections with isomorphic parts i.e. (i) in all 2–
bisections the two monochromatic induced subgraphs are isomorphic and they are obviously
linear forests; (ii) all known graphs without a 2–bisection admit a 3–bisection with isomorphic
parts which are linear forests, except the Petersen graph; (iii) the Petersen graph admits a
4–bisection with isomorphic parts which are linear forests.

This gives rise to the following natural question: does every cubic graph admit a bisection
with isomorphic parts and with the additional property that these parts are linear forests?

To approach this problem, we observe that we can assume that both parts have maximum
degree two.

11



Proposition 8 Let G be a cubic graph admitting a bisection with isomorphic parts. Then G
admits a bisection with isomorphic parts having maximum degree 2.

Proposition 8 and previous remarks lead us to state the following strong version of Ando’s
Conjecture:

Conjecture 9 (Strong Ando Conjecture) Every cubic graph admits a bisection such that
the two induced subgraphs are isomorphic linear forests.

Computationally, using a slightly modified version of algorithm used to test Ban–Linial’s
conjecture we obtain from Observation 6 that

Corollary 10 The Strong version of Ando’s conjecture (i.e. Conjecture 9) (and thus also
Ando’s original conjecture) does not have any counterexamples with less than 34 vertices.

Finally, we would also like to point out, as mentioned earlier, that we can give a positive
answer for some instances of Ando’s Conjecture using either 2–bisections or linear forests. We
find it interesting that the few possible exceptions for which the approach with 2–bisections
is not feasible, are in the class of not 3–edge colourable cubic graphs. On the other hand, all
known exceptions for which the approach with our strengthened version of Wormald colourings
is not feasible, are in the class of 3–edge colourable cubic graphs. Note that, this indicates a
promising possibility for a complete proof of Ando’s Conjecture by proving that a given cubic
graph cannot be an exception for both of these two approaches (at least for a bridgeless cubic
graph).

As a by–product of studying 2–edge colourings of cubic graphs having linear forests as
monochromatic components, we also give a negative answer to a problem posed by Jackson
and Wormald in [12] (cf. also [14]) about certain decompositions of cubic graphs into linear
forests.

The k–linear arboricity of a graph G, introduced by Habib and Péroche [10], is the mini-
mum number of k–linear forests (forests whose connected components are paths of length at
most k) required to partition the edge set of G, and it is denoted by lak(G). Bermond et
al. [7] conjectured that la5(G) = 2 for every cubic graph G; in other words that the edge set
of a cubic graph can be partitioned into two k–linear forests for all k ≥ 5. The conjecture is
proved by Thomassen in [14].

In the same paper, Thomassen remarks that 5 cannot be replaced by 4 because of the two
cubic graphs of order 6, but up until now it was unknown if there exists a graph with at least
eight vertices for which 5 cannot be replaced by 4.

In fact, Jackson and Wormald explicitly ask in [12] if it is true that every cubic graph of
order at least eight can be decomposed in two 4–linear forests.

Problem 11 (Jackson and Wormald [12]) Is it true that la4(G) = 2 for all cubic graphs
G with at least eight vertices?

We give in Theorem 12 a negative answer to this question by showing that the Heawood
graph cannot be decomposed in two k–linear forests for k < 5. We also computationally show
that the two cubic graphs of order 6 and the Heawood graph are the only graphs with this
property up to at least 28 vertices (cf. Observation 13).

Recall that the Heawood graph H is the point/line incidence graph of the Fano plane
PG(2, 2) which is bipartite, 3–regular, 3–arc transitive and has girth 6 and diameter 3.

Theorem 12 Let H be the Heawood graph. Then, la4(H) > 2.

Observation 13 The two cubic graphs of order 6 and the Heawood graph are the only cubic
graphs up to at least 28 vertices which cannot be decomposed in two 4–linear forests.
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Following the flavour of what we have discussed previously and, particularly, aboutWormald’s
Conjecture, we wonder how we have to modify Thomassen’s result if we require to have two
linear forests which are also isomorphic. Obviously, this only makes sense if we consider cubic
graphs of order 0 (mod 4). We have extended our program to take this into account and
surprisingly, it turns out that we do not need paths of length more than four for all graphs
of order at most 24:

Observation 14 Every cubic graph with |V | ≡ 0 (mod 4) with at most 24 vertices has a
decomposition into two isomorphic 4–linear forests.

We leave the following strengthened version of Wormald’s Conjecture as an open problem:

Problem 15 Does every cubic graph with |V | ≡ 0 (mod 4) have a decomposition into two
isomorphic 4–linear forests?
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Extended Abstract

We consider two variants of orthogonal colouring games on graphs. In these games, two
players alternate colouring vertices (from a choice of m ∈ N colours) of a pair of isomorphic
graphs while respecting the properness and the orthogonality of the colouring. In the normal
play variant, the player who is unable to move loses. In the scoring variant, each player aims
to maximise her score, which is the number of coloured vertices in the copy of the graph she
owns.

We prove that, given an instance with a partial colouring, both the normal play and the
scoring variant of the game are PSPACE-complete. The main result of this paper is that the
second player has a strategy to force a draw in the scoring variant for any m ∈ N for graphs
that admit a strictly matched involution. We give a structural characterisation of such graphs
and bounds for the number of such graphs. However, we prove that it is NP-complete to
recognize graphs that admit a strictly matched involution.

1 Introduction
In this paper, we consider two game-theoretic variants of orthogonal graph colouring. Recall
that a partial colouring of a graph G = (V,E) is proper if any two adjacent coloured vertices
have distinct colours. Two partial colourings cA and cB of G are orthogonal if, for any two
vertices v, w ∈ V that are coloured in both cA and cB , the ordered pair of colours of v differs
from the ordered pair of the colours of w, i.e., (cA(v), cB(v)) 6= (cA(w), cB(w)). Both games
are played on two isomorphic copies GA and GB of a given graph G by two players, Alice
and Bob. We identify the vertices of GA and GB with their preimages in G. Initially, all
vertices of the graphs are uncoloured. Alternately, the players choose either GA or GB and
colour one of its uncoloured vertices with a colour from the set {1, . . . ,m}, thus creating
partial colourings cA and cB of G such that the properness and the orthogonality of the
partial colourings are not violated. The game ends when the players are unable to move. We
call the general framework of this type of game the orthogonal colouring game. The winning
conventions of the two variants of the game differ.

In the normal play variant NorMOCm(G) of the orthogonal colouring game, the player
who is unable to move loses. The other player wins. So there is no draw.

In the scoring variant MOCm(G) of the orthogonal colouring game, Alice owns GA and
Bob owns GB . The score of a player is the number of coloured vertices in their copy of G.
When no more vertices can be coloured, the player with the higher score wins. If the scores
are equal, there is a draw. The majority of the results of this paper are for the scoring variant.

As examples, Alice wins in MOC1(2K1) and Bob in MOC2(C4). As will be seen later in
section 2, there are examples where the result of the scoring variant is a draw.

Motivation and Related Work. The game MOCm(G) emanates from the overlap of
two lines of research: combinatorial and scoring games (specifically, colouring games) and
orthogonality of Latin squares or, more generally, of colourings of graphs.

1The full versions of this paper can be found at: hal.inria.fr/hal-02017462 and hal.inria.fr/hal-02053265.
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Combinatorial games have been vastly studied (e.g., [1, 7]), in particular in graphs, e.g., [4,
6]. In general, the loser is the first player who cannot move, called the normal play convention.
Note that a drawing strategy for the second player in the scoring variant of the orthogonal
colouring game is a winning strategy for the second player in the normal play convention.

The colouring game on graphs in the normal play convention, which was introduced as
the Achievement game in [11] and called the Proper k-colouring game in [5], is closely
related to the two variants of the orthogonal colouring game on graphs. In the Proper k-
colouring game, two players take turns colouring the vertices of a graph, while maintaining
that the colouring is proper. In [5], it was shown that this game is PSPACE-complete when
k ∈ N∗ is the number of colours (even if k is a fixed constant), and an initial partial colouring
is given. For k = 1 colour, the Proper k-colouring game is the well-studied game Node
Kayles. For specific classes of graphs, it is known which player wins the game Node Kayles,
e.g., for paths and cycles a complete characterisation was given in [7]. In [11], the winner was
characterized in the Proper k-colouring game played with k = 2 colours on paths and
cycles, and played with any number k of colours on the Petersen graph.

More recently, there has been the development of a theory of scoring games [13, 14,
15] where the winner is the one with the greater score. Another type of scoring games,
sometimes also called maker-breaker games, are based on the interplay of minimising versus
maximising a score. Here, game-theoretic graph parameters are motivated by trying to get
good approximations to graph parameters that are hard to calculate, e.g., chromatic number
[8] and domination number [12]. Typically, two players choose vertices (or edges or other sub-
objects) without violating a given property (e.g., independence). The score is the number of
vertices chosen where one player wants to maximise the number and the other to minimise it.

Orthogonal colourings of graphs, i.e., proper colourings of two isomorphic copies GA and
GB of a graph respecting the orthogonality condition, have been studied too (e.g., [2, 3, 10]).
In [10], they studied the parameters Oχ(G) and Oχk

(G) which are the minimum number of
colours in any pair of orthogonal colourings of G, respectively, required such that there exist
k mutually orthogonal colourings of G. Precisely, the graph versions of combinatorial objects
associated with orthogonality such as Latin squares and Latin rectangles, were studied in [3].

Orthogonal Latin squares are natural combinatorial objects where there are two ‘boards’
and these form the basis of a specific orthogonal colouring game played on Latin squares.

Recall (see Brualdi [9]) that an n × n square, partially filled with entries taken from
{1, 2, . . . , n}, has the Latin property if each row and column does not contain any repeated
entries. A fully filled n× n square is a Latin square if each entry is an integer between 1 and
n (inclusive) and each row and each column contains all n integers, which implies that the
square has the Latin property. For a (partially filled) n×n square, X, let cX(i, j) be the (i, j)
entry and ∅ if (i, j) is unfilled. Let A and B be (partially filled) n× n squares. Then A and
B are orthogonal if in the list ((cA(i, j), cB(i, j)))1≤i≤n,1≤j≤n, every ordered pair of integers
occurs at most once.

A Latin square of order n can be regarded as a proper colouring of the cartesian product of
Kn with itself. Thus, the concept of orthogonal Latin squares translates to graph colourings
and the orthogonal colouring game played on Latin squares is equivalent toMOCm(Kn�Kn).

2 Our Results
All graphs we consider are simple and undirected. We first consider the complexity of the
two variants of the game when a partial colouring is given as part of the input. Precisely:

Theorem 1. Given an instance NorMOCm(G) of the orthogonal colouring game that in-
cludes a partial colouring, the problem of determining the outcome of NorMOCm(G) under
optimal play is PSPACE-complete for all m ≥ 1.

Theorem 2. Given an instance MOCm(G) of the orthogonal colouring game that includes a
partial colouring, the problem of determining the outcome of MOCm(G) under optimal play
is PSPACE-complete for all m ≥ 3.
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Then we prove that for a special class of graphs, graphs admitting a strictly matched
involution, the second player, Bob, can achieve at least a draw in the scoring variant.

This class of graphs includes many special cases where the game is to create combinatorial
objects such as orthogonal Latin rectangles, double diagonal Latin squares, Latin squares, and
sudoku squares. Precisely, recall that, for a graph G = (V,E), an automorphism is a bijective
mapping σ : V −→ V with the property that ∀v, w ∈ V : (vw ∈ E ⇐⇒ σ(v)σ(w) ∈ E). An
involution of G is an automorphism σ of G with the property ∀v ∈ V : (σ ◦ σ)(v) = v. We
define an involution of G to be strictly matched if

(SI 1) the set F ⊆ V of fixed points of σ (i.e., F = {v ∈ V | σ(v) = v}) induces a complete
graph (i.e., for every v, w ∈ F with v 6= w we have vw ∈ E) and

(SI 2) for every v ∈ V \ F , we have the (matching) edge vσ(v) ∈ E.

If, for a graph G, there exists a strictly matched involution, we say that G admits a strictly
matched involution.

Let G1 and G2 be the two copies of G = (V,E) and let σ be a strictly matched involution
of G. For k ∈ {1, 2}, we denote by ck(v) the colour of the vertex v ∈ V in Gk. The strategy of
the second player, Bob, is to copy (in a certain sense) Alice’s moves in the other copy of the
graph. Copying the symbols using the same positions would, in many cases, not be feasible
because of orthogonality. Therefore, Bob couples the vertices of a graph with its image under
σ of the other graph. Bob always uses the same colour as Alice just previously used.

For c ∈ {c1, c2} we define c to be the other partial colouring from {c1, c2} distinct from c.
Consider the case that Alice assigns c(v) := s for some c ∈ {c1, c2}, some v ∈ V , and

some colour s ∈ [m]. Then, the copying strategy of Bob consists of assigning c(σ(v)) := s.
We prove that Bob will force a draw with this strategy.

Theorem 3. Let G be a graph that admits a strictly matched involution and m ∈ N. Then,
the second player has a strategy guaranteeing a draw in the game MOCm(G).

We first give an explicit characterization of all graphs G that admit a strictly matched
involution. We then use this to give an explicit construction for any of these graphs.

Theorem 4. A graph G admits a strictly matched involution if and only if its vertex set V
can be partitioned into a clique C and a set inducing a graph that has a perfect matching M
such that:

• for any two edges vw, xy ∈ M , the graph induced by v, w, x, y is isomorphic to a 2K2,
a C4 or a K4;

• for any edge vw ∈M and any vertex z ∈ C, the graph induced by the vertices v, w, z is
isomorphic to a K1 ∪K2 or a K3.

Corollary 5. Any graph G on n vertices admitting a strictly matched involution has a par-
tition of its vertex set into three (possibly empty) vertex subsets inducing a clique C of size
n−2k and two isomorphic graphs H and H ′, each of size k, for some k ∈ N with 0 ≤ k ≤

⌊
n
2

⌋
,

respectively. Moreover,

• for any pair (v, v′) of corresponding vertices v ∈ V (H) and v′ ∈ V (H ′) and any vertex
w ∈ C, either both vw and v′w exist or none of them;

• for any pair (v, v′) of corresponding vertices v ∈ V (H) and v′ ∈ V (H ′), we have the
existence of the matching edge vv′ ∈ E(G);

• for any two pairs (v, v′) and (w,w′) of corresponding vertices with v, w ∈ V (H) and
v′, w′ ∈ V (H ′), either both vw′ and v′w exist or none of them.
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According to Corollary 5, we can generate every graph on n vertices admitting a strictly
matched involution if we fix some integer k ≤ n

2 and take two copies of an arbitrary graph
on k vertices which are matched by an isomorphism and add possible edges according to the
rules given implicitly in Theorem 4 and explicitly in Corollary 5. Note that this construction
may create isomorphic and even identical graphs. However, it gives us an upper bound for
the number of such graphs. Before discussing the counting of such graphs, we prove that this
class of graphs is nontrivial, namely that recognizing such graphs is an NP-complete problem.

Theorem 6. The problem of deciding whether a graph G admits a strictly matched involution
is NP-complete.

Let g(n) be the number of isomorphism classes of graphs on n vertices and A(n) be the
number of isomorphism classes of graphs admitting a strictly matched involution on n vertices.

Theorem 7. A(n) = O
(
c(n)

√
g(n)

)
with log2(c(n)) = o

(
log2

3
√
g(n)

)
.

Theorem 8. A(n) = Ω
(
d(n) 4

√
g(n)

)
with log2

(
1

d(n)

)
= o

(
log2

4
√
g(n)

)
.

Finally, we finish with some results on when the game is a draw. Specifically, first we note
that, if m is large enough, both players have a strategy to force a draw. More interestingly,
we show that there exist graphs that admit a strictly matched involution where the optimal
result for both players is a draw for small values of m (m = 1).

Lemma 9. For any graph G and all m ∈ N with m ≥ ∆(G) + α(G), both players have a
strategy to draw in the MOCm(G) game.

Lemma 10. For all n ∈ N, both players have a strategy to guarantee a draw in the
MOC1(Kn�Kn) game.

Further Work. It would be interesting to know when is there a winning strategy for the
second player for graphs admitting a strictly matched involution. In terms of complexity, what
is the complexity of both variants when no partial colouring is given initially? Determining the
complexity of the scoring variant of the orthogonal colouring game when a partial colouring
is given for m = 1 (m = 2 respectively) colours is of interest as well.
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Extended Abstract

A countable L-structure M is ultrahomogeneous if every isomorphism between �nite induced
substructures is restriction of an automorphism of M . Under mild conditions for the lan-
guage, this implies that the automorphism group of M is oligomorphic, meaning that the
coordinatewise action of Aut(M) on Mn has only �nitely many orbits for all n ∈ N. Ultra-
homogeneity is then equivalent elimination of quanti�ers, which implies ω-categoricty (see
[5] for details). These facts make ultrahomogeneous structures interesting from the points of
view of group theory, model theory, and combinatorics.

The notion of homomorphism-homogeneity was introduced by Cameron and Ne²et°il in
[2] as a variation on ultrahomogeneity, where we require any homomorphism between �nite
substructures of M to be restriction of an endomorphism of M . Shortly afterwards, Lockett
and Truss [7] introduced �ner distinctions in the class of homomorphism-homogeneous L-
structures. The idea is to �x the types of �nite homomorphism and endomorphism.

In total, 18 morphism-extension classes were introduced in that paper. Their properties
are abbreviated by a pair of letters XY, where X ∈ {I,M,H} and Y ∈ {H, I,A,E,B,M}.
These symbols stand for Isomorphism, Monomorphism, Homomorphism for X; and Endomor-
phism (H), Self-embedding (I), Automorphism, Epimorphism, Bimorphism, and Monomor-
phism for Y. A structure is XY-homogeneous if every �nite X-morphism is restriction of an
endomorphism of type Y. The classes of homomorphism-homogeneity can be partially ordered
by inclusion as in Figure 1 below.

IH

IM IE MH

IB MM ME HH

II=IA MB HM HE

MI=MA HB

HI=HA

Figure 1: Morphism-extension classes of countable L-structures partially ordered by ⊆.

In the case of graphs, this partial order reduces to the ones presented in Figure 2.

IH

IMIE

IB

II=IA ME=MB=HE

MM=MH=HH

HM=HI=HB=HA=MI=MA

IH

IMIE

IB ME=HE

MH=HH

MBII=IA
MM

MI=MA

HM=HI=HB=HA

Figure 2: Morphism-extension classes of countable graphs (R) and connected graphs (L).

The classi�cation of countable ultrahomogeneous graphs was completed in the 80s with the
Lachlan-Woodrow theorem [6]. There are only countably many countable ultrahomogeneous
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graphs. Namely, they are unions of equipotent complete graphs, the Rado graph, the universal
homogeneous Kn-free graphs, and their complements.

Homomorphism-homogeneous graphs are much more abundant. It is known, for exam-
ple, that any countable graph that contains the Rado graph as a spanning subgraph is
homomorphism-homogeneous [2], and so there are uncountably many pairwise non-isomorphic
countable homomorphism-homogeneous graphs. One should ask for a coarser classi�cation.

Fraïssé theorems take the following form: �rst, if M is an XY-homogeneous L-structure,
then its age (that is, the class of �nite L-structures embeddable into M) is countable up to
isomorphism, hereditary, and satis�es the joint embedding property and one or two amalgama-
tion properties. Then a converse is proved: from a countable (up to isomorphism) hereditary
class C of �nite structures with the joint embedding property and one or two amalgamation
properties, it is possible to construct a limit, that is, a countable XY-homogeneous structure
whose age is C. Finally, there is a statement about the uniqueness of the limit. In the classi-
cal Fraïssé theorem, limits are unique up to isomorphism, but in its XY-analogues limits are
unique up to coarser equivalence relations, see [3].

The ideal level of coarseness for a classi�cation of XY-homogeneous structures is given
by the corresponding analogue of Fraïssé's theorem. Until recently, only a few of the Fraïssé
theorems were known, so even the coarseness of the ideal classi�cation was not known. At
the time of this writing, 12 of the 18 Fraïssé theorems were proved using more or less uniform
methods by Coleman [3], and the rest have been proved by the present autor, but not published
yet.

Because of the reasons exposed above (dearth of tools, over-abundance of structures),
the classi�cation of homomorphism-homogeneous graphs is still open. In this abstract,
we present some recent advances in that direction. Namely, we present a classi�cation of
MB-homogeneous graphs up to bimorphism-equivalence and a theorem stating that an IB-
homogeneous graph is either ultrahomogeneous or MB-homogeneous.

1 MB-homogeneous graphs

The Fraïssé theorem for MB-homogeneous structures establishes uniqueness of the limit up
to bi-equivalence. Two structures are bi-equivalent if they have the same age and every �nite
isomorphism between them can be extended to a bimorphism. However, it is known that
there exist uncountably many classes of MB-homogeneous graphs under this relation, so a
classi�cation to that level of precision seems unlikely (Theorem 3.20 of [4]). The next best
thing is a classi�cation up to bimorphism-equivalence (two graphs are bimorphism-equivalent
if each is a spanning subgraph of the other), which still carries some structural information,
as we will see.

The key to the classi�cation of MB-homogeneous graphs is the following theorem.

Theorem 1 (Aranda-Hartman '18 [1]) Let G be a countably in�nite connected HH-homo-

geneous graph, and suppose that G does not contain a copy of the Rado graph as a spanning

subgraph. Then G has �nite independence number.

A countable graph G has property (∆) if for all �nite X ⊂ G there exists y ∈ G such that
xy is an edge for all x ∈ X. We say that G satis�es (∴) if the complement of G has (∆). It
is easy to prove that property (∆) is equivalent to containing the Rado graph as a spanning
subgraph, and that a countable graph with (∆) and (∴) is bimorphism-equivalent to the Rado
graph. One can also easily verify that any graph that is bimorphism-equivalent to the Rado
graph is MB-homogeneous. In fact, these observations almost complete the classi�cation of
MB-homogeneous graphs.

Theorem 2 (Coleman-Evans-Gray [4]) If G is an MB-homogeneous graph then so is its

complement Ḡ.
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From Figure 2, we know that all MB-homogeneous graphs are HH-homogeneous, and
so any disconnected MB-homogeneous graph is a disjoint union of equipotent cliques. It is
also known that in a countable connected HH-homogeneous graph every vertex has in�nite
degree (this follows, for example, from the proof of Proposition 1.1. of [2]). Now, if G is
a countable MB-homogeneous graph and G is not complete or empty, then one can prove
quite quickly that it must have in�nitely many connected components, and each component
must be in�nite. Using the surjectivity of bimorphisms, we can copy the argument from
HH-homogeneous graphs and prove that every vertex has also in�nite co-degree. Thus, we
know

Corollary 3 If G is MB-homogeneous and neither complete nor empty, then G is either

connected or isomorphic to Iω[Kω]. Moreover, every vertex in G has in�nite degree and

codegree.

From this it takes only a few steps to verify that whenever a �nite subset of an MB-
homogeneous graph has a co-cone (that is, a common non-neighbour), then there is an in�nite
independent set of co-cones over that set. This greatly reduces the possibilities, since by
Theorem 1 this means that all non-complete MB-homogeneous graphs satisfy (∆). Thus we
prove

Theorem 4 (Aranda-Hartman '18 [1]) If G is a countable MB-homogeneous graph, then

it is bimorphism-equivalent to one of the following or its complement:

1. A complete graph Kω,

2. a countable union of countable cliques Iω[Kω], or

3. the Rado graph R.

2 IB-homogeneous graphs

In some recent unpublished work, the present author has proved an analogue of the Fraïssé
theorem for IB-homogeneous structures. The theorem is somewhat di�erent from all such the-
orems known until now, because it establishes homogeneity with respect not to all, say isomor-
phisms or monomorphisms or homomorphisms, but with respect to some select monomor-
phisms (meaning that any monomorphism from that chosen family, which is required to
contain all isomorphisms, can be extended to a bimorphism).

Theorem 5 (Aranda 20+) Suppose that M is an IB-homogeneous L-structure, and let F
be the function assigning to each pair of isomorphism types of �nite induced substructures

A,B of M the set Mon(A,B)M of all monomorphisms from A to B that are restrictions of

bimorphisms of M . Then Age(M) is an hereditary class of �nite structures containing only

countably many isomorphism types, with the joint embedding property, and with the following

amalgamation properties:

1. For all A,B0, B1 ∈ Age(M) and f0 ∈ F(A,B0), e0 : A→ B2, where e0 is an embedding,

there exists C ∈ Age(M), f1 ∈ F(B1, C), and an embedding e1 : B0 → C such that

e1 ◦ f0 = f1 ◦ e0, and

2. For all A,B0, B1 ∈ Age(M) and f0 ∈ F−(A,B0), e0 : A → B2, where e0 is an embed-

ding, there exists C ∈ Age(M), f1 ∈ F−(B1, C), and an embedding e1 : B0 → C such

that e1 ◦ f0 = f1 ◦ e0.

In the second item, F−(A,B) denotes the set of left inverses of functions in F(B,A).
Conversely, if C is a hereditary class of �nite structures that is countable modulo isomor-

phism, has the joint embedding property and the amalgamation properties above with respect
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to a family F of monomorphisms that includes all embeddings and is closed under restriction

and composition, then there exists a countable IB-homogeneous structureM with Age(M) = C
such that all functions in F are restrictions of bimorphisms of M .

One amalgamation property ensures the possibility of extending some monomorphisms,
while the other, intended to ensure the surjectivity of an extension, can also be interpreted as
the possibility of extending the left inverses of the same monomorphisms to global bijective
functions that preserve, in the case of graphs, non-adjacency.

Observe now that any bimorphism that preserves non-adjacency is actually an automor-
phism. If G has proper bimorphisms (bimorphisms that map a nonedge to an edge), then
the monomorphism that maps a nonedge to an edge is a restriction of a bimorphism. For
concreteness, let's call this monomorphism m. We see at once that if G is IB-homogeneous
and has no proper bimorphisms, then G is ultrahomogeneous. The last two crucial lemmas
are as follows.

Lemma 6 If G is an IB-homogeneous graph, then so is its complement Ḡ, and if m is

restriction of a bimorphism of G, then it is also restriction of a bimorphism of Ḡ.

Lemma 7 If G is an IB-homogeneous graph and m is restriction of a bimorphism of G, then
every �nite subset X is image under a bimorphism of an independent set and can be mapped

by a bimorphism to a clique.

The last lemma tells us that all IB-homogeneous graphs in which m is restriction of a
bimorphism have in�nite independence number, and so satisfy (∆). Mixed with Lemma 6,
we obtain that their complements must also satisfy (∆), so they are MB-homogeneous.

Theorem 8 (Aranda '20+) If G is an IB-homogeneous graph then G is ultrahomogeneous

or MB-homogeneous.
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Extended Abstract

We study the eternal domination number and the m-eternal domination number on di-
graphs. We generalize known results on graphs to digraphs. We also consider the problem
"oriented (m-)eternal domination", consisting in �nding an orientation of a graph that mini-
mizes its eternal domination number. We prove that computing the oriented eternal domina-
tion number is NP-hard and characterize the graphs for which its value is 2. We also study
these two parameters on trees, cycles, cliques, bicliques and di�erent kinds of grids.

1 Introduction

The problem of eternal domination on undirected graphs, while being a rather recent problem,
has been widely studied (see [5] for a survey). It has initially been motivated by problems in
military defense.

The eternal domination on a graph G can be seen as an in�nite game between two players:
the defender and the attacker. First, the defender chooses a set D0 of k vertices, with k �xed,
called guards. At turn i, the attacker chooses a vertex ri called attack in V \ Di−1 and
the defender must defend the attack by moving to vi exactly one guard along one edge,
from a vertex vi adjacent to ri. The new guards con�guration is Di = Di−1 ∪ {ri} \ {vi}.
The defender wins the game if it can defend any in�nite sequence of attacks. The eternal
domination number, denoted by γ∞(G), is the minimum number of guards necessary for the
defender to win. An eternal dominating set is a set that can initially be chosen by the defender
in a winning strategy.

The m-eternal domination is similar to the eternal domination but the defender is autho-
rized to move as many guards as it wants among the k guards at each turn. The m-eternal
domination number is denoted by γ∞m (G).

In general graphs, the two following results compare the values of both the eternal domi-
nation number and the m-eternal domination number to the values of other well-known graph
parameters.

Theorem 1 [2, 3, 4] For every graph G, we have

γ(G) ≤ γ∞m (G) ≤ α(G) ≤ γ∞(G) ≤
(
α(G) + 1

2

)

where γ(G) is the domination number of G, and α(G) is the independence set number of G.

Theorem 2 [2] For every graph G, we have

γ∞(G) ≤ θ(G)

where θ(G) is the clique covering number of G.

The values of γ∞ and γ∞m have been studied for many graph classes and, in particular,
grids.

To our knowledge, the eternal domination problem has only been studied on undirected
graphs. In this paper, we consider eternal domination on directed graphs where the guards
must follow the direction of the arcs, both when they defend a vertex and when they move to
another vertex. Additionally, as it has been done for many digraph parameters such as the
domination number or the maximum outgoing degree, we consider the problem consisting in

orienting an undirected graph to minimize
−→
γ∞ or

−→
γ∞m .
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2 Eternal domination on digraphs

The main result of this section is the generalization of Theorem 1 to directed graphs. We
de�ne the parameter α(D) of a digraphD as the order of the greatest induced acyclic subgraph
of D.

Notice that this parameter is a generalization of α(G) for graphs since α(G) = α(
←→
G ) for

any graph G where
←→
G denotes the directed graph obtained by replacing each edge uv of G

by two arcs uv and vu. The analogue of Theorem 1 gives:

Theorem 3 For every digraph D, we have

γ(D) ≤ γ∞m (D) ≤ α(D) ≤ γ∞(D) ≤
(
α(D) + 1

2

)
.

3 Eternal domination on orientations of graphs

3.1 De�nitions

We now orient undirected graphs in order to minimize their eternal or m-eternal domination
numbers. An orientation of an undirected graph G is an assignment of exactly one direction
to each edge of G. This leads to the introduction of three new parameters for undirected
graphs:−→
γ∞(G) = min{γ∞(D) : D is an orientation of G},−→
γ∞m (G) = min{γ∞m (D) : D is an orientation of G},−→α (G) = min{α(D) : D is an orientation of G}.

3.2 General results

We �rst give general results for undirected graphs, such as the inequality linking −→α (G) to−→
γ∞(G).

Lemma 4 −→α (G) ≤ −→γ∞(G).

Let G be an undirected graph. We de�ne C(G) by starting from G, adding one vertex
per edge of G and connecting each new vertex to the extremities of the associated edge. This
de�nition allows us to present the following result:

Lemma 5 For every undirected graph G with m edges, we have:

• −→γ∞(C(G)) = γ∞(G) +m

• −→α (C(G)) = α(G) +m.

The consequences of this lemma are particularly interesting, leading to complexity results:

Corollary 6 For every k > 0, there exists a graph G such that
−→
γ∞(G) ≥ −→α (G) + k.

Corollary 7 Computing
−→
γ∞(G) is NP-hard.

Corollary 8 Computing −→α (G) is NP-hard.
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3.3 Results on some classes of graphs

We study the value of
−→
γ∞ and

−→
γ∞m for particular classes of graphs. The �rst result is a full

characterization of the graphs for which
−→
γ∞ and

−→
γ∞m are maximal.

Theorem 9 Let G be a graph with order n. Then, the following are equivalent:

• −→γ∞(G) = n

• −→γ∞m (G) = n

• G is a forest.

Studying the value of
−→
γ∞m for complete graphs led to q characterization of the graphs G

for which
−→
γ∞m (G) = 2.

Theorem 10 Let G be a graph of order n ≥ 3. Then,
−→
γ∞m (G) = 2 i� either:

• n = 2k and G is a complete graph from which at most k disjoint edges are removed

• n = 2k + 1 and G is a complete graph from which at most k − 1 disjoint edges are
removed.

The exact value of
−→
γ∞ for complete graphs seems hard to �nd and we could only obtain

bounds by combining Theorem 3 and a result from Erd®s and Moser concerning −→α .

Theorem 11 blog2 nc+ 1 ≤ −→γ∞(Kn) ≤
(
2blog2 nc+2

2

)
.

The case of bicliques, on the other hand, has been fully covered for both parameters.

Theorem 12
−→
γ∞(Kn,m) = max{n,m}+ 1 for every n,m ≥ 1.

Theorem 13
−→
γ∞m (K2,2) = 2−→

γ∞m (K2,3) =
−→
γ∞m (K3,3) = 3−→

γ∞m (Kn,m) = 4 for every n ≥ 2 and m ≥ 4.

We intensively studied the case of grids, considering both parameters on square grids,

toric grids, toric king grids and toric hypergrids. The study of
−→
γ∞ on square grids leads to

the following result:

Theorem 14 ⌈
2mn

3

⌉
≤ −→γ∞(Pn�Pm) ≤

⌈
7mn+ 2m+ 2n

9

⌉
.

When m and n are both multiples of 3, we have:

−→
γ∞(Pn�Pm) ≤ 7mn

9
.

For square grids of size 2× n, 3× n and 4× n, we have the exact value of −→γ∞.

Theorem 15 Let n ≥ 2. Then,
−→
γ∞(P2�Pn) =

⌈
3n
2

⌉
,

−→
γ∞(P3�Pn) =

⌈
7n
3

⌉
,

−→
γ∞(P4�Pn) = 3n.
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4 Conjectures and open questions

We give here some future works and open questions.
We would like to �nd out if there is a natural parameter for digraphs that is an upper

bound of γ∞, as the clique covering number is for graphs.

We could also give better bounds for
−→
γ∞ on complete graphs, and in particular, determine

if
−→
γ∞(Kn) =

−→α (Kn) for any n.

The complexities of deciding whether
−→
γ∞m ≤ k in the general case and when k is �xed are

still unknown.
We also conjecture that

−→
γ∞m (D) ≤

⌈
n
2

⌉
for every strongly connected digraph D.
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Extended Abstract

1 Description
We consider simple digraphs without loops or multiple edges. In the line digraph LD of a
digraph D, each vertex represents an arc of D. Thus, the set of vertices of LD is V (LD) =
{uv : (u, v) ∈ A(D)}; and a vertex uv is adjacent to a vertex wz if and only if v = w. For
any integer k ≥ 1, the k-iterated line digraph LkD is defined recursively by LkD = LLk−1D,
where L0D = D.

A large known family of digraphs obtained with the line digraph technique is the family
of Kautz digraphs. The Kautz digraph of degree d and diameter k is defined as the (k − 1)-
iterated line digraph of the symmetric complete digraph of d + 1 vertices Kd+1, that is,
K(d, k) ∼= Lk−1Kd+1.

For a given integer ` ≥ 1, a vertex subset C of the set of vertices V (D) is a (1,≤ `)-
identifying code in the digraph D if it is a dominating set and for all distinct subsets X,Y ⊂
V (D), with 1 ≤ |X|, |Y | ≤ `, we have

N−[X] ∩ C 6= N−[Y ] ∩ C. (1)

A (1,≤ 1)-identifying code is known as an identifying code.
In [3], Charon, Hudry and Lobstein proved that, given an oriented graph D and an integer

k, the decision problem of the existence of a (1,≤ 1)-identifying code of size at most k in D
is NP-complete, even when we are restricted to strongly connected, oriented, and bipartite
digraphs without cycles.

In [1], the authors studied the (1,≤ `)-identifying codes in digraphs. They proved that
if D is a digraph admitting a (1,≤ `)-identifying code, then ` ≤ min{d−(u) + 1 | u ∈
V (D) and d+(u) ≤ 1} and gave some sufficient conditions for a digraph of minimum in-
degree δ− ≥ 1 to admit a (1,≤ `)-identifying code for ` = δ−, δ−+1. They also gave in [2] an
upper bound on ` for graphs and digraphs. In this work, we study (1,≤ `)-identifying codes
in line digraphs, where ` ≥ 1 is an integer.

2 Results
Line digraphs were characterized by Heuchenne’s condition: A digraph D is a line digraph if
and only if it has no multiple arcs, and for any pair of vertices u and v, eitherN−(u)∩N−(v) =
∅ or N−(u) = N−(v). Using this characterization we prove the next proposition.

Proposition 1 The line digraph of a strongly connected digraph of order at least 3 admits
an identifying code. �

In the following theorem, we give sufficient and necessary conditions for a line digraph to
admit a (1,≤ 2)-identifying code.

Theorem 2 Let LD be a line digraph different from a 4-cycle and such that the vertices of
in-degree 1 (if any) does not lay on a digon. Then, LD admits a (1,≤ 2)-identifying code if
and only if LD satisfies the following conditions:
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(i) There are no 3-cycles with at least 2 vertices of in-degree 1;

(ii) There do not exist four vertices x, x′, y and y′ such that N−(x) = {y, y′}, N−(y′) = {x′},
and x ∈ N−(x′) ∩N−(y);

(iii) There do not exist two vertices x, y ∈ V (LD) such that N−(x) = {y, y′}, N−(y) =
{x, x′}, and N−(x′) ∩N−(y′) 6= ∅.

Corollary 3 Let LkD be a k-iterated line digraph with minimum in-degree δ− ≥ 2.

(i) If k ≥ 2, then LkD admits a (1,≤ 2)-identifying code.

(ii) If k = 1 and δ− ≥ 3, then LD admits a (1,≤ 2)-identifying code.

Corollary 4 For each n ≥ 3, the Kautz digraph K(n, 2) = LKn+1 admits a (1,≤ 2)-
identifying code.

By Corollary 3 (iii), the Kautz digraph K(2, 2) is isomorphic to LK3. Then, the condition
k ≥ 2 in Corollary 3 (i) is necessary.

Proposition 5 Let LD be a line digraph with minimum in-degree δ− ≥ 2, then LD does not
admit a (1,≤ 3)-identifying code.

Foucaud, Naserasr, et al. [4] characterized the digraphs that only admit as identifying
code the whole set of vertices. As a consequence, if LD is a line digraph with minimum
in-degree δ− ≥ 2, then −→γ ID(LD) ≤ |V (LD)| − 1, where −→γ ID(D) denotes the minimum size
of an identifying code of a digraph D. Next, we establish better upper bounds on −→γ ID(LD).

For each vertex v ∈ V (D), we denote ω−(v) = {(u, v) ∈ A(D)} and ω+(v) = {(v, u) ∈
A(D)}.

Definition 6 Given a digraph D, a subset C of A(D) is an arc-identifying code of D if C
satisfies both conditions:

• an arc-dominating set of D, that is, for each arc uv ∈ A(D), ({uv} ∪ ω−[u]) ∩ C 6= ∅,
and

• an arc-separating set of D, that is, for each pair uv,wz ∈ A(D) (uv 6= wz), ({uv} ∪
ω−[u]) ∩ C 6= ({wz} ∪ ω−[w]) ∩ C.

Hence, a line digraph LD admits a (1,≤ `)-identifying code if and only if D admits a (1,≤ `)-
arc-identifying code. As a consequence, the minimum size of an identifying code of a digraph
D, −→γ ID(LD), is equivalent to the minimum size of an arc-identifying code of its line digraph
LD.

Let D be a digraph. We denote V +
≥2(D) = {v ∈ V (D) : d+(v) ≥ 2}, and V +

1 (D) = {v ∈
V (D) : d+(v) = 1}. Hence, in particular, if D is a strongly connected digraph, V (D) =
V +
1 (D) ∪ V +

≥2(D).

Theorem 7 Let D be a strongly connected digraph with minimum in-degree δ− ≥ 2. Then,

−→γ ID(LD) ≥ |A(D)| − |V (D)|.

Theorem 8 Let D be a strongly connected digraph of order at least 3, and let C ⊆ A(D).
Then, C is an arc-identifying code of D if and only if C satisfies the following conditions:

(i) For all v ∈ V (D), |ω+(v) \ C| ≤ 1, and if |ω+(v) \ C| = 1, then ω−(v) ∩ C 6= ∅;

(ii) For all uv ∈ C, if vu ∈ C or |ω+(v)\C| = 1, then ((ω−(v)∪ω−(u))\{uv, vu})∩C 6= ∅.
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Now we present an algorithm for constructing an arc-identifying code of a strongly con-
nected oriented (that is, without digons) graph with minimum in-degree δ− ≥ 2.

Algorithm 9 Constructing an arc-identifying code C of a strongly connected digraph D with
minimum in-degree δ− ≥ 2 and without digons.
1: Let U− := {v ∈ V (D) : N−(v) ⊆ V +

1 (D)}, U := ∅ and C := ∅
2: while U− \ U 6= ∅ do
3: let v ∈ U− \ U and f ∈ N−(v)
4: replace U by U ∪ {v} and C by C ∪ {fv}
5: end while
6: let X := V +

1 (D) and Y := U−

7: let xy ∈ A(D) such that x ∈ V (D) \X and y ∈ V (D) \ Y
8: replace Y by Y ∪ (N+(x) \ {y}), X by X ∪ {x} and C by C ∪ (ω+(x) \ {xy})
9: while Y 6= V (D) do
10: while N−(y) \X 6= ∅ do
11: let t ∈ N−(y) \X and let z ∈ N+(t) \ {y}
12: replace Y by Y ∪ (N+(t) \ {z}), X by X ∪{t}, C by C ∪ (ω+(t) \ {tz}), t by x and z by y
13: end while
14: if N−(y) \X = ∅ then
15: choose an arc uv of D such that v /∈ Y
16: replace Y by Y ∪ (N+(u) \ {v}), X by X ∪ {u}, C by C ∪ (ω+(u) \ {uv}), u by x and v
by y
17: return to 3
18: end if
19: end while
20: if Y = V (D) then
21: while X 6= V (D) do
22: let u ∈ V (D) \X and let v ∈ N+(u)
23: replace C by C ∪ (ω+(u) \ {uv}), X by X ∪ {u}
24: end while
25: end if
26: return C

Theorem 10 Let D be an oriented and strongly connected graph with minimum in-degree
δ− ≥ 2. Then, Algorithm 9 produces a subset C ⊂ A(D) with

|C| = |A(D)| − |V (D)|+ |{v ∈ V (D) : N−(v) ⊆ V +
1 (D)}|,

satisfying the requirements of Theorem 8.

As a consequence of Theorems 7 and 10, we can conclude the following corollary.

Corollary 11 Let D be a strongly connected oriented graph with minimum in-degree δ− ≥ 2.
Then, the following assertions hold.

(i) −→γ ID(LD) = |A(D)| − |V (D)|+ |{v ∈ V (D) : N−(v) ⊆ V +
1 (D)}| if δ+ = 1;

(ii) −→γ ID(LD) = |A(D)| − |V (D)| if δ+ ≥ 2.

Next, we also present a result for all Hamiltonian digraphs of minimum degree at least
two, not necessarily oriented.

Theorem 12 Let D be a Hamiltonian strongly connected digraph with minimum in-degree
δ− ≥ 3 and out-degree δ+ ≥ 2. Then, γID(LD) = |A(D)| − |V (D)|.
Moreover, using Theorem 12 and the 1-factorization of Kautz digraphs obtained by Tvrdík
[5], we conclude the following result.

Theorem 13 The identifying number of a Kautz digraph K(d, k) is γID(K(d, k)) = dk−dk−2
for d ≥ 2 and k ≥ 2.
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Extended Abstract

1 Introduction
We consider simple digraphs (or directed graphs) without loops or multiple edges.

Given a vertex subset U ⊂ V , let N−[U ] =
⋃

u∈U N
−[u]. For a given integer ` ≥ 1,

a vertex subset C ⊂ V is a (1,≤ `)-identifying code in D when, for all distinct subsets
X,Y ⊂ V , with 1 ≤ |X|, |Y | ≤ `, the corresponding closed in-neighborhoods within the set C
are different, that is

N−[X] ∩ C 6= N−[Y ] ∩ C. (1)

A (1,≤ 1)-identifying code is referred to as an identifying code.
Laihonen [6] proved the following result for graphs.

Theorem 1 [6] Let k ≥ 2 be an integer.

1. If a k-regular graph has girth g ≥ 7, then it admits a (1,≤ k)-identifying code.

2. If a k-regular graph has girth g ≥ 5, then it admits a (1,≤ k − 1)-identifying code.

Besides, Laihonen and Ranto [7] showed that if G is a connected graph with at least three
vertices admitting a (1,≤ `)-identifying code, then ` ≤ δ, where δ is the minimum degree of
G.

Regarding digraphs, the authors proved in [3] that every 1-in-regular digraph has a (1,≤
2)-identifying code if and only if its girth is at least 5. They also characterized the 2-in-
regular digraphs having a (1,≤ 2)-identifying code or a (1,≤ 3)-identifying code. Moreover,
they gave some sufficient conditions for a digraph of minimum in-degree δ− ≥ 2 to admit a
(1,≤ δ−)-identifying code. As a corollary of this result, they proved that a graph of minimum
degree δ ≥ 2 and girth at least 7 admits a (1,≤ δ)-identifying code.

Recall that if D admits a (1,≤ `)-identifying code, then it admits a (1,≤ `′)-identifying
code for any `′ < `.

A digraph with adjacency matrix A = (auv) has eigenvalue λ and eigenvector x = (xu) if
and only if

Ax = λx ⇔
∑

v∈V
auvxv =

∑

v∈N+(u)

xv = λxu for all u ∈ V. (2)

This last equation leads to the charge displacement interpretation; for more information
about it, see Fiol and Mitjana [4] . Moreover, the spectral radius of A is the largest among
the absolute values of its eigenvalues.

Recall also that a transitive tournament TT3 if formed by vertices u, v, and w, and
arcs (u, v), (u,w), and (v, w). Besides, we called bipartite tournament BT2,2 to the digraph
formed by vertices u, v, w and x, and arcs (u,w), (u, x), (v, w) and (v, x). See both digraphs
in Figure 1 (b) and Figure 1 (c), respectively.

Our first lemma is the only non-spectral result of this paper.

Lemma 2 Let D be a d-in-regular digraph on n vertices, without any of the subdigraphs of
Figure 1. If D admits a (1,≤ `)-identifying code, then ` ∈ {d, d+ 1}.
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(a) (b) (c)

Figure 1: The subdigraphs forbidden by Lemma 2: (a) The digon, (b) TT3, and (c) BT2,2.
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Figure 2: The forbidden subdigraphs characterizing a 2-in-regular digraph admitting a (1,≤
1)-identifying code (only (a)), or a (1,≤ 2)-identifying code (all of them). The subdigraph
(g) and (m) have their vertices numbered in the interior, and the entries of the eigenvector
corresponding to eigenvalue −1 in the exterior.

2 Main results
We begin with a result that gives a sufficient (spectral) condition for a digraph to admit a
(1,≤ 1)-identifying code.

Lemma 3 Let D be a digraph with adjacency matrix A and with a set of eigenvalues denoted
by ev(A). If −1 6∈ ev(A), then D admits a (1,≤ 1)-identifying code.

Observe that the converse is not true since, if −1 ∈ ev(A), this does not imply that some
of its corresponding eigenvectors are of the form ei−ej . For example, the digraph in Figure 2
(j) has −1 as an eigenvalue, but it does admit a (1,≤ 1)-identifying code.

In [3] the authors gave the following theorem, which is a combinatorial characterization
of a 2-in-regular digraph admitting a (1,≤ 1)-, (1,≤ 2)-, or (1,≤ 3)-identifying code.

Theorem 4 ([3]) Let D be a 2-in-regular digraph. Then,

(i) D admits a (1,≤ 1)-identifying code if and only if it does not contain any subdigraph
isomorphic to Figure 2 (a).

(ii) D admits a (1,≤ 2)-identifying code if and only if it does not contain any subdigraph
isomorphic to one of the digraphs of Figure 2.

(iii) D admits a (1,≤ 3)-identifying code if and only if it is oriented, TT3-free and does not
contain any subdigraph isomorphic to one of the digraphs of Figure 3.

Next, we present an algebraic-combinatorial sufficient condition for a 2-in-regular digraph
to admit a (1,≤ 2)- or (1,≤ 3)-identifying code, but first we need the following lemma.

Lemma 5 Let D′ be a digraph with maximum in-degree ∆− having an eigenvalue λ with
eigenvector x′ = (x′u), such that x′v = 0 for any vertex v ∈ V (D′) with d−(v) < ∆−. Then,
any ∆−-in-regular digraph D containing D′ as a subdigraph has also the eigenvalue λ.
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(k)
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(j) (l)(i) (m) (n) (o)

Figure 3: The forbidden subdigraphs characterizing a TT3-free, 2-in-regular and oriented
digraph admitting a (1,≤ 3)-identifying code.

Now we give an algebraic-combinatorial sufficient condition for a 2-in-regular digraph to
admit a (1,≤ 2)-, or (1,≤ 3)-identifying code. By appealing to the eigenvalues of the digraphs
we can reduce the number of forbidden subdigraphs considered in Theorem 4.

Theorem 6 Let D be a 2-in-regular digraph with adjacency matrix A.

(i) If −1 6∈ ev(A) and D does not contain any subdigraph isomorphic to (b), (c), (d), (f)
and (i) of Figure 2, then D admits a (1,≤ 2)-identifying code.

(ii) If −1, 0 6∈ ev(A) and D does not contain any subdigraph isomorphic to (b)-(`) of Fig-
ure 3, then D admits a (1,≤ 3)-identifying code.

We provide some necessary notation introduced by Powers [8]. Let x = (xi) be an eigen-
vector associated with an eigenvalue λ different from the spectral radius, and let z be an eigen-
vector associated with the spectral radius. We denote by P(x) and N (x) the set of its positive
and negative entries, respectively. That is, P(x) = {i : xi > 0} and N (x) = {i : xi < 0}.
Since x and z are orthogonal, P(x) and N (x) are nonempty, because all the entries of z are
positive.

Let us show the meaning of the sign of a real eigenvalue on the sets of in-neighborhoods
of vertices.

Proposition 7 Let D = (V,E) be a digraph with adjacency matrix A having some real eigen-
value, say λ ∈ ev(A), different from the spectral radius. Let x = (xu)u∈V be an eigenvector
of A associated with λ such that X = P(x) and Y = N (x). Then, depending on the sign of
λ, the following holds:

(a) If λ < 0, then X ∪N−(X) = Y ∪N−(Y ) (⇔ N−[X] = N−[Y ]).

(b) If λ > 0, then X ∪N−(Y ) = Y ∪N−(X).

(c) If λ = 0, then N−(X) = N−(Y ).

The same result holds for graphs by changing N−(X) and N−(Y ) by N(X) and N(Y ), re-
spectively. Moreover, a similar result concerning out-neighborhoods (instead of in-neighborhoods)
can be obtained by applying Proposition 7 to the converse digraph of D or, equivalently, con-
sidering the left (instead of right) eigenvectors of D. The next result gives an upper bound
for ` in a digraph D having a (1,≤ `)-identifying code.

Corollary 8 Let D be a digraph admitting a (1,≤ `)-identifying code. Let A be its adjacency
matrix having at least one negative eigenvalue −λ (with λ > 0) with x = (x1, . . . , xn) any
associated eigenvector. Then ` < min

x
max{|P(x)|, |N (x)|}.
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Example 9 Consider the digraph of Figure 2 (m). Its spectrum is {04, 11,−11}. An eigen-
vector corresponding to the eigenvalue −1 is (0,−1, 1,−1, 0, 1). The positions of the positive
entries of this eigenvector give us vertex subset X = {2, 5}, and the positions of the negatives
entries give Y = {1, 3}. We can check that N−[X] = N−[Y ] = {0, 1, 2, 3, 4, 5}. Then, this
digraph does not admit a (1,≤ 2)-identifying code.

To give a general result not depending on some specific eigenvector, but only on the
multiplicity of the corresponding eigenvalue, we give the following lemma. More precisely,
the next result shows that, given a real eigenvalue with geometric multiplicity m, some of its
eigenvectors can be chosen with at least m− 1 zero entries.

Theorem 10 Let D be a digraph on n vertices with adjacency matrix A, and let λ be a real
eigenvalue of A with geometric multiplicity m. For any given index set I ⊂ {1, 2, . . . , n} with
|I| = m − 1, there exists an eigenvector x with eigenvalue λ and entries xi = 0 for every
i ∈ I.

Observe that Corollary 8 can also be applied to graphs, which always have real eigenvalues.
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Extended Abstract

1 The problem
Let G = (V,E) be an undirected graph and let c : E 7→ [1, n] be a colouring of the edges of
G. A walk in G is said to be properly coloured if and only if it does not use consecutively two
edges of the same colour. Such walks have been introduced by Chen and Daykin in [3] and
have been well-studied since (see [6] for a survey). Using this definition, edge-coloured graphs
can be seen as a powerful generalization of directed graphs [2]: indeed, if D is a directed
graph, we can subdivide every arc uv of G by inserting a vertex wuv and we can replace the
arc uv by a red edge uwuv and a blue edge wuvv. We obtain a 2-edge-coloured bipartite
undirected graph with a similar set of possible walks.

More formally, in this paper, we define an edge-coloured undirected graph Gc = (V,E, c)
as properly connected if and only if for every two vertices u and v in V , there exists
a properly coloured walk between u and v. In this case, we say that c is a connect-
ing edge-colouring of G. For example, the edge-coloured graph depicted in Figure 1 is
properly connected. The vertices v0 and v2 are connected by the properly coloured walk
(v0, v3, v4, v5, v13, v12, v8, v4, v3, v2). Note that the vertices of the graph only have to be con-
nected by walks and we can thus repeat vertices or edges. The vertices of the graph of Figure 1
cannot all be connected by properly coloured elementary paths but the graph is still properly
connected.

v10

v2

v15

v11

v3

v0

v7

v12

v8

v4

v9

v16

v13

v5

v1

v14

v6

Figure 1: An example of properly connected edge-coloured graph. For readability in black
and white, blue edges are represented with a double line.

We define the problem of connecting edge-colouring as follows:

Connecting edge-colouring

Input: A connected undirected graph G = (V,E).
Output: The smallest number of colours k such that there exists a colouring function c :
E 7→ [1, k] such that Gc = (V,E, c) is properly connected.

In this abstract, the main results are given without proof. We refer the reader to [1] for
more details.
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2 Preliminary results
The number of colours required to connect a graph of n vertices can be anywhere between
1 and n − 1. Complete graphs can be properly connected with only one colour while n − 1
colours are required to connect a star.

The number of colours required to connect a graph is also upper bounded by the chromatic
index of the graph i.e. the number of colours required for a proper colouring of the edges of
the graph. We say that the edges of a graph are properly coloured if two adjacent edges always
have different colours. In this case, every walk in the graph is properly coloured too, but this
condition is far from necessary. For example, the graphs with highest chromatic indexes are
the complete graphs but they are those that require the fewest colours to be connected.

The number of colours required to connect a tree is exactly its maximum degree ∆. Indeed,
a greedy colouring of the edges of a rooted tree by order of increasing depth provides a proper
edge-colouring of the tree using only ∆ colours and thereby proves that ∆ colours are enough
to connect the tree. Conversely, if we colour the edges of the tree with fewer than ∆ colours,
every vertex u of degree ∆ will have two adjacent edges, say uv and uw, with same colour
and there are no properly coloured walks between v and w.

Determining if a graph can be connected with only one colour comes down to determining
if the graph is complete and can be done in O(|V |+ |E|).

The first important result we present in this talk is the following:

Theorem 1 Any graph with a cycle can be connected with 3 colours.

The complexity of k-colouring for k > 3 quickly follows.

Corollary 2 If k > 3, we can decide in polynomial time if a graph G can be connected with
k colours.

Indeed, if the graph is a tree, the question comes down to deciding if the graph has a
vertex of degree strictly greater than k, which is easy. Otherwise, the answer is always yes.

Hence, the only remaining case is k = 2.

3 Connecting 2-edge-colouring
We start by studying bipartite graphs for which we establish the following theorem, which
was proved independently by Ducoffe et al. in [4]:

Theorem 3 A bipartite graph G can be connected with two colours if and only if it can be
made 2-edge-connected by adding at most one edge.

This criteria comes down to checking whether the tree induced by the bridges of the graph
is a path, which can be done in linear time via a depth-first search.

Note that in the case of bipartite graphs, if two vertices can be connected by a properly
coloured walk, then they can also be connected by a properly coloured elementary path.
However, as illustrated in Figure 1, the presence of odd cycles can allow for much more
complicated connecting walks.

As illustrated in Figure 2 by the graph on the left, odd cycles can make it possible to
connect graphs that are arbitrarily far from being 2-edge-connected. On the other hand, the
graph depicted on the right in Figure 2 can be made 2-edge-connected by adding the edge
uv and still, no colouring of its edges can make it properly connected. For example, the
edge-colouring depicted in the figure does not connect the vertices v and w. Thus, Theorem
3 does not extend to all graphs.
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w

Figure 2: Counter-examples to the generalization of Theorem 3 to non-bipartite graphs.

Goddard and Melville proved the following important result on non-bipartite graphs [5]:

Theorem 4 If a connected graph has two edge-disjoint odd cycles, then it can be connected
with two colours.

To generalize this result, we introduce the notion of stubborn edge: we define the stub-
born edges of a graph as the edges that belong to every closed walk of odd length. We
denote by S the set of stubborn edges of a graph. Note that one can check whether a given
edge e is stubborn in time O(n+m) by checking whether G− e is bipartite. In the case of a
bipartite graph, every closed walk is even and every edge is therefore stubborn.

We then prove the following, which generalizes Theorem 4:

Theorem 5 If a connected graph has no stubborn edge, then it can be connected with two
colours.

Let G be a graph and let G\S be the graph obtained from G by removing all the stubborn
edges. By an S-free component of G, we mean a connected component of G \ S. Note
that all S-free components are bipartite. These components are important because of the
following result:

Property 6 Let G be a non-bipartite 2-edge-coloured graph. Then, there exists an S-free
component K of G such that there is no properly coloured walk between two vertices u, v /∈ K
that goes through a vertex of K.

Property 6 together with Theorem 3 provides a strong necessary condition for a non-
bipartite graph to have a connecting 2-edge-colouring. We can prove that this condition is
also sufficient and we obtain the following characterization of the graphs that can be connected
with two colours:

Theorem 7 A connected non-bipartite graph G can be connected with two colours if and
only if there exists an S-free component K of G such that G \ K is empty or can be made
2-edge-connected by adding at most one edge.

The proof of all our theorems are constructive and we can derive polynomial algorithms for
optimal connecting edge-colouring from them. Putting all together, we obtain the following
theorem:

Theorem 8 The minimum number of colours required by a connecting edge-colouring of a
graph G is:

• 1 if G is complete;
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• its maximum degree ∆(G) if G is a tree;

• 2 if G is bipartite and can be made 2-edge-connected by adding at most one edge;

• 2 if G is non-bipartite and contains an S-free component K such that G \ K is empty
or can be made 2-edge-connected by adding at most one edge;

• 3 otherwise

Furthermore, in every case, an optimal connecting colouring can be found in polynomial
time.

References
[1] J. Bang-Jensen, T. Bellitto, A.Yeo. Connecting edge-colouring. In Arxiv, abs/1907.00428,

2019.

[2] J. Bang-Jensen, G. Gutin. Digraphs - theory, algorithms and applications. Springer, 2009.

[3] C. Chen, D. Daykin. Graphs with Hamiltonian cycles having adjacent lines different
colors. In J. Comb. Theory, Ser. B 21:135–139, 1976.

[4] G. Ducoffe, R. Marinescu-Ghemeci, A. Popa On the (di)graphs with (directed) proper
connection number two. To appear in Discrete Applied Mathematics, 2019.

[5] W. Goddard, R. Melville. Coloring Graphs to Produce Properly Colored Walks. In
Graphs and Combinatorics, 33:1271–1281, 2017.

[6] G. Gutin, E. J. Kim. Properly Coloured Cycles and Paths: Results and Open Problems.
In Graph Theory, Computational Intelligence and Thought, Essays Dedicated
to Martin Charles Golumbic on the Occasion of His 60th Birthday, 200–208,
2009.

37



Linear transformations between colorings in chordal graphs
Nicolas Bousquet and Valentin Bartier

Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, France

Extended Abstract

1 Introduction
Reconfiguration problems consist in finding step-by-step transformations between two feasible
solutions of a problem such that all intermediate states are also feasible. Such problems model
dynamic situations where a given solution already in place has to be modified for a more
desirable one while maintaining some properties throughout the transformation. Two main
questions are at the core of combinatorial reconfiguration. (i) Is it possible to transform any
solution into any other? (ii) If yes, how many steps are needed to perform this transformation?
These two questions and their algorithmic counterparts received considerable attention.

Graph recoloring. Throughout the paper, G = (V,E) denotes a graph, n = |V |, ∆ denotes
the maximum degree of G, and k is an integer.
A (proper) k-coloring of G is a function f : V (G) → {1, . . . , k} such that, for every edge
xy ∈ E, we have f(x) 6= f(y). Since we will only consider proper colorings, will then omit
the proper for brevity. The chromatic number χ(G) of a graph G is the smallest k such that
G admits a k-coloring. Two k-colorings are adjacent if they differ on exactly one vertex.
The k-reconfiguration graph of G, denoted by G(G, k) and defined for any k ≥ χ(G), is the
graph whose vertices are k-colorings of G, with the adjacency condition defined above. The
k-recoloring diameter of a graph G is the diameter of G(G, k) if G(G, k) is connected and
is +∞ otherwise. In other words, it is the minimum D for which any k-coloring can be
transformed into any other one through a sequence of at most D single vertex recolorings.
A graph G is d-degenerate if any subgraph of G admits a vertex of degree at most d. In other
words, there exists an ordering v1, . . . , vn of the vertices such that for every i, vi has at most
d neighbors in vi+1, . . . , vn. It was shown independently by Dyer et al. [7] and by Cereceda
et al. [6] that for any d-degenerate graph G and every k ≥ d+ 2, G(G, k) is connected. Note
that the bound on k is the best possible since the G(Kn, n) is not connected (and Kn is
(n− 1)-degenerate). Cereceda [5] conjectured the following:

Conjecture 1 (Cereceda [5]) For every d, every k ≥ d+ 2, and every d-degenerate graph
G, the diameter of G(G, k) is at most Cd · n2.

If true, the quadratic function is the best possible, even for paths, as shown in [2]. Bous-
quet and Heinrich [3] recently proved that the diameter of G(G, k) is O(nd+1). Cereceda’s
conjecture is only known to be true for d = 1 (trees) [2] and d = 2 and ∆ ≤ 3 [8]. The
diameter of G(G, k) is O(n2) when k ≥ 3

2 (d+1) in [3]. Even if Cereceda’s conjecture is widely
open for general graphs, it has been proved for a few graph classes, e.g. chordal graphs [2],
bounded treewidth graphs [1], and bipartite planar graphs [3].

The diameter of G(G, k) is linear if k ≥ 2d+ 2 [4] or if k is at least the grundy number of
G plus 1 [1]. When k = d+ 2, the diameter of G(G, k) may be quadratic, even for paths [2].
But it might be true that the diameter of G(G, k) is linear whenever k ≥ d+ 3. In this paper,
we investigate the following question, raised for instance in [3]: when does the k-recoloring
diameter of d-degenerate graphs becomes linear?

Our results. A graph is chordal if it does not contain any induced cycle of length at
least 4. Chordal graphs admit a simplicial elimination ordering, i.e. there exists an ordering
v1, . . . , vn of V such that, for every i, N [vi] ∩ {vi+1, . . . , vn} is a clique. Chordal graphs are
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(ω(G)− 1)-degenerate where ω(G) is the size of a maximum clique of G. Our main result is
the following:

Theorem 2 Let ∆ be a fixed integer. Let G be a d-degenerate chordal graph of maximum
degree ∆. For every k ≥ d+ 4, the diameter of G(G, k) is at most O(n). Moreover, given two
colorings c1, c2 of G, a transformation of length at most O(n) can be found in linear time.

Note that the bound on k is almost the best possible since we know that this result cannot
hold for k ≤ d+ 2 [2]. So there is only one remaining case which is the case k = d+ 3.
Let us roughly describe the idea of our method on interval graphs. A buffer B is a set of
vertices contained in f(ω) consecutive cliques of the clique path. We assume that at the left
of the buffer, the coloring of the graph already matches the target coloring. We moreover
assume that the coloring of B is special in the sense that, for every vertex v in B, at most
d+2 colors appear in the neighborhood of v 1. Note that in order to satisfy this property, the
buffer has to be “long enough”. The main technical part of the proof consists in showing that
if the buffer is “long enough”, then we can only modify the colors of the vertices of the buffer
in such a way the same assumptions hold for the buffer starting one clique to the right of the
starting clique of B. We simply have to repeat at most n times this operation to guarantee
that the coloring of the whole graph is the target coloring. Since a vertex is recolored only if
it is in the buffer and a vertex is in the buffer a constant (assuming ∆ constant) number of
times, every vertex is recolored a constant number of times.

2 Buffer, blocks and regions
Throughout this section, G = (V,E) is a chordal graph on n vertices of maximum clique
number ω, maximum degree ∆ and T is a clique tree of G rooted in an arbitrary node. Let
k ≥ ω+ 3 be the number of colors denoted by 1, . . . , k. Given two integers x ≤ y, Jx, yK is the
set {x, x+ 1, . . . , y}. The closed neighbourhood of a set S ⊆ V is N [S] := S ∪ (∪v∈SN(v)).

Vertex ordering and canonical coloring. Let v1, v2, . . . vn be a perfect elimination or-
dering of V (G). A greedy coloring of vn, vn−1, . . . , v1 gives an optimal coloring c0 of G using
only ω colors. The coloring c0 is called the canonical coloring of G. The colors c ∈ 1, 2 . . . , ω
are the canonical colors and the colors c > ω are non-canonical. Note that the independent
sets Xi := {v ∈ V such that c0(v) = i} for i ≤ ω, called the classes of G, partition the vertex
set V .

Let Ce be a clique of T . We denote by TCe
the subtree of T rooted in Ce and by hCe

(C)
the height of the clique C ∈ TCe

. Given a vertex v ∈ TCe
, we say that v starts at height h if

the maximum height of a clique of TCe
containing v is h (in TCe

).
Let s := 3

(
ω
2

)
+ 2 and N = s + k − ω + 1 (where k is the number of colors). The buffer

B rooted in Ce is the set of vertices of G that start at height at most 3∆N − 1 in TCe . For
every 0 ≤ i ≤ 3N − 1, the block Q3N−i of B is the set of vertices of G that start at height h
with i∆ ≤ h ≤ (i+ 1)∆− 1. Finally, for 0 ≤ i ≤ N − 1, the region Ri of B is the set of blocks
Q3i+1, Q3i+2, Q3(i+1). Unless stated otherwise, we will always denote the three blocks of Ri

by Ai, Bi and Ci, and the regions of a buffer B by R1, . . . , RN . Given a color class Xp and a
S ⊆ V , we denote by N [S, k] the set N [S ∩Xk]. By definition of a block we have:

Property 3 Let Ce be a clique of T and B be the buffer rooted in TCe
. Let Qi−1, Qi, Qi+1 be

three consecutive blocks of B. Then N [Qi] ⊆ Qi−1 ∪Qi ∪Qi+1. In particular for each region
Ri = (Ai, Bi, Ci) of B, N [Bi] ⊆ Ri.

1Our condition is actually even more restrictive.
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2.1 Vectorial coloring and valid buffer
Let B be a buffer. We denote the set of vertices of class p that belong to the sequence of
blocks Qi, . . . , Qj of B by (Qi, . . . , Qj , p). A color vector ν is a vector of size ω such that
ν(p) ∈ J1, kK for every p ∈ J1, ωK, and ν(p) 6= ν(q) for every p 6= q. A block Q is well-colored
for a color vector νQ (or just well-colored if ν is clear from context) if all the vertices of
(Q, p) are colored with νQ(p). For brevity, we say that (Q, νQ) is well-colored. Note that a
well-colored block is properly colored. Since the set (Q, p) may be empty, a block may be
well-colored for different vectors. However, a color vector defines a unique coloring of the
vertices of block. The color vector ν is canonical if ν(p) = p for every p ≤ ω. A sequence of
blocks Q1, . . . , Qr is well-colored for (ν1, . . . , νr) if (Qi, νi) is well-colored for every i ≤ r.
Let B = R1, R2, . . . , RN be a buffer such that all the regions Ri = Ai, Bi, Ci are well-colored
for the vectors νAi

, νBi
, νCi

. So B is well-colored for ν = (νA1
, νB1

, νC1
, νA2

, . . . , νCN
). The

buffer (B,ν) is valid if for every i ∈ J1, NK, the number of different colors in νAi , νBi and νCi

is at most ω + 2 , νAi+1 = νCi for all i in J1, N − 1K, and an additional number of technical
properties are verified 2.
Note that if (B,ν) is valid, then every vertex of B has at most ω+2 colors in its neighbourhood
in G[B] due to Property 3. Then, as k ≥ ω + 3, there always exists a color that does not
appear locally and that we can use to modify the coloring of the buffer.

3 Algorithm outline
Let G be a chordal graph of maximum degree ∆ and maximum clique size ω, T be a clique
tree of G, and φ be any k-coloring of G. We propose an iterative algorithm that recolors the
vertices of T from the leaves to the root until we obtain the canonical coloring c0 defined
previously. Let S be a clique of T . A coloring α of G is treated up to S if:

1. Vertices starting at height more than 3∆N in TS are colored canonically, and

2. The buffer rooted at S is valid.

Let C be a clique of T . We associate a vector νC of length ω to the clique C as follows. We
set νC(`) = α(v) if there exists v ∈ X` ∩ C. Then we arbitrarily complete νC in such a way
all the coordinates of νC are distinct (which is possible since |νC | < k).

Theorem 2 is a consequence of the following lemmas.

Lemma 4 Let C be a clique associated with νC . Let S be a child of C in T , B be the buffer
rooted at S and ν be a vector sequence such that (B,ν) is valid. There exists a recoloring
sequence of ∪Ni=2Ri such that the resulting coloring ν′ satisfies ν′CN

= νC and (B,ν′) is valid.
Moreover, every vertex of ∪Ni=sRi is recolored at most O(ω) times.

In other words, Lemma 4 allows us to obtain a coloring of G such that the coloring of the
first cliques of TS match the coloring of C while maintaining a valid buffer.
Let C be a clique and S1, S2 be two children of C. For every i ≤ 2, let Bi be the buffer of Si

and assume that Bi is valid for νi. We say that B1 and B2 have the same coloring if ν1 = ν2.

Lemma 5 Let C be a clique associated with νC . Let S1, S2, . . . Se be the children of C, and
for every i ≤ e, Bi be the buffer rooted at Si. Let νi be a vectorial coloring such that (Bi,νi)
is valid. If DBi(νC ,ν

i) = 0 for every i ≤ e, then there exists a recoloring sequence of ∪N−1j=2 R
i
j

such that every coordinate is recolored O(ω2) times, the final coloring of all the Bis is the
same coloring ν′, DBi

(νc,ν
′) = 0, and (Bi,ν′) is valid for every i ≤ e.

Given the children S1, S2, . . . , Se of C, Lemma 5 ensures that we can obtain the same coloring
for all the buffers while maintaining proper colorings all along. Finally, Lemma 6 shows how
we can use such colorings to "shift" the valid buffer one clique up in the tree:

2Due to size restriction we can not give them in this extended abstract.
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Lemma 6 Let C be a clique of T with children S1, S2, . . . Se and let α be a k-coloring of G
treated up to Si for every i ∈ J1, eK. Let νC be a vector associated with C and Bi = Ri

1, . . . , R
i
N

denote the buffer rooted at Si. Assume that there exists ν such that (Bi,ν) is valid for every
i ≤ e and satisfies νN = νC . Then there exists a recoloring sequence of ∪i≤e ∪N−1j=2 Ri

j such
that, every vertex is recolored at most one time and such that the resulting coloring of G is
treated up to C.

Let us now briefly describe how we can use Lemmas 4 to 6 to derive Theorem 2. Let c0 be
the canonical coloring of G and T be a clique tree of G. Let us first show that given a clique
C ∈ T with children S1, . . . , Se and a coloring α treated up to Si for every i ≤ e, we can
obtain a coloring of G treated up to C. Let νC be a vector associated with C. For every
i ≤ e, let Bi be the buffer rooted in Si and νi be a vectorial coloring of Bi such that (Bi,νi)
is valid. For every i ≤ e, by applying Lemmas 4 to (Bi,νi), we obtain a vectorial coloring
νi such that (Bi,νi) is valid and νiCN

= νc,. By Lemma 5, we can recolor each νi into ν′

such that for every i, (Bi,ν′) is valid and ν′CN
= νc. Then we can apply Lemma 6 to obtain

a coloring of G such that the buffer (B,ν) rooted in C is valid. Since no vertex starting in
cliques W ∈ TC with hC(W ) > 3∆N is recolored, these vertices remain canonically colored
and the resulting coloring of G is treated up to C. Note that only vertices of TC that start in
cliques of height at most 3∆N are recolored at most O(ω2) times to obtain a coloring treated
up to C.
By applying this process from the leaves to the root of T , we can recolor any k-coloring of G
into c0 in a linear number of steps, and thus we can recolor any k-coloring into any other in
a linear number of steps. Furthermore, a clique tree of G can be computed in linear time [9]
and parents can be determined in constant time (assuming a linear time pre-processing via a
breadth-first search), and thus the algorithm runs in linear time.
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Extended Abstract

We consider finite, simple, and undirected graphs, and use standard terminology. Let G
be a graph. A set D of vertices of G is a dominating set in G if every vertex in V (G) \ D
has a neighbor in D, and the domination number γ(G) of G is the minimum cardinality of a
dominating set in G. For a set M of edges of G, let V (M) denote the set of vertices of G that
are incident with an edge in M . The set M is a matching in G if the edges in M are pairwise
disjoint, that is, |V (M)| = 2|M |. A matchingM in G is maximal if it is maximal with respect
to inclusion, that is, the set V (G) \ V (M) is independent. Let the edge domination number
γe(G) of G be the minimum size of a maximal matching in G. A maximal matching in G of
size γe(G) is a minimum maximal matching.

A natural connection between the domination number and the edge domination number
of a graph G becomes apparent when considering the line graph L(G) of G. Since a maximal
matching M in G is a maximal independent set in L(G), the edge domination number γe(G)
of G equals the independent domination number i(L(G)) of L(G). Since L(G) is always
claw-free, and since the independent domination number equals the domination number in
claw-free graphs [1], γe(G) actually equals the domination number γ(L(G)) of L(G). While
the domination number [6] and the edge domination number [9], especially with respect to
computational hardness and algorithmic approximability [2, 3, 4, 5, 7, 8], have been studied
extensively for a long time, little seems to be known about their relation. For regular graphs,
we conjecture the following:

Conjecture 1 If G is a ∆-regular graph with ∆ ≥ 1, then γ(G) ≤ γe(G).

The conjecture is trivial for ∆ ≤ 2, and fails for non-regular graphs, see Figure 1. Note that for
every graph G without isolated vertices and a maximal matching M in G, the set of vertices
that are incident with an edge in M is a dominating set. Hence, we obtain γ(G) ≤ 2γe(G)
for every graph G without isolated vertices.

Figure 1: A non-regular graph G with γ(G) = 2 > 1 = γe(G).

Our contributions are three results related to Conjecture 1. A simple probabilistic argu-
ment implies a weak version of Conjecture 1, which approaches the desired bound for large
∆.

Theorem 2 If G is a ∆-regular graph with ∆ ≥ 1, then γ(G) ≤
(

1 + 2(∆−1)
∆2∆

)
γe(G).

Proof: LetM be a minimum maximal matching in G. Since every vertex in V (G)\V (M) has
∆ neighbors in V (M), and every vertex in V (M) has at most ∆−1 neighbors in V (G)\V (M),
we have

∆(n− 2γe(G)) ≤ 2(∆− 1)γe(G), (1)
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where n is the order of G.
Let the set D arise by selecting, for every edge in M , one of the two incident vertices

independently at random with probability 1/2. Clearly, |D| = γe(G). If u is a vertex in
V (G)\V (M), then u has no neighbor in D with probability at most 1/2∆. Note that u might
be adjacent to both endpoints of some edge inM in which case it always has a neighbor in D.
If B is the set of vertices in V (G)\V (M) with no neighbor in D, then linearity of expectation
implies

E[|B|] =
∑

u∈V (G)\V (M)

P[u ∈ B] ≤ |V (G) \ V (M)|
2∆

=
n− 2γe(G)

2∆
.

Since D ∪B is a dominating set in G, the first moment method implies

γ(G) ≤ |D|+ E[|B|] = γe(G) +
n− 2γe(G)

2∆

(1)

≤ γe(G) +
2(∆− 1)γe(G)

∆2∆
,

which completes the proof. �

For cubic graphs, Theorem 2 implies γ(G) ≤ 7
6γe(G), which we improve with our next result.

Even though the improvement is rather small, we believe that it is interesting especially
because of the approach used in its proof.

Theorem 3 If G is a cubic graph, then γ(G) ≤
(

7
6 − 1

204

)
γe(G).

Finally, we show Conjecture 1 for cubic claw-free graphs.

Theorem 4 If G is a cubic claw-free graph, then γ(G) ≤ γe(G).

Proof: LetM be a minimummaximal matching inG. Let the setD of |M | vertices intersecting
each edge in M be chosen such that the set B = {u ∈ V (G) \ V (M) : |NG(u) ∩ D| = 0} is
smallest possible. For a contradiction, we may suppose that B is non-empty. Let C = {u ∈
V (G)\V (M) : |NG(u)∩D| = 1}. Let b be a vertex in B. Let u−1v−1, u0v0, and u1v1 inM be
such that NG(u) = {v−1, v0, v1}. Since D intersects each edge inM , we have u−1, u0, u1 ∈ D.
Since G is claw-free, we may assume, by symmetry, that v0 and v1 are adjacent, which implies
that v−1 is not adjacent to v0 or v1. Let x be the neighbor of v−1 distinct from u−1 and
b. Since G is claw-free, the vertex x is adjacent to u−1. If x = u0, then u0 has no neighbor
in C, and exchanging u0 and v0 within D reduces |B|, which is a contradiction. Hence, by
symmetry between u0 and u1, the vertex x is distinct from u0 and u1. Since exchanging u1

and v1 within D does not reduce |B|, the vertex u1 has a neighbor c1 in C, which is necessarily
distinct from x.

Now, let σ : v1, u1, c1, v2, u2, c2, . . . , vk, uk, ck be a maximal sequence of distinct vertices
from V (G)\{u−1, u0, v−1, v0, b, x} such that uivi ∈M , ui ∈ D, ci ∈ C, ui is adjacent to ci for
every i ∈ [k], and vi+1 is adjacent to ui for every i ∈ [k−1]. Let X = {u−1, u0, v−1, v0, b, x}∪
{v1, u1, c1, v2, u2, c2, . . . , vk, uk, ck}, and see Figure 2 for an illustration.

Let vk+1 be the neighbor of uk distinct from vk and ck. Since G is claw-free, the vertex
vk+1 is adjacent to ck. Since V (G) \ V (M) is independent, we have uk+1vk+1 ∈M for some
vertex uk+1. Since ck ∈ C and uk ∈ D, we obtain vk+1 6∈ D and uk+1 ∈ D, which implies
that the vertex vk+1 does not belong to X.

If uk+1 belongs to X, then uk+1 = x, and replacing D with

D′ = (D \ {u1, u2, . . . , uk+1}) ∪ {v1, v2, . . . , vk+1}

reduces |B|, which is a contradiction. Hence, the vertex uk+1 does not belong to X. If uk+1

has a neighbor ck+1 in C, then, by the structural conditions, the vertex ck+1 does not belong
to X, and the sequence σ can be extended by appending vk+1, uk+1, ck+1, contradicting its
choice. Hence, the vertex uk+1 has no neighbor in C, and replacing D with the set D′ as
above again reduces |B|. This final contradiction completes the proof. �
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Figure 2: A subgraph of G with vertex set X, where k = 4.
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Extended Abstract

We consider finite, simple, and undirected graphs, and use standard terminology. Let G
be a graph and let M be a set of edges of G. Let V (M) denote the set of vertices of G that
are incident with an edge in M . The set M is a matching in G if the edges in M are pairwise
disjoint. A matching M in G is maximal if it is maximal with respect to inclusion, that is,
the set V (G) \ V (M) is independent. Let the edge domination number γe(G) of G be the
minimum size of a maximal matching in G. A maximal matching in G of size γe(G) is a
minimum maximal matching.

The edge domination number and minimum maximal matchings have been studied for a
long time. Yannakakis and Gavril [12] showed that finding a minimum maximal matching is
NP-hard even for planar graphs or bipartite graphs of maximum degree 3. Stronger hardness
and inapproximability results were obtained [7, 6, 10], and heuristics as well as approximation
algorithms were studied [1, 2, 3, 5, 8, 9].

In the present paper we consider upper bounds on the edge domination number and their
algorithmic consequences. We state the following conjecture as a starting point.

Conjecture 1 If G is a connected ∆-regular graph of order n for some ∆ ≥ 3, then

γe(G) ≤ 2∆− 1

4∆
n+

1

2
(1)

with equality in (1) if and only if G has a spanning subgraph that is the union of an odd
number of copies of K∆,∆ − e, see Figure 1.

Figure 1: The extremal graphs of Conjecture 1.

Our two main results imply weak versions of Conjecture 1. Firstly, we prove Conjecture 1
for ∆ = 3 under more restrictive assumptions. Let T ∗ be the tree that arises by subdividing
exactly two edges of a claw K1,3 exactly once. Recall that a graph is T ∗-free if it does not
contain T ∗ as an induced subgraph.

Theorem 2 If G is a connected cubic graph of order n that is bipartite and T ∗-free, then

γe(G) ≤ 5

12
n+

1

2
.

In view of the extremal graphs from Conjecture 1, the bound in Theorem 2 is still best
possible. Secondly, we prove a weaker bound for general ∆.
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Theorem 3 If G is a connected ∆-regular graph of order n for some ∆ ≥ 3, then

γe(G) ≤ ∆(2∆− 3)n+ 2∆

2(∆− 1)(2∆− 1)
(2)

with equality if and only if G is K∆,∆.

The proofs of Theorems 2 and 3 rely on bounds for non-regular graphs given in the next
section that are of interest on their own right.

Since our proofs yield efficient algorithms to construct maximal matchings whose sizes are
at most the corresponding upper bounds, some simple lower bounds on the edge domination
number based on double counting yield approximation algorithms that improve some known
results [1, 2, 3, 5, 8, 9] for restricted classes of graphs.

Theorem 4 Let ∆ be an integer at least 3.
For every fixed ε > 0, there are polynomial time approximation algorithms for the mini-

mum maximal matching problem that have approximation ratios

• 25
18 + ε for connected cubic bipartite T ∗-free graphs,

• 2− 1
∆−1 + ε for connected ∆-regular graphs, and

• 1 + 4∆−7
2∆2−3∆+1 + ε for connected claw-free ∆-regular graphs.

The proofs of Theorem 2 and Theorem 3 are based on the following two results.

Proposition 5 If G is a subcubic bipartite T ∗-free graph of order n and size m such that no
component of G is cubic, then

γe(G) ≤ 2n

3
− m

6
. (3)

Furthermore, a maximal matching whose size is at most the right hand side of (3) can be
found efficiently.

Proposition 6 If G is a graph of order n, size m, and maximum degree at most ∆ for some
integer ∆ ≥ 3 such that no component of G is ∆-regular, then

γe(G) ≤ ∆n

2∆− 1
− m

(∆− 1)(2∆− 1)
, (4)

with equality if and only if

• ∆ is odd and every component of G is K∆−1,∆−1, or

• ∆ is even and every component of G is K∆−1,∆−1 or K∆.

Furthermore, a maximal matching whose size is at most the right hand side of (4) can be
found efficiently.
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Extended Abstract

We consider finite, simple, and undirected graphs, and use standard terminology. A set
M of edges of a graph G is an induced matching in G if no two edges in M are adjacent or
joined by an edge, that is,M is an independent set of the square L2(G) of the line graph L(G)
of G. The induced matching number νs(G) of G is the maximum cardinality of an induced
matching in G.

The problem to find a maximum induced matching in a given graph does not allow a
polynomial time approximation algorithm with approximation factor n1/2−ε for some posi-
tive ε, unless P = NP [10], and it is APX-complete for ∆-regular bipartite graphs [1]. Several
polynomial time approximation algorithms have been proposed for ∆-regular graphs: Duck-
worth, Manlove, and Zito [2, 12] showed that a simple greedy strategy has approximation
ratio ∆−O(1). Combining the greedy strategy with local search, Gotthilf and Lewenstein [6]
improved this to 0.75∆ + 0.15. For ∆-regular {C3, C5}-free graphs, Rautenbach [11] showed
that the algorithm from [6] has approximation ratio 0.7083̄∆+0.425. Finally, for ∆ = 3, that
is, for cubic graphs, Joos, Rautenbach, and Sasse [8] described a polynomial time algorithm
with approximation ratio 9

5 . All these approximation ratios for ∆-regular graphs rely on the
simple upper bound

νs(G) ≤ m(G)

2∆− 1
, (1)

which fails for not necessarily regular graphs of maximum degree ∆.
Only very recently, Lin, Mestre, and Vasiliev [9] improved the straightforward approxi-

mation ratio of 2(∆− 1) of the greedy algorithm [12] applied to a graph of maximum degree
∆. Their approach relies on linear programming and a local ratio technique. They actually
consider the weighted version of the problem, and provide a polynomial time algorithm with
approximation ratio ∆. As they show that the integrality gap of their integer linear program-
ming formulation of the weighted induced matching problem is at least ∆ − 1, there is not
much room for improvement of the approximation ratio using their approach.

In order to phrase the integer linear programming formulation of the maximum induced
matching problem, we introduce some notation. Let G be a graph. For a vertex u of G, let
δG(u) be the set of edges of G that are incident with u. For an edge uv of G, let

δG(uv) = δG(u) ∪ δG(v), and let CG(uv) =
⋃

w∈NG[u]∪NG[v]

δG(w).

Note that a set M of edges in G is an induced matching in G

• if and only if f 6∈ CG(e) for every two distinct edges e and f in M

• if and only if δG(e) contains at most one edge from M for every edge e of G.

The second equivalence motivates the following (unweighted version of the) integer linear
program from [9]:

max
∑

e∈E(G)

xe

s.t.
∑

f∈δG(e)

xf ≤ 1 ∀e ∈ E(G)

xe ∈ {0, 1} ∀e ∈ E(G)

(2)
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Clearly, the value of (2) equals νs(G), and {e ∈ E(G) : xe = 1} is an induced matching for
every feasible solution (xe)e∈E(G) of (2). We consider the relaxation (P ) of (2) together with
its dual linear program (D):

(P )





max
∑

e∈E(G)

xe

s.t.
∑

f∈δG(e)

xf ≤ 1 ∀e ∈ E(G)

xe ≥ 0 ∀e ∈ E(G)

(D)





min
∑

e∈E(G)

ye

s.t.
∑

f∈δG(e)

yf ≥ 1 ∀e ∈ E(G)

ye ≥ 0 ∀e ∈ E(G)

Let ν∗s (G) and τ∗s (G) denote the optimum values of the linear programs (P ) and (D), re-
spectively. If (xe)e∈E(G) is some feasible solution of (P ) or (D), and F ⊆ E(G), then let
x(F ) =

∑
e∈F

xe, in particular,
∑

f∈δG(e)

xf = x (δG(e)).

By linear programming duality,

νs(G) ≤ ν∗s (G) = τ∗s (G). (3)

If G is ∆-regular, then setting xe = 1
2∆−1 for every edge e of G yields optimal solutions for

(P ) and (D) of value m(G)
2∆−1 , which implies that (1) follows immediately from (3). The results

of Lin et al. [9] imply that the integrality gap of the weighted version of (2) is at most ∆ and
at least ∆− 1.

We conjecture that this can be improved considerably for unweighted graphs.

Conjecture 1 If G is a graph of maximum degree ∆, then

ν∗s (G)

νs(G)
≤





5∆2

8∆−4 , if ∆ is even,

5∆3−21∆2+7∆+1
8∆2−36∆+20 , if ∆ is odd

(4)

with equality in (4) if and only if G arises by replacing the five vertices of the cycle C5 of
order five with independent sets of cardinalities

⌊
∆
2

⌋
,
⌊

∆
2

⌋
,
⌊

∆
2

⌋
,
⌈

∆
2

⌉
, and

⌈
∆
2

⌉
in this cyclic

order.

Note that the extremal graph in Conjecture 1 also appears in Erdős and Nešetřil’s famous
open conjecture on the strong chromatic index [3]. If ∆ is even, then this blown-up C5 is
∆-regular, and ν∗s (G) equals m(G)

2∆−1 = 5∆2

8∆−4 . If ∆ is odd, then setting

• xe = ∆−5
2∆2−9∆+5 for the edges e between an independent set of order ∆−1

2 and an
independent set of order ∆+1

2 , and setting

• xe = ∆−3
2∆2−9∆+5 for all remaining edges e

yields optimal solutions for (P ) and (D), which explains the specific value in Conjecture 1.
Gotthilf and Lewenstein [6] obtain the approximation ratio 0.75∆ + 0.15 by providing a

polynomial time algorithm that computes an induced matching of size at least

m(G)

1.5∆2 − 0.5∆
(5)
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in a given not necessarily regular graph G of maximum degree ∆ (cf. also [5] choosing
f = 3∆2/2−∆/2 and g = 0 in Theorem 2(ii) and in the proof of Corollary 3). For ∆-regular
graphs, it follows that the integrality gap of (2) is as most 1.5∆2−0.5∆

2∆−1 = 3
4∆ +O(1).

We proceed to our results. Our first result is a best-possible upper bound on the fractional
induced matching number. Let T ∗ be the tree that arises by subdividing each edge of the
star K1,∆ of order ∆ + 1 once.

Theorem 2 If G is a graph of maximum degree at most ∆ such that no component of G has
order at most 2, then ν∗s (G) ≤ ∆

2∆+1n(G) with equality if and only if each component of G is
isomorphic to T ∗.

Combining Theorem 2 with the main result from [8] yields an approximation ratio of 18/7
for subcubic graphs. Our second result improves this.

Theorem 3 There is a polynomial time algorithm that, for a given subcubic graph G, pro-
duces an induced matching M in G as well as a feasible solution (ye)e∈E(G) of (D) with
|M | ≥ 3

7y(E(G)).

Our final result concerns general maximum degrees.

Theorem 4 There is a polynomial time algorithm that, for a given graph G of maximum
degree at most ∆ for some ∆ ≥ 3, produces an induced matching M in G with

|M | ≥ ν∗s (G)

(1− ε)∆ + 1
2

where ε ≈ 0.02005.

The last two theorems imply, in particular, that the problem to find a maximum induced
matching in the considered graphs can be approximated in polynomial time within ratios of
7
3 and (1− ε)∆ + 1

2 , respectively. Theorem 4 allows an interesting corollary.

Corollary 5 If G is a graph of maximum degree at most ∆, then

νs(G) ≥ ν(G)

2(1− ε)∆ + 1
where ε ≈ 0.02005,

where ν(G) denotes the matching number of G.

Proof: LetM be some maximum matching in G. Setting xe = 1/2 for every edge e inM , and
xe = 0 otherwise, yields a feasible solution of (P ). This implies ν∗s (G) ≥ x(E(G)) = |M |/2.
Now, Theorem 4 implies the statement. �
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Extended Abstract

The dual concepts of coverings and packings are well studied in graph theory, see [5].
Coverings of graphs with balls of radius one and packings of vertices with pairwise distances
at least two are the well-known concepts of domination and independence respectively, see [10].
Typically we are interested in minimum (cost) coverings and maximum (weight) packings.
Two natural questions to ask are the following: For what graphs do these dual problems have
equal (integer) values? In the case of non-equality, can we bound the difference between the
two values? The second question is the focus of this work.

The particular covering problem we study is broadcast domination. Let G = (V,E) be a
graph. Define the ball of radius r around v by

Nr[v] = {u : d(u, v) ≤ r}.

A dominating broadcast of G is a collection of balls Nr1 [v1], Nr2 [v2], . . . , Nrt [vt] (each ri > 0)
such that

⋃t
i=1Nri [vi] = V . Alternatively, a dominating broadcast is a function f : V → N

such that for any vertex u ∈ V , there is a vertex v ∈ V with f(v) > 0 and dist(u, v) ≤ f(v). A
vertex v with f(v) > 0 can be thought of as the site from which the broadcast is transmitted
with power f(v). The ball Nf(v)[v] is the set of vertices that hear the broadcast from v. (The
ball Nf(v)[v] belongs to the covering.) Vertices u for which f(u) = 0 do not broadcast and
the trivial ball N0[u] is not included in the cover.

The cost of a dominating broadcast f is
∑

v∈V f(v). The minimum cost of a dominating
broadcast in G (taken over all dominating broadcasts) is the broadcast domination number of
G, denoted by γb(G).

The broadcast domination number can be defined as an integer linear program:

γb(G) = min{cx | x(i,k) ∈ {0, 1}, Ax ≥ 1}

where the vectors c, x and the columns of A are indexed by (i, k) for i ∈ V (G) and 1 ≤ k ≤
diam(G). The entry c(i,k) = k. The entry x(i,k) = 1 if and only if Nk[i] is in the dominating
broadcast, i.e. f(i) = k. Finally, the matrix A = [aj,(i,k)] is defined by aj,(i,k) = 1 if vertex j
belongs to Nk[i] in G and is zero otherwise.

The dual to this problem is the maximum multipacking problem [3, 14]. A multipacking
in a graph G is a subset P ⊆ V (G) such that for any positive integer r and any vertex v in
V , the ball of radius r centred at v contains at most r vertices of P . The maximum size of a
multipacking of G, its multipacking number, is denoted by mp(G). That is,

mp(G) = max{y1 | yj ∈ {0, 1}, yA ≤ c}.

In this work our bounds are based on the diameter of the graph in question. Hence, we
restrict our attention to connected graphs with the observation that disconnected graphs can
be studied component-wise.

Broadcast domination was introduced by Erwin [6, 7] in his doctoral thesis in 2001. Mul-
tipacking was then defined by Teshima in her Master’s Thesis [14] in 2012, see also [3]
(and [4, 9, 15] for subsequent studies). This work fits into the general study of coverings
and packings, which has a rich history in Graph Theory: Cornuéjols wrote a monograph on
the topic [5].
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In early work, Meir and Moon [13] studied various coverings and packings in trees, pro-
viding several inequalities relating the size of a minimum covering and a maximum packing.
Giving such inequalities connecting the parameters γb and mp is the focus of our work. Since
broadcast domination and multipacking are dual problems, we know that for any graph G,

mp(G) ≤ γb(G).

This bound is tight, in particular for strongly chordal graphs, see [8, 12, 14]. (In a recent
companion work we prove equality for grids [2].) A natural question comes to mind. How far
apart can these two parameters be? Hartnell and Mynhardt [9] gave a family of connected
graphs (Gk)k∈N for which the difference between both parameters is k. In other words, the
difference can be arbitrarily large. Nonetheless, they proved the ratio is bounded as follows.

For any connected graph G, a diametrical path is an isometric path. It follows that a
multipacking of the diametrical path is also a multipacking in G. Since mp(Pn) = dn/3e, we
obtain

mp(G) ≥
⌈
diam(G) + 1

3

⌉

Pairing this with the observation γb(G) ≤ rad(G) (see [6]), and some further analysis, they
proved for any connected graph G with mp(G) ≥ 2,

γb(G) ≤ 3mp(G)− 2.

They then asked [9, Section 5] whether the factor 3 can be improved. Answering their question
in the affirmative, our main result is the following.

Theorem 1 Let G be a connected graph. Then,

γb(G) ≤ 2mp(G) + 3.

Moreover, we conjecture that the additive constant in the bound of Theorem 1 can be
removed.

Conjecture 2 For any connected graph G, γb(G) ≤ 2mp(G).

Through a further refinement of the methods in [9], we establish Conjecture 2 holds for
small values of mp.

Theorem 3 Let G be a connected graph. If mp(G) ≤ 4, then γb(G) ≤ 2mp(G).

We know a few examples of connected graphs G which achieve the conjectured bound, that
is, γb(G) = 2mp(G). For example, one can easily check that C4 and C5 have multipacking
number 1 and broadcast number 2. We know of connected examples having multipacking
number 2 and domination broadcast number 4. By taking disjoint unions of these graphs, we
can build further extremal graphs with arbitrary multipacking number. However, if we only
consider connected graphs, we do not even know an example with multipacking number 3
and domination broadcast number 6. Hartnell and Mynhardt [9] constructed an infinite
family of connected graphs G with γb(G) = 4

3mp(G), but we do not know any construction
with a higher ratio. Are there arbitrarily large connected graphs that reach the bound of
Conjecture 2?

Finally, we note that while computing γb can be done in polynomial time [11], the compu-
tation complexity of computing mp remains open. Our proofs are constructive. In particular,
given a connected graph G, we construct a multipacking of size at least mp(G)−3

2 . Conse-
quently, our work provides a (2 + o(1))-approximation algorithm for mp.
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Extended Abstract

In his PhD thesis [8] Erwin introduced the notions of broadcast domination and broadcast
independence in graphs, cf. also [7]. While broadcast domination was studied in detail [6, 9,
10, 11, 12, 13], only little research exists on broadcast independence [1, 5]. In the present
paper we relate broadcast independence to ordinary independence in graphs; one of the most
fundamental and well studied notions in graph theory.

We consider �nite, simple, and undirected graphs, and use standard terminology and
notation. Let N0 be the set of nonnegative integers. For a connected graph G, a function
f : V (G)→ N0 is an independent broadcast on G if

(B1) f(x) ≤ eccG(x) for every vertex x of G, where eccG(x) is the eccentricity of
x in G, and

(B2) distG(x, y) > max{f(x), f(y)} for every two distinct vertices x and y of G
with f(x), f(y) > 0, where distG(x, y) is the distance of x and y in G.

The weight of f is
∑

x∈V (G)

f(x). The broadcast independence number αb(G) of G is the maxi-

mum weight of an independent broadcast on G, and an independent broadcast on G of weight
αb(G) is optimal. Let α(G) be the usual independence number of G, that is, α(G) is the max-
imum cardinality of an independent set in G, which is a set of pairwise nonadjacent vertices of
G. For an integer k, let [k] be the set of all positive integers at most k, and let [k]0 = {0}∪ [k].

Clearly, assigning the value 1 to every vertex in an independent set in some connected
graph G, and 0 to all remaining vertices of G, yields an independent broadcast on G, which
implies

αb(G) ≥ α(G) for every connected graph G.

A consequence of our main result is that αb(G) ≤ 4α(G) for every connected graph G. The
fact that the broadcast independence number and the independence number are within a con-
stant factor from each other immediately implies the computational hardness of the broadcast
independence number, and also yields e�cient constant factor approximation algorithms for
the broadcast independence number on every class of graphs for which the independence
number can e�ciently be approximated within a constant factor.

We completely describe two in�nite classes of graphs G2 and G0 illustrated in Figure 1 and
Figure 2, and prove the following result.

Figure 1: A graph from the family G2. The vertices in each gray box form a clique.

Theorem 1 If G is a connected graph such that G has diameter at least 3 or α(G) ≥ 3, and
f is an optimal broadcast on G, then

αb(G) ≤ 4α(G)− 4min

{
1,

2α(G)

fmax + 2

}
, (1)
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where fmax = max{f(x) : x ∈ V (G)}. Equality holds in (1) if and only if G ∈ G0 ∪ G2.

The assumption that G has diameter at least 3 or α(G) ≥ 3 excludes some trivial cases.

Figure 2: A graph from the family G0(k, `). Also here, the vertices in each gray box form a
clique.

Theorem 1 implies

1 ≤ αb(G)

α(G)
≤ 4

for every connected graph G. Its proof suggests that αb(G)
α(G) should be smaller than 4 for

connected graphs G of su�ciently large local expansion and sparsity. Natural hypotheses
ensuring these properties are lower bounds on the girth and the minimum degree. In this
direction, we show the following two results.

Theorem 2 If G is a connected graph of girth at least 6 and minimum degree at least 3, then

αb(G) < 2α(G).

Theorem 3 For every positive integer k, there is a connected graph G of girth at least k and
minimum degree at least k such that

αb(G) ≥ 2

(
1− 1

k

)
α(G).

Together, the last two results imply that lower bounds on the girth and the minimum degree

of a connected graph G can lower the fraction αb(G)
α(G) from 4 below 2, but not any further.
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Extended Abstract

A k-packing coloring of a graph G with vertex set V , for some integer k, is a map-
ping f : V → {1, 2, . . . , k} such that for any two distinct vertices u and v from V : if
f(u) = f(v) = i, then dG(u, v) > i, where dG(u, v) is the distance between u and v in G. The
packing chromatic number χρ(G) of a graph G is the smallest integer k such that the graph
G has a k-packing coloring [1]. A k-packing colorable graph is a graph such that χρ(G) ≤ k.
The decision problem related to computing the packing chromatic number is NP-hard in
general. The boundness of the packing chromatic number was the subject of most papers
investigating this parameter. The number |G| − α(G) + 1 is a famous upper bound of χρ(G)
for any graph G of order |G| where α(G) is the independence number of a graph G [1]. But
the independence number problem is also known to be NP-hard in general. It is interesting
to generate graphs which packing chromatic number can be controlled. In this paper, we show
that any graph G of order |G| can be transformed into a graph f(G) (via some transformation
f) such that χρ(f(G)) ∈ O(|G|).

The neighborhood of every vertex in triangle-free graphs is an independent set, but there
may exists maximum independent sets that are not neighborhoods of vertices. Then, in such
graphs, it is evident that

∆(G) ≤ α(G) (1)

A graph is maximal triangle-free if no edge may be added without producing a triangle.
In this paper we prove the existence of a class of maximal triangle-free (and then of diameter
2) graphs satisfying (1) with equality and with large packing chromatic number. The exis-
tence of class of maximal triangle-free graphs with large packing chromatic number satisfying
χρ = ∆ = α = χ′ will be also proved, where ∆ and χ′ stands for the maximum degree and
the edge-chromatic number respectively.

1 Notations and Preliminary results

Recall �rst the following result presenting an upper bound of the packing chromatic numbers.

Proposition 1 ([1]). If G is a graph with order |G|, then

χρ(G) ≤ |G| − α(G) + 1 (2)

with equality if diam(G) = 2.

Many are papers investigating the boundness of the packing chromatic number from above
by a constant for several classes of graphs. This question for the class of subcubic graphs was
answered in the negative [10] after being considered in recent works [11, 12, 13].

Most of the proposed constructions in this paper are based on Mycielski's graphs. The
Mycielski's theorem gives the existence of triangle-free graphs with arbitrarily large chro-
matic numbers [3]. Given a graph G = (V (G), E(G)), the Mycielski graph of G is the
graph, denoted by µ(G), with the vertex set V (µ(G)) = V (G)∪V ′(G)∪{z} and the edge set
E(µ(G)) = E(G)∪{uv′ : uv ∈ E(G)}∪{v′z : v′ ∈ V ′} where V ′(G) = {u′ : u ∈ V } . A vertex
v′ from V ′(G) is called a twin (or copy) of v. The vertex z is called the root of µ(G). Recall
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that ω(µ(G)) = ω(G) and χ(µ(G)) = χ(G) + 1 are two nice properties of this transformation.
The iterated Mycielskian of a graph G, denoted µp(G) for p ≥ 1, is the transformation of
G de�ned by µ0(G) = G and µp(G) = µ(µp−1(G)). If such transformation is applied on a
triangle-free graph G, then the obtained graph µp(G) is also a triangle-free graph (by induc-
tion on p). The Mycielskians were investigated from many points of view [5, 6, 7, 4, 8, 9] .
Note that |µp(G)| = 2p(1 + |G|)− 1.

Recall the that the diameter of the Mycielskian of a graph is given by :

Theorem 2 ([2]). For a graph G without isolated vertices,

diam (µ(G)) = min {max {2, diam(G)} , 4}

Let introduce the next de�nition, which we shall use in the next section.

De�nition 3. Let k be a positive integer. A graph G is said T -k-graph if there exists a
transformation f of G such that such that the obtained graph f(G) is k-packing colorable.
If χρ(f(G)) = k, then G is said Tρ-k-graph.

2 T -k-graphs
We will focus on graphs G that are T -k-graphs where k is a positive integer satisfying k ∈
O(|G|).
Theorem 4. Every connected graph G with diameter at least 4 is a T -(|G| − 1)-graph.
Moreover, every triangle-free graph G is a Tρ-(|G| − 1)-graph.

Theorem 5. Every graph G with diameter at least 3 is a T -(|G|+ 1)-graph.

The graph P4 graph is Tρ-(|P4|+ 1)-graph. In deed χρ(µ(P4)) = 5 = 1 + |P4|.
Theorem 6. Every (non empty) graph G is a T -2|G|-graph.
Moreover, every triangle-free graph G is a Tρ-2|G|-graph.

3 Triangle-free graphs with large packing chromatic num-

ber

By applying the theorem 2, several times on successive iterated mycielskian of a graph with
diameter two, each iterated mycielskian of G is also a triangle-free graph.

Let G be a graph and i be a positive integer and let µi(G) be the ith iterated mycielskian
of G with V (µi(G)) = V (µi−1(G)) ∪ V ′(µi−1(G)) ∪ {zi}. Let x be a vertex from V (µi(G)).

The degree of x in µi(G) can be given as follows

dµi(G)(x) =





2dµi−1(G)(x) , if x ∈ V (µi−1(G))

1 + dµi−1(G)(u) , if x ∈ V ′(µi−1(G)) where x = u′ and u ∈ V (µi−1(G))

2i−1(1 + |G|)− 1 , x = zi

We will need the following lemma :

Lemma 7. If G is a graph such that 2∆(G) > |G|, then for any positive integer i we have :

∆(µi(G)) = 2i∆(G)
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Next, is the main theorem of this section :

Theorem 8. For any positive integers p ≥ 1 and n ≥ 2, there exists a maximal triangle-free
graph Hp,n such that :

1. α(Hp,n) = ∆(Hp,n) = 2p.n

2. χρ (Hp,n) = 2p+1

The edge-chromatic number χ′(G) of a graph G is the chromatic number of its line graph.
In 1964, Vizing [14] showed that every graph G has edge-chromatic number either ∆(G)
(known as Class I graphs) or ∆(G) + 1 (known as Class II graphs). Deciding the class of a
given graph is NP-complete for general graphs [16]. It was shown in [15] that the Mycielski
graph of a graph G is class I except for G = K2. It follows by successive mycielski construction
that :

Proposition 9. For any positive integer p ≥ 1 and any graph G other than K2, the iterated
Mycielskian graph µp(G) of G is class I. And then χ′(µp(G)) = ∆(µp(G)).
Moreover, if 2∆(G) > |G|, then χ′(µp(G)) = 2pχ′(G).

An immediate result from theorems 8 and 9 is :

Corollary 10. For any positive integer p ≥ 1, there exists a class of graphs Gp such that

∆(Gp) = α(Gp) = χρ(Gp) = χ′(Gp) = 2p+1
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Extended Abstract

Dominating set recon�guration. A dominating set in a graph G is a subset D of vertices
of G such that any vertex in the graph is either in D or a neighbor of a vertex of D. We
are interested in recon�guring ([3], [4]) dominating sets: given a dominating set D, we can
obtain another one by adding or deleting one vertex from D. By using only these operations
and without getting above a certain bound on the size of the set, which dominating sets are
reachable from the initial one?

More formally, we say that a TAR(k) sequence between two dominating sets D and D′ is
a sequence D = D0, D1, . . . , Dm = D′ of dominating sets such that each intermediate set is
obtained from the previous one by addition or removal of one vertex, and |Di| ≤ k for all i.
The Dominating set recon�guration reachability problem REACH-DSR is de�ned as follows:
given a graph G, a bound k ∈ N and two dominating sets D,D′, is there a TAR(k) sequence
between D and D′? If there exists such a sequence, we say that D′ is reachable from D under
the TAR(k) rule (and vice-versa).

↔

D0 = D

↔

D1

↔

D2 D3 = Ds

Figure 1: An example of recon�guration sequence between D0 and D3 via dominating sets
D1, D2 with upper bound k = 4, where vertices contained in a dominating set are depicted
by colored circles, and added or removed vertices are surrounded by dotted circles.

The goal of recon�guration, in particular of dominating sets, is usually to �nd a better
solution of our problem ; in this case a dominating set which has fewer vertices than the
original one. Based on this idea, Ito et al introduced a new framework of recon�guration
problems [7]. In this variant called OPT-ISR, for Optimization variant of Independent set

recon�guration, we are only given an initial solution, in this case an independent set, and the
goal is to �nd a better solution that is reachable from the initial one through recon�guration
steps, again while staying above (in the case of a maximization problem) a certain bound.
Since the dominating set recon�guration is well studied ([1], [2], [5]), we chose to focus on the
optimization variant OPT-DSR of the dominating set recon�guration problem.

OPT-DSR

• Input: A graph G, an upper bound k ∈ N, a desired bound s ∈ N and a dominating
set D0 of G, such that |D0| ≤ k.

• Question: Is there dominating set Dt of G, reachable from D0 under the TAR(k) rule
and such that |Dt| ≤ s?

We study the complexity of the problem both in terms of polynomial-time (in)tractability
and �xed-parameter (in)tractability.
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Polynomial-time (in)tractability We �rst observe that OPT-DSR generalizes the clas-
sical minimum dominating set problem, which is known to be NP-complete [6]. Hence we
deduce this �rst complexity result:

Theorem 1 OPT-DSR is NP-hard.

More precisely, we can prove that the problem is in fact PSPACE-complete, even on three
classes of graphs: bounded pathwidth graphs, split graphs and bipartite graphs. A split graph

is a graph whose vertices can be partitioned into a clique and an independent set.

Theorem 2 OPT-DSR is PSPACE-complete even for bounded pathwidth graphs, for split

graphs, and for bipartite graphs.

For bounded pathwidth and split graphs, we prove the theorem by giving a polynomial-
time reduction from the optimization variant of Vertex cover recon�guration, OPT-VCR,
which is the equivalent of OPT-DSR in terms of vertex covers. OPT-VCR is known to be
PSPACE-complete even for graphs with bounded pathwidth [7]. For bipartite graphs, we give
a polynomial-time reduction from OPT-DSR on split graphs.

On the other hand, we are able to solve in polynomial time the problem on the class of
interval graphs, which are the graphs that represent the contacts within a set of intervals of
R. We provide a polynomial-time algorithm for these graphs.

Theorem 3 OPT-DSR is polynomial-time solvable for interval graphs.

Fixed-parameter tractability We then study the �xed-parameter complexity of OPT-
DSR. First, we consider d-degenerate graphs, i.e. the ones which can be built by only adding
vertices of degree at most d at each step. Our �rst result states that the problem is �xed-
parameter tractable (FPT) with respect to the degeneracy d and the solution size s.

Theorem 4 OPT-DSR is �xed-parameter tractable when parameterized by d+ s.

To prove it, we provide an FPT algorithm using the idea of domination core introduced
by Lokshtanov et al [5].

Finally, we prove that OPT-DSR is FPT with respect to the size τ of a minimum vertex
cover.

Theorem 5 OPT-DSR is �xed-parameter tractable when parameterized by the size τ of a

smallest vertex cover.

To prove it, we observe that if τ > s, then we can use the FPT(d+ s) algorithm, and in
the case τ ≤ s we provide an algorithm that solves the problem in time FPT(τ).
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Extended Abstract

A graph U is an induced-universal graph for a given family of graphs F if every graph of
F is isomorphic to an induced-subgraph of U. A challenging question is to construct induced-
universal graphs of smallest size, i.e., with the minimum number of vertices. We construct an
induced-universal graph of size n4/3+o(1) for the family of all n-vertex planar graphs. This is
the first sub-quadratic bound for planar graphs. Our construction generalizes to the family
of graphs of Euler genus at most g. The size of the universal graph is the same, up to a
lower-order term depending on g.

Our construction is based on a shorter implicit representation of planar graphs. We show
how to assign to each label of any planar graph a label of 4

3 log n+O(log log n) bits such that
adjacency between any two vertices can be decided by a fixed procedure that examines only
their labels.

1 Introduction

In standard graph representations, such as with adjacency lists and matrices, vertex identifiers
do not play any particular role with respect to the structure of the graph: they are essentially
just pointers in the data structure. On the contrary, implicit representation associates with
each vertex of the graph more information so that adjacency, for instance, can be efficiently
determined from these pieces of information, without the need of any global data-structure.
For instance, if G is an interval graph with n vertices, one can associate with each vertex u
some interval I(u) ⊆ [1, 2n] with integer endpoints so that u, v are adjacent if and only if
I(u) ∩ I(v) 6= ∅. Clearly, no adjacency lists or matrices are required anymore. Although G
may have a quadratic number of edges, such an implicit representation uses 2 log n + O(1)
bits per vertex1, regardless of its degree. Compact representations have several advantages,
not only for the memory storage, but also from algorithmic perspectives. For instance, given
a succinct representation, BFS traversal can be done in O(n) time for interval graphs, even if
they may have Ω(n2) edges. Speedups due to succinct representations are ubiquitous in the
design of algorithms and data structures.

Formally introduced by Peleg [20], informative labeling schemes present a way to formalize
implicit representations of graphs. For a given function Π defined on pairs of vertices of a
graph from some given family of graphs, an informative labeling scheme has two components:
an encoding algorithm that associates with each vertex a piece of information (label); and a
decoding algorithm that computes Π(u, v,G), the value of Π applied on vertices u, v of the
graph G. The input of the decoding algorithm consists solely of the labels of u and of v, with
no other information provided. So, finding an implicit representation of a graph G can be
restated as computing an adjacency labeling scheme for G, that is, an informative labeling
scheme where Π(u, v,G) is true if and only if u, v are adjacent in G.

This work is a part of project TOTAL (Michał Pilipczuk) that have received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 677651). It is also partially funded by the French ANR projects ANR-16-CE40-0023
(DESCARTES) and ANR-17-CE40-0015 (DISTANCIA).

1Throughout this extended abstract, we denote by logn the binary logarithm of n.
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2 Planar Graphs

Planar graphs are perhaps the most studied family of graphs in this area, due to the wide
variety of their implicit representations. To mention just a few, planar graphs are contact
graphs of circles [19], of 3D boxes [23], of triangles [11], and more recently, of L-shapes [17].
They also have 1-string representations [9]. Each of these representations leads to a labelling
scheme where each vertex can be encoded using a label consisting of O(log n) bits, independent
of its degree.

The first explicit bound on the label length, given by Kannan et al. [18], was 4 dlog ne
bits. The representation in terms of dimension-3 posets due to Schnyder [22] actually im-
plies a 3 dlog ne bit labeling, and similar bounds can be derived from polynomial sized uni-
versal graphs (cf. related work below). By significantly improving the labeling scheme for
bounded treewidth graphs, namely from O(k log n) [18] to log n + O(k log log n), Gavoille
and Labourel [16] showed that partitioning the edges of a planar graph into two bounded
treewidth subgraphs, rather than into three forests, leads to a shorter representation: with
labels consisting of 2 log n + O(log log n) bits. This is the currently best upper bound for
planar graphs, see also Table 2 for the best results for sub-families of planar graphs.

Graph families Upper bound References
(with n vertices) (label length in bits)

maximum degree-2 log n+O(1) [8, 14, 1]
caterpillars log n+O(1) [7]

bounded degree trees log n+O(1) [10]
bounded depth trees log n+O(1) [15]

trees log n+O(1) [4]
bounded degree outerplanar log n+O(1) [10, 2]

outerplanar log n+ o(log n) [16]
bounded treewidth planar log n+ o(log n) [16]
maximum degree-4 planar 3

2 log n+ o(log n) [2]
bounded degree planar 2 log n+O(1) [10]

planar 2 log n+ o(log n) [16]

diameter-d planar log n+ log d+ o(log n) [new]
planar 4

3 log n+ o(log n) [new]

Table 1: State-of-the-art for adjacency labeling schemes on planar graphs and some sub-
families. All the second-order terms quoted above as o(log n) are in O(log log n). The bounds
from references [10, 14, 8] come from induced-universal graphs, whereas all the others come
from labeling schemes. The only known lower bound for planar graphs is log n+ Ω(1).

3 Our Contribution

As shown in Table 2, in this work we present a new labeling scheme for planar graphs that
uses labels of length bounded2 by 4

3 log n. Note that this not only improves the previously
best known bound of 2 log n for general planar graphs [16], but even the refined bound of
3
2 log n for the case of planar graphs of maximum degree 4 [2]. Our contribution is actually
three-fold.

2For brevity, in this informal exposition we ignore terms of lower order o(logn).
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First, we design a labeling scheme with labels of length log n+log d if the graph has diam-
eter at most d. This parametrized bound is never worse than the currently best known bound
of 2 log n, because we always have d < n. Our scheme is based on a recent decomposition
theorem, which states that the vertices of a planar graph can be partitioned into geodesics
(shortest paths) so that contracting every geodesic to a single vertex turns the graph into
a graph of constant treewidth. This was first proved by Pilipczuk and Siebertz in [21], and
then refined by Dujmović et al. [13] as follows: the geodesics in the partition can be selected
from any fixed BFS forest of the graph. This statement was used in [13] to prove that planar
graphs have bounded queue number and in [12] to prove that they have bounded nonrepetitive
chromatic number, which resolved two long-standing open questions in graph theory. Thus,
in this work we provide another application of the result of Dujmović et al.: a construction
of shorter labeling schemes for planar graphs.

The second contribution is the main one: a labeling scheme for planar graphs that uses
labels of length 4

3 log n. To achieve this, we combine the scheme for planar graphs of low
diameter with the layering technique. Essentially, we compute a decomposition of the graph
into strips of depth bounded by some parameter d ∈ N. Strips are separated by borders
whose union is a graph on O(n/d) vertices and of constant treewidth. Using the results
of [16], for this border graph we can compute a labeling with labels of length log (n/d). On
the other hand, the low-diameter result provides a scheme for the strips with labels of length
at most log n + log d. At this point, superposing these two schemes gives no improvement,
because vertices appearing at the borders of strips have to inherit labels from both labelings:
log n+ log d from the labeling of the strips and log n/d from the labeling of the border, which
sums up to 2 log n. However, by revisiting the scheme for graphs of bounded treewidth we
are able to show that for vertices at the borders of strips, the labeling for strips can use much
shorter labels: only of length log (n/d) instead of log n+ log d. Hence, the combined labels of
border vertices are of length at most 2 log (n/d), implying that every vertex receives a label
of length bounded by

max { log n+ log d , 2 log (n/d) } .
This expression is minimized for d = n1/3 and then evaluates to 4

3 log n, the desired bound.

The third contribution is a generalization of the previous technique to graphs of bounded
Euler genus. Namely, for every fixed g ∈ N, we construct a labelling scheme for graphs of
Euler genus at most g that uses labels of length at most 4

3 log n.

In all our labeling schemes, we can compute the labeling of all the vertices of the graph
in polynomial time, while the adjacency can be determined from the labels in constant time.

4 Connections with Universal Graphs

It has been observed in [18] that the design of labeling schemes with short labels is tightly
connected with the construction of small induced-universal graphs. Recall that a graph U

is induced-universal for a given set of graphs S if every graph G ∈ S is isomorphic to some
induced subgraph of U. Then graphs from S admit a labeling scheme with k-bit labels if and
only if S has an induced-universal graph U with at most 2k vertices, see [18]. Thus, our new
labeling scheme provides an explicit construction of an induced-universal graph for n-vertex
planar graphs that has n4/3+o(1) vertices, improving upon the previously best known bound
of n2+o(1), derived from [16].

Therefore, we proved that the minimum possible number of vertices of an induced-universal
graph for n-vertex planar graphs lies between Ω(n) and n4/3+o(1). The search for optimum
bounds on the sizes of induced-universal graphs is a well-studied topic in graph theory, see for
example the recent developments for general n-vertex graphs [3, 5] and for n-vertex trees [4].
We refer readers interested in this topic to the recent survey of Alstrup et al. [6].

67



References
[1] M. Abrahansen, S. Alstrup, M. Bæk Tejs Knudsen, and M. Stöckel, Near-optimal

induced universal graphs for cycles and paths, TR 1607.04911v2 [cs.DS], arXiv, July 2016.
[2] D. Adjiashvili and N. Rotbart, Labeling schemes for bounded degree graphs, in 41st Inter-

national Colloquium on Automata, Languages and Programming (ICALP), vol. 8573 of Lecture
Notes in Computer Science (ARCoSS), Springer, July 2014, pp. 375–386.

[3] N. Alon, Asymptotically optimal induced universal graphs, Geometric and Functional Analysis,
27 (2017), pp. 1–32.

[4] S. Alstrup, S. Dahlgaard, and M. Bæk Tejs Knudsen, Optimal induced universal graphs
and adjacency labeling for trees, Journal of the ACM, 64 (2017), p. Article No. 27.

[5] S. Alstrup, H. Kaplan, M. Thorup, and U. Zwick, Adjacency labeling schemes and
induced-universal graphs, in 47th Annual ACM Symp. on Theory of Computing (STOC), ACM
Press, June 2015, pp. 625–634.

[6] , Adjacency labeling schemes and induced-universal graphs, SIAM Journal on Discrete
Mathematics, 33 (2019), pp. 116–137.

[7] N. Bonichon, C. Gavoille, and A. Labourel, Short labels by traversal and jumping, in 13th

International Colloquium on Structural Information & Communication Complexity (SIROCCO),
vol. 4056 of Lecture Notes in Computer Science, Springer, July 2006, pp. 143–156.

[8] S. Butler, Induced-universal graphs for graphs with bounded maximum degree, Graphs and
Combinatorics, 25 (2009), pp. 461–468.

[9] J. Chalopin, D. Gonçalves, and P. Ochem, Planar graphs have 1-string representations,
Discrete & Computational Geometry, 43 (2010), pp. 626–647.

[10] F. R. K. Chung, Universal graphs and induced-universal graphs, Journal of Graph Theory, 14
(1990), pp. 443–454.

[11] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl, On triangle contact graphs,
Combinatorics, Probability & Computing, 3 (1994), pp. 233–246.

[12] V. Dujmović, L. Esperet, G. Joret, B. Walczak, and D. R. Wood, Planar graphs have
bounded nonrepetitive chromatic number, TR 1904.05269v1 [math.CO], arXiv, 2019.

[13] V. Dujmović, G. Joret, P. Micek, P. Morin, T. Ueckerdt, and D. R. Wood, Planar
graphs have bounded queue-number, TR 1904.04791v2 [cs.DM], arXiv, May 2019.

[14] L. Esperet, A. Labourel, and P. Ochem, On induced-universal graphs for the class of
bounded-degree graphs, Information Processing Letters, 108 (2008), pp. 255–260.

[15] P. Fraigniaud and A. Korman, Compact ancestry labeling schemes for XML trees, in 21st

Symp. on Discrete Algorithms (SODA), ACM-SIAM, Jan. 2010, pp. 458–466.
[16] C. Gavoille and A. Labourel, Shorter implicit representation for planar graphs and bounded

treewidth graphs, in 15th Annual European Symp. on Algorithms (ESA), L. Arge and E. Welzl,
eds., vol. 4698 of Lecture Notes in Computer Science, Springer, Oct. 2007, pp. 582–593.

[17] D. Gonçalves, L. Isenmann, and C. Pennarun, Planar graphs as L-intersection or L-contact
graphs, in 29th Symp. on Discrete Algorithms (SODA), ACM-SIAM, 2018, pp. 172–184.

[18] S. Kannan, M. Naor, and S. Rudich, Implicit representation of graphs, in 20th Annual ACM
Symp. on Theory of Computing (STOC), ACM Press, May 1988, pp. 334–343.

[19] P. Koebe, Kontaktprobleme der konformen abbildung, Berichte über die Verhandlungen der
Sächsische Akad. der Wissenschaften zu Leipzig, Math.-Phys. Klasse, 88 (1936), pp. 141–164.

[20] D. Peleg, Informative labeling schemes for graphs, in 25th International Symp. on Mathematical
Foundations of Computer Science (MFCS), vol. 1893 of Lecture Notes in Computer Science,
Springer, Aug. 2000, pp. 579–588 & Theoretical Computer Science, 340 (2005), pp. 577–593.

[21] M. Pilipczuk and S. Siebertz, Polynomial bounds for centered colorings on proper minor-
closed graph classes, in 30th Symp. on Discrete Algorithms (SODA), Jan. 2019, pp. 1501–1520.

[22] W. Schnyder, Planar graphs and poset dimension, Order, 5 (1989), pp. 323–343.
[23] C. Thomassen, Interval representations of planar graphs, Journal of Combinatorial Theory,

Series B, 40 (1986), pp. 9–20.

68



Partition-crossing hypergraphs

Csilla Bujtás 1, and Zsolt Tuza 2,3

1 Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
2 Faculty of Information Technology, University of Pannonia, Veszprém, Hungary

3 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Hungary

Extended Abstract

Introduction

For a �nite set X, we say that a set H ⊆ X crosses a partition P = (X1, . . . , Xk) of X if H
intersects min(|H|, k) partition classes. If |H| ≥ k, this means that H meets all classes Xi,
whilst for |H| ≤ k the elements of the crossing set H belong to mutually distinct classes. A
set system H crosses P,if so does some H ∈ H. The minimum number of r-element subsets,
such that every k-partition of an n-element set X is crossed by at least one of them, is denoted
by f(n, k, r).

The problem of determining these minimum values for k = r was raised and studied by
several authors independently in di�erent contexts, �rst by Sterboul in 1973 [8] (cochromatic
number), also discussed by Berge [3], Arocha et al. [1] (heterochromatic number), and Voloshin
[10, 11] (upper chromatic number). In 2009, the present authors determined asymptotically
tight estimates on f(n, k, k) for every �xed k as n→∞ [4].

Here we consider the more general problem for two parameters k and r and establish lower
and upper bounds for f(n, k, r). For various combinations of the three values n, k, r we obtain
asymptotically tight estimates, and also point out close connections of the function f(n, k, r)
to Turán-type extremal problems on graphs and hypergraphs, or to balanced incomplete block
designs.

We shall use the term hypergraph for the pair (X,H) � where X is the set of vertices
and H is the set of edges � and also for the set system H itself, when X is understood. The
number of vertices is called the order of H, and will usually be denoted by n.

Earlier results

One can observe that a hypergraph crosses all 2-partitions of its vertex set if and only if it is
connected. For this reason we obtain that

f(n, 2, r) =

⌈
n− 1

r − 1

⌉

because this is the minimum number of edges in a connected r-uniform hypergraph of order
n.

Let us observe further that the case of r = 2 simply means graphs with at most k − 1
connected components, therefore

f(n, k, 2) = n− k + 1.

This strong relationship with connected components, however, does not extend to r > 2.
It seems that for k ≥ 3 and r ≥ 3 only the `diagonal case' k = r of f(n, k, r) was studied

earlier.

• f(n, k, k) ≥ 2
n−k+2

(
n
k

)
, for every n ≥ k ≥ 3 ([9]; later proved independently in [1], and

also in [7]).

• f(n, 3, 3) = dn(n−2)3 e, for every n ≥ 3 ([6]; proved independently in a series of papers
whose completing item is [2]).
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• f(n, n− 2, n− 2) =
(
n
2

)
− ex(n, {C3, C4}) holds for every n ≥ 4, where the last term is

the Turán number for graphs of girth 5 ([9]).

Although the exact value of f(n, k, k) is not known for any k > 3, its asymptotic behavior
has been determined for quite a wide range of k.

Theorem 1 (Bujtás, Tuza, '09 [4]) Assume n > k > 2.

(i) f(n, k, k) ≤ 2
n−1

(
n−1
k

)
+ n−1

k−1

((
n−2
k−2
)
−
(
n−k−1
k−2

))
for all n and k.

(ii) f(n, k, k) = (1 + o(1)) 2
k

(
n−2
k−1
)

for all k = o(n1/3) as n→∞.

In the remaining part of the extended abstract we present our main new results. These
theorems and their proofs can be found in the paper [5].

Monotonicity

Theorem 2 For every three integers r, k, k′, if either

(i) 2 ≤ r ≤ k ≤ k′ ≤ n, or

(ii) 2 ≤ k′ ≤ k ≤ r ≤ n
holds, and an r-uniform hypergraph H crosses all k-partitions of the vertex set, then H crosses

all k′-partitions, as well. As a consequence, for every four integers n, k, k′, r satisfying (i) or
(ii) we have

f(n, k, r) ≥ f(n, k′, r).

The following corollaries show the central role of the `symmetric' case k = r:

Corollary 3 If an r-uniform hypergraph H crosses all r-partitions of the vertex set X, then

H crosses all partitions of X.

Numerically, we have obtained that the function fn,r(x) = f(n, x, r) (where x is an integer
in the range 2 ≤ x ≤ n) has its maximum value when x = r; and the situation is similar
if n and k are �xed and r is variable; that is, the function fn,k(x) = f(n, k, x) attains its
maximum at x = k.

Corollary 4 For every three integers n ≥ k, r ≥ 2,

f(n, k, r) ≤ f(n, k, k).

Corollary 5 For every three integers n ≥ k, r ≥ 2,

f(n, k, r) ≤ f(n, r, r).

Lower bound for non-uniform systems

For hypergraphs without very small edges, we prove the following general inequality.

Theorem 6 Let k ≥ 2 be an integer, and let (X,H) be a hypergraph of order n, which

contains no edge H ∈ H of cardinality smaller than k. If H crosses all k-partitions of X,

then ∑

H∈H

(|H|
k

)
1

|H| − k + 2
≥
(
n

k

)
1

n− k + 2
.
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Sharp example. Let n = |X| = 2m be even. Let the edge set of H consist of one m-subset
H of X together with m mutually disjoint 2-element sets, each of which has precisely one
vertex in H and one in X \H. This hypergraph crosses all partitions of X. Indeed, if none of
the m selected 2-sets crosses a partition P, then each class of P meets H. For this H, both
sides of the inequality in Theorem 6 equal n−1

2 for k = 2. (We necessarily have k = 2, due to
the conditions in the theorem.)

Estimates for k ≤ r

For this case we may conclude a lower bound immediately from Theorem 6.

Corollary 7 For every three integers n ≥ r ≥ k ≥ 2 the inequality

f(n, k, r) ≥
(
n
k

)
(
r
k

) · r − k + 2

n− k + 2

holds.

On the other hand, we proved the following general asymptotic upper bound.

Theorem 8 For every two �xed integers r ≥ k ≥ 2 the inequality

f(n, k, r) ≤
(
n
k

)
(
r
k

) · r
n
+ o(nk−1)

holds as n→∞.

Estimates for k ≥ r

Theorem 9 For every three integers n ≥ k ≥ r ≥ 2 the inequality

f(n, k, r) ≥
(

n
r−1
)

(
k−2
r−2
) · n− k + 2

r(n− r + 2)

holds.

For k and r �xed, the lower bound gives the right order O(nr−1), as shown by the following
theorem which is proved by a construction.

Theorem 10 Let k ≥ 3, and assume that k − 2 is divisible by r − 2. If n→∞, then

f(n, k, r) ≤ 2(r − 2)r−2

r(k − 2)r−2

(
n

r − 1

)
+ o(nr−1).
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Extended Abstract

1 Introduction
Our goal in this paper is, given a connected set of balls, to select and inflate one ball to cover
the whole set with the minimal radius. More formally, we are given an abstract metric space
and a path-connected set of balls with given centres c1, c2, . . . , cn and radii r1, r2, . . . , rn.
We want to choose one of the centres and create a ball of radius R around it to cover the
whole set of balls with minimal R. By using arguments from graph theory, we show that
R ≤ ra +

∑
j rj , where ra is the mean of the two biggest radii among the ri. This bound is

tight. Finally, we show that in the usual complexity models, computing this centre requires
Θ(n2) operations.

This problem is closely related to the smallest enclosing ball problem, which has been
studied since the early 1980s [Meg83, Wel91, MNV13]. The main difference is that, instead of
computing the smallest enclosing ball without constraints on the centre, our centre is imposed
from a small set, and we are concerned with precise bounds on the radius. Our motivation
comes from facility location [GK99, CP04, Vyg05] and dynamic clustering problems [EMS14,
ANS15], where fractional solutions to the linear programs generally come in the form of such
structures. Being able to replace a connected set of balls by a single optimal ball in such
problems could be a step towards solutions that have better approximation ratios and are
easier to analyse, especially in the dynamic metric setting where some bounds are still far
from being tight [BS17].

2 Upper and lower bounds

Definitions
We work in a general metric space E endowed with a distance d(., .) and the natural topology
generated by open balls. Paths on E are well-defined as continuous functions [0, 1]→ E.

We consider a set of n points c1, c2 . . . cn in the metric space E, and to each point ci
associate a closed ball Bi of radius ri (corresponding to all the points in E that are at
distance at most ri from ci). The subspace corresponding to the union of all the balls will be
written as S. We have one constraint on the the set of balls: the union S is assumed to be
path-connected, meaning that there is a path from x to y through S, for any x, y ∈ S.

Problem
We seek to cover S by increasing the radius of a single ball, and have two questions. Which
center ci should we choose, and how can we minimise the ratio of the new radius R compared
to the sum of the previous radii? That is, how do we minimise

R∑
j rj

.

The immediate answer is to find the ball closest to the “center” of S and open it with a
sufficient radius, but that center might not be easy to manipulate in some abstract metric
spaces and does not immediately give the best bound. Before proving the tight, bound we
need an elementary lemma.
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Lemma 1. If a shortest path P between two arbitrary points x, y ∈ S through S is of length
d, then the sum of radii

∑
j rj is at least d/2.

Proof. Without loss of generality, let B1, . . . , Bk be the sequence of balls that the path P
follows. Note that by the triangle inequality, the path P passes through each ball once —
otherwise there exists a shorter path between x and y than P , which contradicts P being the
shortest. Write e1, . . . , ek to be the “entry” points on the path P into the balls B1, . . . , Bk

respectively. We will define by convention e1 = x and ek+1 = y. We have d(e1, e2)+d(e2, e3)+
. . .+ d(ek, ek+1) = d. By the triangle inequality with the centres c1, c2, . . . , ck, we finally get:

d =
k∑

i=1

d(ei, ei+1) ≤
k∑

i=1

(d(ei, ci) + d(ci, ei+1)) ≤
k∑

i=1

2ri ≤ 2
n∑

i=1

ri.

From Lemma 1 it follows that we can easily have R∑
j rj
≤ 2 by opening any facility with a

big enough radius to cover everyone. Suppose that we take a centre ci and a point x farthest
from i, opening i with radius d(i, x) is enough to cover S (because a point not inside that
new ball would have to be at distance higher than d(i, x)). But the cost of the initial solution
was at least d(i, x)/2, hence the result.

The previous result can be extended to arbitrary paths as long as their total length inside
each ball is at most 2ri. If there is a path of length d satisfying such a condition,

∑
j rj ≥ d/2.

We also need a theorem from graph theory:

Theorem 2 ([WC04]). For any tree graph T , we have:

2× radius−max
i,j

(d(ci, cj)) ≤ diameter.

Our goal is now to prove the following:

Theorem 3. We can always cover S by a ball with radius R ≤ ra +
∑

j rj, where ra is the
mean of the two biggest radii among the ri.

Proof. Let us consider a weighted complete graph Kn with c1, . . . , cn as nodes, where the
weight of an edge (ci, cj) is equal to d(ci, cj). Let T be a minimum spanning tree of the graph
G. We expand T to a second tree T ′ in the following way. For each node ci of T , we add
a leaf lij for each cj with j 6= i (thus making the number of nodes in T ′ equal to n2). The
weight of an edge (lij , ci) is set to be equal to the maximum distance between the centre cj
and a point in Bi.

We observe that, if we define the ball centred at a central node of T ′ with radius R equal
to the radius of T ′, then this ball covers S entirely. Let us now take a path corresponding to
the diameter of the tree T ′. We know that its length d is less than 2

∑
j rj . We also know

from Theorem 2 that d ≥ 2 × R − maxi,j d(ci, cj). However, d(ci, cj) is at most the sum of
the two biggest radii among the rj , which we will denote by 2ra. By combining this with
Lemma 1, we get that:

R ≤ d

2
+ ra ≤ ra +

∑

j

rj

Lemma 4. This bound is tight.

Proof. Consider two balls of radius r in the Euclidean space that touch in a single point. Any
of these two balls has to be inflated with radius 3r to cover their union. This proves the lower
bound.
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Remark 5. We can consider another situation in the Euclidean space, to show that this bound
applies to instances of arbitrary sizes. Suppose that we have an even number 2n of identical
balls of radius r in a line touching one another and a ball of a high radius r′ on each side
of the middle of the line. The optimal solution is then to inflate one the two big balls with
sufficient radius to cover everyone other ball. The radius of the inflated ball in this case is
2n× r + 3ra, while the sum of radii is 2n× r + 2ra.
Remark 6. If we don’t look at the values of the radii but only consider a multiplicative bound,
this means that we can get examples with 3

2 ≤ R∑
j rj

(as in the first previous example), and

the theorem becomes R∑
j rj
≤ 3

2 .

3 Algorithmic considerations
Using the same notations as before, we now look at the following algorithmic question: in
how many operations can we find a centre c∗ ∈ {c1, . . . , cn} such that we can cover all
balls B1, . . . , Bn by a ball centred at c∗ with minimal possible radius R. The answer to this
question depends on the choice of the model of how the input data is accessed. We will now
investigate multiple models and give the lower bounds on the worst-case complexities for each
of them.

Different input methods. We consider three models. The first and most general is: given
any two centres c1 and c2, we have access to an oracle that outputs the distance between c1
and c2 in O(1) time. This corresponds to a matrix representation of the complete distance
graph.

An alternative is to have an adjacency list, where for each ball we can access in O(1) time
to its radius as well as to the list of all centres within the ball – potentially sorted by distance
to the ball’s centre.

General algorithm. We will now describe a simple algorithm that finds c∗. We compute
for each centre ci, the radius of the smallest ball centred at ci that covers S. We will leave
for now the complexity of finding this radius as a parameter k. To find c∗, we pick the centre
with the minimal such radius. As we have n different centres, the complexity of the algorithm
is thus O(nk).

If we have access to the distance between ci and cj in O(1) operations – or access to the
list of distances between ci and all cj – we can check each center in O(n), leading to an O(n2)
algorithm. As shown in the following lemma, we cannot do better than this in the general
case.

Lemma 7. With the matrix representation, Ω(n2) queries can be needed, making the previous
algorithm asymptotically optimal.

Proof. We will use an adversary argument, with a game for two players on a complete graph
Kn, where the n nodes correspond to the centres c1, . . . , cn. All edge weights in the graph
Kn can be either 1 or 1 + ε for some fixed ε ∈ (0, 1). Note that any assignment of the weights
on the edges in the graph Kn satisfies the triangle inequality, hence the weighted graph Kn

defines a metric space.
The first player (the user) chooses an edge in the graph and the second player (the adver-

sary) chooses the weight of this edge from 1 and 1 + ε. The goal of the user is to efficiently
decide whether there exists a node in the graph Kn such that all its incident edges have weight
1, with the adversary trying to make the user lose as much time as possible. We will now
show that the adversary has a strategy to make the user pick Ω(n2) edges in Kn to decide.

Let e be an edge picked by the first player with two endpoints ci and cj . If e is not the
last picked edge for either ci or cj , then the adversary assigns to the edge e the weight 1.
Otherwise, the adversary assigns to e the weight 1 + ε, unless ci or cj is the last node with no
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distance equal to 1 + ε. In this case, the adversary arbitrarily sets the distance to be either
1 or 1 + ε.

Recall that the user needs to check for each node if there is an incident edge with weight
1+ε. When an edge with weight 1+ε is detected, this check is complete for the two endpoints
of the edge. Therefore, at least dn/2e edges with weight 1 + ε need to be queried. Moreover,
by construction, for each such edge, at least n− 2 edges of weight 1 were queried previously.
We counted each edge of weight 1 at most twice, leaving us with at least n(n− 2)/4 edges of
weight 1 required to query. In total, the user is therefore required to pick O(n2) edges.

Remark 8. Although it requires an involved and technical proof, it can be shown that this
instance can be embedded in Rn. Any weight assignment to the edges of Kn satisfies the
triangle inequality, corresponding to a sub-constrained problem that can be satisfied in Rn.

4 Discussion
This paper leaves open multiple algorithmic questions. First, can better algorithms be found
in the general case, using the number of edges as a parameter instead of the number of centres?
For example, it could be possible to get Õ(m) complexity by extending the constructive proof
of Theorem 3, building a spanning tree and finding its centre in O(m log∗m). However, this
requires finding a way to avoid the quadratic increase in size due to the construction of T ′.

A different possible direction is to look not for optimal solutions but for satisficing ones,
where any center with R ≤ ra +

∑
j rj is considered a valid solution. In such a case, one

could get rid of dense parts of the graph by only looking at the top three furthest neighbours
and absorbing them into the ball currently considered. Most importantly, could the methods
shown in this paper improve the bounds or give access to simpler proofs of the results for
clustering and facility location problems, such as the ones in [CP04]?
Acknowledgements. This work was supported partly by the french PIA project “Lorraine Uni-
versité d’Excellence”, reference ANR-15-IDEX-04-LUE.
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Extended Abstract

1 Introduction and problem definition
Our goal in this extended abstract is to investigate a model of computation inspired by control-
flow graphs (CFG) [All70], automata and arithmetic circuits. The objective is to extend the
definition of the first to include computing on nodes and edges.

We are given a directed graph and a set of integer variables, with every edge in the graph
being augmented in two ways. First, a set of constraints on the variables determines whether
the edge is authorised. Second, to each edge is associated a function that affects the values of
the variables. In this complex model, we seek to estimate the length and number of distinct
paths. We restrict ourselves to the two cases in which this has meaning: when the underlying
graph is a DAG, or when we have a promise that paths of infinite length do not exist in
the given graph. This has varied applications, from bounding the number of execution paths
in various computing models (both deterministic and non-deterministic), to counting the
number of distinct stories in interactive fictions. This problem is easy in the case of trees —
checking whether each node is reachable can be done in linear time by a BFS — or in the
case of directed acyclic graphs, where we can use dynamic programming. However, adding
constraints on the values of variables can make it untractable, even with small graphs.

We focus on a simplified model — constrained control-flow graphs (CCFG) — defined by:

• A directed graph G with n nodes and m ≤ n2 directed edges (loops are authorised).

• A vector of k variables V = (v1, ..., vk), all initialised at 0.

• A function fe for each edge e, that associates a boolean to V , taking the value TRUE
only if the edge is authorised for the value of V (see below).

• A vector V e for each edge e, with the rule that, when going through e on a path, we
assign V := V + Ve. This vector can have negative coordinates.

• An integer B, such that ∀(V, e),
(
fe(V ) =⇒ ∀i, (0 ≤ vi + V ei ≤ B)

)
.

In such a model, we seek to count or estimate the maximum number Π of authorised paths,
that is, paths such that each edge taken follows the constraints of fe. We are also interested in
the lengths of such paths, as they have a direct impact on the number of paths. The maximal
length of any authorised path will be denoted by Λ.

Crucially, Π and Λ only exist if there is no path of infinite length. An equivalent property
is that there exists no cycle that leaves all variables unchanged.

2 Upper bounds
We start by giving upper bounds on Λ. The first is useful when there are few variables,
whereas the second addresses the case when the variables greatly outnumber the nodes.

Lemma 1. All authorised paths have length bounded by n× (B + 1)k.

Proof. As each variable can take B + 1 different values, there are n × (B + 1)k pairs (a, V )
where a is a node. If a path has length > n× (B + 1)k, one such pair must be present twice,
and there is a cycle that leaves the variables unchanged.
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We can get an alternative upper bound on Λ in the case of m < k.

Lemma 2. All authorised paths have length bounded by n× 2mkm/2
(
k
m

)
Bm.

Proof. We will prove the lemma geometrically by a volume argument. All possible values of
the vector V are integer grid points inside a k-dimensional cube C of side B. The values Ve
for all edges e span a linear space L of dimension at most m. Our goal is to estimate the
number of integer grid points N that lie on the intersection C∩L. Once we have this number,
we can substitute the factor Bk in Lemma 1 to find a bound on the length of a path.

For each of the N points on C ∩L, we construct a ball of radius 1/2. Because these points
have integer coordinates, the constructed balls have disjoint interiors. All these balls lie in
a tubular neighbourhood (thickening) S of C ∩ L of radius 1/2. With vol(Bk) denoting the
volume of a k-dimensional unit ball, we obtain: N × vol(Bk)( 1

2 )k ≤ vol(S). The volume of S
is given by Weyl’s tube formula [Wey39]: vol(S) ∈ O

(
vol(C ∩ L) vol(Bk−m) (1/2)k−m

)
. By

combining the two formulae, we get: N ∈ O
(

2mvol(C ∩ L)vol(Bk−m)
vol(Bk)

)
.

Moreover, vol(C ∩L) is upper-bounded by the volume of an m-dimensional ball of radius
the diagonal of the cube C. This volume is vol(Bm)(

√
kB)m. The volume of a k-dimensional

unit ball is given by [OLBC10]: vol(Bk) ∼
(

2πe
k

)k/2. We therefore have:

N ∈ O
(

2mkm/2Bm
vol(Bm)vol(Bk−m)

vol(Bk)

)
⊆ O

(
2mkm/2Bm

(
k

m

))
.

We can derive an easy bound on Π from Lemma 2.

Corollary 3. We have:
Π ∈ nO(2mkm/2 (k

m)Bm ).

Proof. The number of ways to compose a path of length Λ from n nodes is nΛ. We substitute
Λ by the upper bound from Lemma 2.

Remark 4. For some types of graphs, the upper bound on Π is much smaller. For example,
the number of paths in a DAG with no variables is upper-bounded by 2n−1 − 1. This bound
comes from the complete graph on n nodes oriented in a non-cyclic manner.

3 Lower bounds
We now give constructive lower bounds of the maximum Λ and Π for fixed k or n, in two
cases corresponding to Lemmas 1 and 2. Before this, we start by an introductory example on
multigraphs.

Multigraph example. If we allow multigraphs, we have a matching bound for Lemma 1.
Consider a single node with k loop edges e1, . . . , ek. To each edge ei we assign a vector
V i = (−B, . . . ,−B, 1, 0, . . . , 0), with 1 at the i-th place. Each path corresponds to the
iterative incrementation of a counter in base B + 1, from 0 to (B + 1)k − 1. We can also add
a path of length n− 1 that ends in node n without changing the variables. From node n, all
the loops V i are replaced by edges towards the first node. This gives: Λ = n× (B + 1)k.

Small k case. If we get back to simple directed graphs — without parallel edges — we
have a first lower bound on path length in the case k < n. We consider a graph Gn,k derived
from the previous one, where instead of the edge with vector V i going from the n-th to the
first node, it goes from the n-th to the i-th node. Gn,k is then composed of a path on n nodes
that does not affect the variables, and k edges from node n to the first k nodes of the path.
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As before, the vector V evolves as an incremental integer counter with digits in base
B+ 1 until it reaches the value (B, . . . , B), returns to the last vertex, and stops as no edge is
authorised. To increment the digit at a position i, the path follows the edge from n to i and
then returns to n by passing through i + 1, . . . , n − 1. We now compute the total length of
this path. The number of times the path passes through the edge from n to i is B(B+ 1)k−i.
Afterwards, the path returns to n by following n−i edges. The length of the path is therefore:

k∑

i=1

B(B+1)k−i(n− i+1) =
n(B + 1)k+1 − (n+ 1)(B + 1)k − (n− k)B + 1

B
∈ Θ(n(B+1)k).

Small n case. When n2 < k, we consider a second kind of graph. This graph consists
of a complete graph Kn−1 on n − 1 nodes — including loops, hence with (n − 1)2 edges —
and a distinguished node n connected to all other nodes in both ways. Each edge within the
complete subgraph Kn−1 has an associated unique vector of type (−B, . . . ,−B, 1, 0, . . . , 0).
The edges from n to other nodes are associated to the same vector (1, 0, . . . , 0), while the
edges to the node n are associated to the zero vector.

As was the case in the previous graph, the longest authorised path simulates an incremental
integer counter on the vector V . This path starts at the node n. To increment the units digit,
the path follows any edge from n to a node in Kn−1. If the next incrementation is in the
digits of some position i > 1, then the chosen node is such that there is an outgoing edge
associated to a vector (−B, . . . ,−B, 1, 0, . . . , 0) with 1 at the i-th coordinate. In this case,
the path follows this edge and returns to n. Otherwise, the path simply returns to n. The
length of this path is therefore:

Λ = 2B(n−1)2 +B(n−1)2−1 = (2B + 1)B(n−1)2−1.

We can also count the number of paths in this graph. For each incrementation of the units
digit, the path can pass through any of the nodes in the complete subgraph Kn−1 before
returning to n. We obtain the value of Π:

Π = (n− 1)(B−1)B(n−1)2−1

.

4 Using Markov chains to bound Π on given graphs
Algorithmically, finding the number of paths or the length of the greatest path in an arbitrary
CCFG is a complex computational problem. The simplest way is to run a breadth-first search
and count the number of endpoints, but this has a time complexity at least linear in Π.
There are many potential practical improvements, such as analysis of DAG components and
discarding redundant variables, but this does not help in the general case.

However, there is a way to give lower bounds on arbitrary graphs in practice. Intuitively,
we create a Markov chain over the graph, which induces a probability distribution on all
authorised paths, and use an estimator from a generalisation of the birthday problem [Mas92].
This allows us to get a time complexity in at most

√
Π if the Markov chain has optimal values.

More formally, we give to each edge e a weight we, and we follow paths by taking a random
edge with a distribution that depends on the weights of the authorised edges. Each time we
stop (either because we reached a point with no outgoing edge or because the probability of
outgoing edges was less than 1), we save that path. We keep drawing paths at random until
we get one that we have saved previously. We output the square of the number of paths seen,
which serves as an estimator for the total number of paths. For example, in the special case
where all Π paths have an equal probability, we know that the expected number of trials T
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before a collision follows [CP+00]: −2
5 < T −

√
πΠ/2 < 8

5 . As such, computing T 2 can give
an estimate for Π. However, as the distribution is generally not uniform, T 2 is actually a
lower bound for Π as the probability of getting a collision is a convex function of the pi.

Divergence from the true value. Let us first assume that we have an optimal Markov
chain to estimate the ratio Π

T 2 , which increases with the non-uniformity of the distribution.
We can then consider a simple graph with one node, one variable, and one loop that increments
that variable. The corresponding Markov chain has a single parameter: the probability p of
taking the loop edge. The path then has probability (1 − p) × pi to have length i < B,
and probability pB to have length B. Using Theorem 4 from [Wie05], a long but technically
simple derivation shows that the optimal distribution to maximise T uses p = Θ

(
(2n)

−1
2n

)
.

In such a case, T ∈ Θ(
√

n
lnn ). Empirical values confirm the divergence, with T ≈ 9.26 for

n = 100, and T ≈ 23.7 for n = 1000. This is for the simplest CCFG possible — a single node
with a single loop — and a greater divergence might be found on more complex CCFGs.

Although there are limits on the efficiency of this method, it can still be of interest to find
lower bounds. However, we have not yet solved the problem of finding the optimal Markov
chain. A first possibility is to start with all we = 1 and repeatedly draw random paths
until we get a collision. At this point, the we are incremented on all edges e of the colliding
path. We then update the Markov chain, with the probability of taking each edge e being
proportional to 1

we
. This iteratively diminishes the probability of getting that collision again,

which tends to increase T . If the graph is a tree, a simple inductive proof shows that this
process converges towards a uniform distribution on all paths. A cycle is not necessary to
have divergence, as it can also occur on some DAGs.

5 Discussion and open problems
We have introduced a model of computation graphs and a set of bounds on the length and
number of paths, as well as a method to estimate the latter. There are many open questions
in this model, but the critical ones seem to be the following:

• What is the convergence speed of the Markov chain algorithm? Can it be improved by
drawing paths until we have more than single collision before incrementing the weights?

• Can we obtain a useful upper bound on the divergence?

• Can we tighten the bounds in the small n case?
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Extended Abstract

In the talk, we are interested in classifying the computational complexity of list homo-
morphism problem for signed graphs.

Signed graphs were introduced by Zaslavsky in the 1980s [2]. A signed graph is an undi-
rected graph G together with a signing function σ : E(G)→ {+,−}. We denote such a graph
as a pair (G,Σ), where Σ = σ−1(−). Loops and parallel edges are allowed in signed graphs.
However, it is assumed that there is at most one positive and at most one negative edge with
the same endpoints.

Let us also define the switching operation. This operation can be applied to any vertex of
a signed graph and it results in multiplying signs of all its incident edges by −1. We say that
two graphs are switching-equivalent if we can get one to the other by a sequence of switchings.

The sign of a cycle is defined as the product of the signs of all edges on the cycle. We
then distinguish between a negative cycle and a positive cycle. We say that a signed graph is
balanced if every cycle in the graph is positive. It is known [2] that a signed graph is balanced
if and only if it is switching-equivalent to a signed graph with all edges positive. We say that
a signed graph is anti-balanced if it is switching equivalent to a signed graph with all edges
negative.

We can finally define the main definition — homomorphism of signed graphs.

Definition 1 We say that f : V (G)→ V (H) is a homomorphism from signed graph (G,Σ) to
(H,Π) if there exists a signed graph (G,Σ′) switching-equivalent to (G,Σ) such that f(u)f(v) ∈
E(H) whenever uv ∈ E(G) and such that uv ∈ Σ′ if and only if f(u)f(v) ∈ Π.

We note that without the possibility of switching we get homomorphisms of 2-edge-colored
graphs.

Definition 2 Let (H,Π) be a fixed signed graph. The S-Hom(H,Π) is defined as follows:

Input: A signed graph (G,Σ).
Question: Is there a signed homomorphism of (G,Σ) to (H,Π)?

The problem was extensively studied in the last decade, see for example [3, 4, 9].
One of the most important results is settling the dichotomy of S-Hom(H,Π) by Brewster

and Siggers [9], conjectured by Brewster, Foucaud, Hell and Naserasr [4]. To state the result
of Brewster and Siggers, we give a definition of s-core.

Definition 3 A signed graph (G,Σ) is a s-core if every homomorphism f : (G,Σ)→ (G,Σ)
is a bijection.

Theorem 4 [9] The problem S-Hom(H,Π) is polynomial if (H,Π) has a s-core with at most
2 edges and NP-complete otherwise.

We are working on proving the dichotomy, and obtaining the concrete classification, of
the complexity for the natural extension of this problem to its list version.

List versions of homomorphism problems have been much studied for non-signed graphs
and digraphs. Dichotomies and concrete classifications of complexity for the list homomor-
phism problem are known for reflexive graphs [6], irreflexive graphs [7], arbitrary graphs
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[8], and arbitrary digraphs [10]; and dichotomy is known for even more general relational
structures [1].

The definition of our studied problem is the following.

Definition 5 Let (H,Π) be a fixed signed graph. The List-S-Hom(H,Π) problem is defined
as follows:

Input: A signed graph (G,Σ) with lists L(v) ⊆ V (H) for every v ∈ V (G).
Question: Does there exists a homomorphism f from (G,Σ) to (H,Π) such

that f(v) ∈ L(v) for every v ∈ V (G)?

It is clear that any NP-complete case of S-Hom(H,Π) remains NP-complete for List-S-Hom(H,Π)
so by Theorem 4, we may focus on signed graphs (H,Π) whose s-cores have at most two edges.
There are, however, many complex signed graphs with this property.

We don’t yet have a full classification of the complexity, and we report here some partial
progress. In particular, we have a complete classification if the signed graph (H,Π) has no
vertex with both a positive and a negative loop. We also discuss some partial results for the
case when there are only one or two such vertices.

We partition the vertices of the target graph H into four parts:

• A — the vertices having both positive and negative loops,

• B — the vertices with positive loops and no negative loops,

• C — the vertices with negative loops and no positive loops,

• D — the vertices with no loops.

A double edge is a pair of edges, one positive one negative, with the same endpoints.
The complexity of List-S-Hom(H,Π) for the case when A is empty is below. Recall the

definition of a bi-arc graph.

Definition 6 [8] Let C be a circle with two specified points p and q on C. A bi-arc is an
ordered pair of arcs (N,S) on C such that N contains p but not q, and S contains q but not
p. A graph H is bi-arc graph if there is a family of bi-arcs {(Nx, Sx) : x ∈ V (H)} such that,
for any x, y ∈ V (H), not necessarily distinct, the following hold:

• if x and y are adjacent, then neither Nx intersects Sy nor Ny intersects Sx;

• if x and y are not adjacent, then both Nx intersects Sy and Ny intersects Sx.

Theorem 7 Let (H,Π) be a connected signed graph partitioned into A,B,C,D as in the
previous paragraph. The following dichotomy holds for the problem List-S-Hom(H,Π) if A
is empty.

1. If both B and C are non-empty, the problem is NP-complete.

2. If B ∪D is non-empty and C is empty, the problem is polynomial if (H,Π) is balanced
and H is a bi-arc graph.

3. If C ∪ D is non-empty and B is empty, the problem is polynomial if (H,Π) is anti-
balanced and H is a bi-arc graph.

4. All other cases are NP-complete.

In the case of A being non-empty, we have some partial results. Namely the following is
the most important.
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H1

H2

H3

Figure 1: The forbidden patterns from Theorem 9. Negative edges are in red, positive edges
in blue.

Theorem 8 For a given signed graph (H,Π) the problem List-S-Hom(H,Π) is NP-complete
if the subgraph of H induced by its A part is not an interval graph with double edges.

For the case when A has one or two vertices, the following information is very useful. We
define the three graphs H1, H2, H3 (see Fig. 1) as forbidden patterns.

Theorem 9 If a given signed graph (H,Π) contains any of the graphs H1, H2, H3 as an
induced subgraph after some switching, the problem List-S-Hom(H,Π) is NP-complete.

In the presentation, we will discuss the details of proofs and we will also talk about other
related results we obtained.
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Extended Abstract

Adjusted interval graphs have been studied as the right digraph analogue of interval graphs.
For interval graphs there are polynomial algorithms to extend a partial representation by given
intervals into a full interval representation. We will introduce a similar problem – extending
partial ordering. We provide a polynomial algorithm to extend a partial ordering of adjusted
interval digraphs.

The classical definition of interval digraphs was given by West et al. [1].

Definition 1 A digraph H is an interval digraph if there exist a family of source intervals
{Iv|v ∈ V (H)} and a family of sink intervals {Jv|v ∈ V (H)} such that the source interval Iu
intersects the sink interval Jv if and only if (u, v) ∈ E(H).

The following more restrictive definition given by Feder et al. [2] seems to define a more
useful analogue.

Definition 2 An adjusted interval digraph is an interval digraph such that the intervals Iv
and Jv can be chosen to have the same left-point for each vertex v ∈ V (H).

Note that an interval digraph does not have to be reflexive but adjusted interval digraphs
are always reflexive. Adjusted interval digraphs were defined in connection with studying of
computational complexity of list homomorphisms [2]. We define n as the number of vertices
of H and m as the number of edges of H. The first algorithm for recognition of adjusted
interval digraphs was introduced in [3] with time complexity O(m2 + n2). Subsequently, the
algorithm was improved by Takaoka [7] to cubic time – O(n3).

Definition 3 A min ordering of H is a linear ordering < of V (H) that satisfies the following
property. If (u, v) ∈ E(H) and (u′, v′) ∈ E(H), then (min(u, u′),min(v, v′)) ∈ E(H).

Feder et al. [3] showed that H is an adjusted interval digraph if and only if H has a min
ordering.

It is sometimes of interest to not find an arbitrary representation, but one that uses
predefined intervals. Klavík et al. [5, 6] defined and studied partial representation extension
problem RepExt( C) for fixed class of intersection graphs C. A partial representation R′ of
graph G is a representation of an induced subgraph G′ of G. For a given graph G and a
partial representation R′, they ask if there is a representation R of G such that for every
v ∈ V (G′) holds R(v) = R′(v). For more information about this problem we refer reader to
[4].

We are working on the natural analogue of this concept for adjusted interval digraphs. In
view of the result of Feder et al. [3] mentioned above, it is natural to consider first a similar
(but easier) problem of extending a partial ordering.

Extending partial orderings problem for adjusted interval digraphs is defined as follows.
For a given reflexive digraph H and a set of pre-ordered pairs of vertices P ⊆ {(u, v)| u, v ∈
V (H), u 6= v}, we ask if there exist a min ordering R of vertices of H such that (u, v) ∈ P
implies u < v in R. We say that R extends P .

Using the methods of [6], it can be shown that the analogous problem for extending
interval orderings of undirected interval graphs has a linear time algorithm.

Our main contribution is the following theorem.
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Theorem 4 The problem of extending partial ordering of adjusted interval digraph can be
solved in polynomial time with an algorithm running in O(n5) time.

We will need two auxiliary graphs for our algorithm — a pair digraph by Feder at al. and
an implication digraph by Takaoka.

Definition 5 [3] Let H be a reflexive digraph. The pair digraph H+ associated with H is
defined as V (H+) = {(u, v)|u, v ∈ V (H), u 6= v} and for any vertices u, v, u′, v′ of H the
following holds: (u, v)→ (u′, v′) and (v′, u′)→ (v, u) in H+ if and only if

• (u, u′), (v, v′) ∈ E(H) and (u, v′) 6∈ E(H), or

• (u′, u), (v′, v) ∈ E(H) and (v′, u) 6∈ E(H).

Definition 6 [7] Let H be a reflexive digraph. The implication graph H∗ of H is a digraph
such that V (H∗) = {(u, v)|u, v ∈ V (H), u 6= v} and for any three vertices u, v, w of H:
(u, v)→ (w, v) and (v, w)→ (v, u) in H∗ if and only if

• (u,w) ∈ E(H) and (u, v) 6∈ E(H), or

• (w, u) ∈ E(H) and (v, u) 6∈ E(H).

The algorithm is based on using the following theorem, which is adapted from a similar
theorem for H+ [3].

Theorem 7 Let H∗ be an implication graph of a reflexive digraph H. Then H is an adjusted
interval digraph if and only if the vertices of H∗ can be partitioned into two sets D,D′ such
that the following properties hold.

1. (x, y) ∈ D if and only if (y, x) ∈ D′,

2. if (x, y) ∈ D and (x, y)→ (w, z) ∈ H∗ then (w, z) ∈ D,

3. if (x, y), (y, z) ∈ D then (x, z) ∈ D.

The algorithm tries to divide the vertices of an implication graph H∗ into the sets D and
D′ with regards to the pre-ordered pairs or returns that it is not possible to do that.

This is the first step to solve the partial representation extension problem for adjusted
interval digraphs. The authors of this abstract are currently working on this problem.
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Extended Abstract

Recoloring problems. Reconfigurations problems arise when, we are given an instance of
a problem and we want to find a step-by-step transformation (called reconfiguration sequence)
between two feasible solutions such that all intermediate solutions are also feasible.

Interest in combinatorial reconfiguration steadily increased during the last decade. Re-
configuration of several problems, including Coloring [1, 2, 3], Independent Set [4, 5, 6],
Dominating Set [7, 8, 9] have been studied. For an overview of recent results on reconfig-
uration problems, the reader is referred to the surveys of van den Heuvel [12] and Nishimura
[13].

Here, we focus on graph recoloring : we are given a graph G and two proper k-colorings of
G, let us call them s (for source) and t (for target), and the task is to find a way to turn s into
t by changing the color of one vertex at a time, such that each intermediate step is a proper
coloring. More formally, the task is to find a sequence of proper k-colorings x0, x1, . . . , xL
such that x0 = s and xL = t, and xi is obtained from xi−1 by changing the color of exactly one
vertex. Such problems have been studied extensively from the perspective of graph theory
and classical centralized algorithms, but the problems are typically inherently global and
solutions (when they exist) are long, i.e., L is large in the worst case.

In this work we introduce recoloring problems in a distributed setting. We show that there
are natural relaxations of the problem that are attractive from the perspective of distributed
graph algorithms: they admit solutions that are short and that can be found locally (e.g., in
sublinear number of rounds). Distributed recoloring problems are closely related to classical
symmetry-breaking problems that have been extensively studied in the area of distributed
graph algorithms, but as we will see, they also introduce new kinds of challenges.

Input Coloring Target Coloring

Figure 1: Distributed recoloring: the input coloring s can be seen on the left and the target
coloring t on the very right. The illustration shows one possible way to reach the target
coloring in three steps by, in each step, changing the colors of an independent set.

Distributed recoloring. We will work in the LOCAL model of distributed computing:
Each vertex v ∈ V of the input graph G = (V,E) is a computer, and each edge e ∈ E repre-
sents a communication link between two computers. Computation proceeds in synchronous
rounds: each vertex sends a message to each of its neighbors, receives a message from each
of its neighbors, and updates its local state. Eventually, all vertices have to announce their
local outputs and stop; the running time of the algorithm is the number of communication
rounds until all vertices stop. We assume that the algorithm is deterministic, and each vertex
is labeled with a unique identifier.

1This talk presents some results of our paper Distributed recoloring published in the proceedings of
DISC’2018. See https://arxiv.org/abs/1802.06742 for the full version of the paper.
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In distributed recoloring, each vertex v ∈ V is given two colors, an input color s(v) and
a target color t(v). It is guaranteed that both s and t form a proper coloring of G, that is,
s(u) 6= s(v) and t(u) 6= t(v) for all {u, v} ∈ E. Each vertex v ∈ V has to output a finite
recoloring schedule x(v) = 〈x0(v), x1(v), . . . , x`(v)〉 for some ` = `(v). For convenience, we
define xi(v) = x`(v) for i > `(v). We say that the vertex changes its color at time i > 0
if xi−1(v) 6= xi(v); let Si be the set of vertices that change their color at time i. Define
L = maxv `(v); we call L the length of the solution. A solution is feasible if the following
holds:

1. x0 = s and xL = t,

2. xi is a proper coloring of G for all i,

3. Si is an independent set of G for all i.

The key differences between distributed recoloring and classical recoloring are:

1. Input and output are given in a distributed manner: no vertex knows everything about
G, s, and t, and no vertex needs to know everything about xi or the length of the
solution L.

2. We do not require that only one vertex changes its color; it is sufficient that adjacent
vertices do not change their colors simultaneously.

See Figure 1 for a simple example of distributed recoloring steps.
Note that a solution to distributed recoloring is locally checkable in the following sense: to

check that a solution is feasible, it is enough to check independently for each edge uv ∈ E that
the recoloring sequences x(u) and x(v) are compatible with each other, and for each vertex
v ∈ V that x(v) agrees with s(v) and t(v). However, distributed recoloring is not necessarily
an LCL problem [14] in the formal sense, as the length of the output per vertex is not a priori
bounded.

We emphasize that we keep the following aspects well-separated: what is the complexity
of finding the schedule, and how long the schedules are. Hence it makes sense to ask, e.g.,
if it is possible to find a schedule of length O(1) in O(log n) rounds (note that the physi-
cal reconfiguration of the color of the vertex may be much slower than communication and
computation).

Recoloring with extra colors. Recoloring is computationally very hard, as solutions do
not always exist, and deciding whether a solution exists is PSPACE-hard. It is in a sense
analogous to problems such as finding an optimal vertex coloring of a given graph; such
problems are not particularly interesting in the LOCAL model, as the complexity is trivially
global. To make the problem much more interesting we slightly relax it.

We define a k + c recoloring problem (a.k.a. k-recoloring with c extra colors) as follows:

• We are given colorings with s(v), t(v) ∈ [k].

• All intermediate solutions must satisfy xi(v) ∈ [k + c].

Here we use the notation [n] = {1, 2, . . . , n}.
The problem of k+c recoloring is meaningful also beyond the specific setting of distributed

recoloring. For example, here is an example of a very simple observation:

Lemma 1. Recoloring with 1 extra color is always possible in any bipartite graph, with a
distributed schedule of length L = 3.

Proof. Let the bipartition be V = V1 ∪ V2. First each vertex v ∈ V1 switches to k + 1, then
each v ∈ V2 switches to color t(v), and finally each v ∈ V1 switches to color t(v).

89



1)

2)

3)

4)

Figure 2: In the input graph, a bipartition is given. Therefore, the target coloring can be
reached by using one extra color in three steps.

Incidentally, it is easy to extend this result to show that k-recoloring with c = χ− 1 extra
colors is always possible with a schedule of length O(c) in a graph with chromatic number
χ, and in particular k-recoloring with c = k − 1 extra colors is trivial. Figure 2 gives an
illustration of recoloring a bipartite graph with one extra color.

As a corollary, we can solve distributed k + 1 recoloring in trees in O(n) rounds, with a
schedule of length O(1): simply find a bipartition and apply the above lemma. However, is
this optimal? Clearly finding a bipartition in a tree requires Ω(n) rounds, but can we solve
recoloring with 1 extra color strictly faster?

These are examples of problems that we study in this work. We initiate the study of
distributed complexity of recoloring, with the ultimate objective of finding a complete char-
acterization of graph families and parameters k, c, and L such that distributed k+c recoloring
with schedules of length L can be solved efficiently in a distributed setting.

Our results. In the remainder of this article, we focus on 3-recolorings of trees on n vertices.
Let Ci be the set of vertices colored with color i. If we allow two extra colors, the problem
becomes trivial by proceeding as follows: (i) recolor C1 with the first extra color 4, (ii) recolor
C2 with the second extra color 5, (iii) recolor each vertex in C3 with its final color, and (iv)
recolor each vertex in C4 and C5 to its target color in two more steps. Therefore, the length
of the schedule is five and no communication is needed at all.

On the other hand, if we do not allow any extra color, we can still recolor any 3-coloring
α into another one β. More precisely, we have the following:

Lemma 2. For every tree T with radius at most p and for any two 3-colorings α, β of T , we
can compute in O(p) rounds how to 3-recolor T from α to β with a schedule of length O(p).

Note that this result is optimal since 3-recoloring paths requires Ω(n) rounds and produces
schedules of length Ω(n) in the worst case.

We finally consider 3-recoloring of trees with one extra color and prove the following:

Theorem 3. For any k ∈ N , for every tree T on n vertices, for any two k-colorings α, β of
T , we can compute in O(log n) rounds how to recolor T from α to β with 1 extra color and a
schedule of length O(1).

The key ingredient to prove Theorem 3 is to find an independent set with some desirable
properties. More formally, we prove that for any tree T , we can compute in O(log n) rounds a
maximal independent set S of T such that T \S only has connected components on one or two
vertices. To find this independent set, we use a simple modification of the rake and compress
method by Reif and Miller [15]. More precisely, we iterate rake and compress operations, and
label vertices based on the step at which they are reached. We then use the labels to compute
this special independent set.

Once this independent set computed, recoloring T from α to β becomes trivial: (i) we
recolor each vertex in S with the extra color, (ii) we give to each vertex in T \S its final color:
this is possible without the extra color since the maximum degree in T \ S is at most 1, and
finally (iii) recolor each vertex in S with its target color.
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Extended Abstract

1 Introduction

An additive coloring of a graph G is a labeling of the vertices of G with natural numbers
such that two adjacent vertices have distinct sums of labels on their neighbors. The additive
coloring number of G, denoted by χΣ(G), is de�ned to be the minimum natural number
k for which G has an additive coloring using labels in {1, ..., k}. We brie�y mention that
additive coloring was introduced in the literature as lucky labeling by Czerwi«ski, Grytczuk,
and �elazny [10]. It has also been referred to as open distinguishing by Axenovich et al. [4].
We direct the interested reader to [8] for a more detailed exposition of results in this area.

In 2009, Czerwi«ski, Grytczuk, and �elazny conjectured the following:

Conjecture 1 ([10]) For every graph G, χΣ(G) ≤ χ(G).

This conjecture is open in general, and χΣ(Kn) = χ(Kn) implies that the conjecture would
be best possible if true. Of particular interest, there is currently no known constant bound
for the class of bipartite graphs. The best known bound for the class of planar graphs is given
by the following:

Theorem 2 ([5]) If G is a planar graph, then χΣ(G) ≤ 468.

Recently, signi�cant progress has been made for planar graphs under certain girth as-
sumptions. The girth of a graph G, denoted by girth(G), is the length of the shortest cycle
in G. Bartnicki et al. [5] use the existence of an I,F-partition, which we do not discuss here,
to show that χΣ(G) ≤ 4 for planar graphs G with girth at least 13. Using an improved result
on the existence of I,F-partitions [6], their result was later improved as follows:

Theorem 3 ([8]) If G is a planar graph with girth at least 10, then χΣ(G) ≤ 4.

A list version of additive coloring has been studied, and similar results have been obtained.
A graph G is additively k-choosable if an additive coloring can be selected from any list
assignment of natural numbers to the vertices of G where each list has at least k distinct
elements. The additive choice number of G, denoted by chΣ(G), is the minimum natural
number k such that G is additively k-choosable. Ahadi and Dehghan [1] have shown that
χΣ(G) and chΣ(G) can be arbitrarily far apart.

Theorem 4 ([2]) If G is a forest, then chΣ(G) ≤ 3.

Theorem 5 ([8]) Let G be a planar graph with girth g. If g ≥ 5, then chΣ(G) ≤ 19. If

g ≥ 6, then chΣ(G) ≤ 9. If g ≥ 7, then chΣ(G) ≤ 8. If g ≥ 26, then chΣ(G) ≤ 3.

In [7] the authors provide a shorter proof for the girth 26 result of Theorem 5. Expanding
on that approach and incorporating aspects of the original proof enables the result to be
strengthened as follows:

Theorem 6 If G is a planar graph with girth at least 20, then chΣ(G) ≤ 3.
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2 Notation and Tools

As standard notation for proofs utilizing the discharging method, a j-, j−-, or j+-vertex is a
vertex with degree j, at most j, or at least j, respectively. Similarly, a j-, j−-, or j+-neighbor

of v is a j-, j−-, or j+-vertex, respectively, adjacent to v.
For the remainder of this abstract, suppose G is a vertex-minimum counterexample to

Theorem 6. That is, let G be a planar graph with girth at least 20 and chΣ(G) ≥ 4 such that
chΣ(H) ≤ 3 for any graph H with |V (H)| < |V (G)|. By the nature of additive coloring, G is
connected.

To show that G does not exist, we utilize the following from [8] as it applies to our main
result, that is when k = 3 and Q = ∅:
Lemma 7 ([8], Lemma 3.1 Part b) A vertex v in G with r 1-neighbors satis�es 1+ 2r ≤
d(v).

For v ∈ V (G) and S ⊆ V (G), let dist(v, S) be the minimum distance from v to some vertex
in S. As such, for a vertex v, de�ne the cycle distance of v, denoted by cdist(v), to be the mini-
mum distance from v to a cycle ofG, that is cdist(v) := min{dist(v, V (C)) : C is a cycle in G}.
Note that this de�nition is well-de�ned because Theorem 4 implies G contains a cycle. The
following appears in [7].

Lemma 8 ([7]) Let v be a 1-vertex in G. Then cdist(v) = 1.

v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v6

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6 v7

Figure 1: Con�gurations that do not appear in G: P (1, 0, 1), P (1, 1, 1), P (1, 1, 0, 0),
P (0, 1, 0, 0), P (1, 0, 0, 0), and P (0, 0, 0, 0, 0).

The con�gurations in Figure 1 do not appear in G by Lemma 3.8 in [8]. Toward describing
these and similar con�gurations, let P (t2, . . . , tn−1) be the path v1 · · · vn such that, for each
i in {2, . . . , n − 1}, the vertex vi has ti 1-neighbors and d(vi) = 2 + ti. Note that Lemma 7
implies that ti ≤ 1 for each such vi. The following appears in [8].

Lemma 9 ([8]) Any P (t2, . . . , tn−1) in G satis�es n ≤ 6.

For P (t′2, . . . , t
′
m−1) with underlying path v′1 · · · v′m, let P (t2, . . . , tn−1) � P (t′2, . . . , t′m−1)

denote the graph obtained from P (t2, . . . , tn−1) and P (t′2, . . . , t
′
m−1) by identifying vn and v′1.

See Figure 2 for an example of this construction.

v1 v2 v3 v4 v5 =v′
1 v′

2 v′
3 v′

4 v′
5 v′

6

Figure 2: An image of P (1, 1, 0)� P (1, 0, 0, 1) with respective underlying paths v1 · · · v5 and
v′1 · · · v′6.

As in [7], de�ne the thread degree of a vertex v, denoted by d2+(v), as the number of
2+-neighbors of v. A hub vertex is a vertex v with d2+(v) ≥ 3, and a stable vertex is a hub
vertex contained in a cycle. De�ne a (u, v)-thread to be a path whose endpoints u and v are
hub vertices, and whose internal vertices are 2-vertices. In Figure 3, all labeled vertices are
hubs, but v and w are not stable.
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u v w x

y z

Figure 3: A visual depiction of G where the ellipses represent the rest of G, each of which
includes a cycle containing u, x, y, and z, respectively, and are only connected by paths
containing at least three labeled vertices.

Note that Lemma 8 implies that the set of 2-vertices of G is a subset of the set of internal
vertices of (u, v)-threads in G. Also, every 1-vertex of G is either adjacent to a hub vertex,
or in some P (t2, . . . , tn−1).

3 Some Additional Structure

In this section we describe additional structural properties of G. Speci�cally, we enumerate
some con�gurations that do not appear in G. We will utilize the following result of Alon:

Theorem 10 (Combinatorial Nullstellensatz [3]) Let f be a polynomial of degree t in
m variables over a �eld F. If there is a monomial

∏
xtii in f with

∑
ti = t whose coe�cient

is nonzero in F, then f is nonzero at some point of
∏
Ti, where each Ti is a set of ti + 1

distinct values in F.

We follow the approach of [8], which builds a polynomial whose nonzero solutions satisfy
the restrictions for additive coloring.

The following lemmas are obtained using Mathematica to loop through all possible con�g-
urations. Toward verifying the polynomials cover all possibilities, note that Lemma 7 implies
that vertices with thread degree 3 have at most two 1-neighbors.

p1

v1 v2

p2

v3

p3

v4

p4

v5

p5

v6

p6 p7

v7

s1 s2

Figure 4: A picture of P (t2, t3, t4, t5)�P (t′2, t′3, t′4), where dash-dot edges indicate the potential
of that edge's existence.

Lemma 11 Let v1 · · · v13 be the underlying path of P (t2, t3, t4)� P (t′2, t′3, t′4)� P (t′′2 , t′′3 , t′′4).
If d2+(v5) = d2+(v9) = 3, then P (t2, t3, t4)�P (t′2, t′3, t′4)�P (t′′2 , t′′3 , t′′4) does not appear in G.

Lemma 12 Let v1 · · · v10 be the underlying path of P (t2, t3, t4, t5)�P (t′2, t′3, t′4). If d2+(v6) =
3, then P (t2, t3, t4, t5)� P (t′2, t′3, t′4) does not appear in G.

Lemma 13 Let v1 · · · v13 be the underlying path of P (t2, t3, t4, t5)� P (t′2, t′3)� P (t′′2 , t′′3 , t′′4).
If d2+(v6) = d2+(v9) = 3, then P (t2, t3, t4, t5)�P (t′2, t′3)�P (t′′2 , t′′3 , t′′4) does not appear in G.
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4 Discharging Proof of Theorem 6

We construct a graph G′ from G and use a discharging argument to show that G′, and thus
G, does not exist. Our construction of G′ from G follows these steps in order:

(S1) Delete all 1-vertices of G.

(S2) For all (u, v)-threads with a cut-edge, contract all edges of the (u, v)-thread.

(S3) Replace all remaining (u, v)-threads with the edge uv.

Recall that G is simple, planar, connected, and has girth at least 20. Using Lemma 9,
it is straightforward to show that G′ is simple, planar, and connected with δ(G′) ≥ 3 and
girth(G′) ≥ 4. Thus G′ is also 2-edge-connected.

Proposition 3.1 in [9] gives
∑

v∈V (G′)

(d(v)− 4) +
∑

f∈F (G′)

(l(f)− 4) = −8.

Thus assigning each vertex v an initial charge µ(v) = d(v) − 4 and each face f an initial
charge µ(f) = l(f)− 4 gives an initial total charge of −8. Consider distributing charge from
faces to vertices as follows:

(R1) Each 3-vertex receives 1
3 charge from each of its incident faces.

Distributing charge in this way results in every vertex and face of G′ having a nonnegative
�nal charge, for a total charge at least 0, which is an impossibility. This impossibility implies
that G′ does not exist, and, by construction, that G does not exist. Hence, no counterexample
exists to Theorem 6.

References

[1] A. Ahadi and A. Dehghan. The inapproximability for the (0, 1)-additive number. Discrete
Math. Theor. Comput. Sci., 17(3):217�226, 2016.

[2] S. Akbari, M. Ghanbari, R. Manaviyat, and S. Zare. On the lucky choice number of
graphs. Graphs Combin., 29(2):157�163, 2013.

[3] N. Alon. Combinatorial Nullstellensatz. Combin. Probab. Comput., 8(1-2):7�29, 1999.
Recent trends in combinatorics (Mátraháza, 1995).

[4] M. Axenovich, J. Harant, J. Przybyªo, R. Soták, M. Voigt, and J. Weidelich. A note on
adjacent vertex distinguishing colorings of graphs. Discrete Appl. Math., 205:1�7, 2016.

[5] T. Bartnicki, B. Bosek, S. Czerwi«ski, J. Grytczuk, G. Matecki, and W. �elazny. Additive
coloring of planar graphs. Graphs Combin., 30(5):1087�1098, 2014.

[6] A. Brandt, M. Ferrara, M. Kumbhat, S. Loeb, D. Stolee, and M. Yancey. I,F-partitions
of sparse graphs. European J. Combin., 57:1�12, 2016.

[7] A. Brandt, N. Tenpas, and C. Yerger. An alternative approach for bounding the additive
choice number of planar graphs. Congressus Numeratium, 231:157-163, 2018.

[8] A. Brandt, J. White, and S. Jahanbekam. Additive list coloring of planar graphs with
given girth. Discussiones Mathematicae Graph Theory, (Accepted, In Press).

[9] D. W. Cranston and D. B. West. An introduction to the discharging method via graph
coloring. Discrete Math., 340(4):766�793, 2017.

[10] S. Czerwi«ski, J. Grytczuk, and W. �elazny. Lucky labelings of graphs. Inform. Process.

Lett., 109(18):1078�1081, 2009.

95



Trees Containing All the Odd-Degree Vertices

Kathie Cameron

Department of Mathematics, Wilfrid Laurier University, Canada

Extended Abstract

1 Introduction

All graphs in this paper are �nite. A path or cycle in a graph G is called hamiltonian if it
contains each vertex of G. A vertex of degree 1 in a tree is called a leaf. A graph is eulerian
if every vertex has even degree. For de�nitions not stated, we follow [2].

In 1946, Bill Tutte [12] gave a beautiful short proof of Smith's Theorem:

Theorem 1 Smith's Theorem. Let G be a 3-regular graph and let e be an edge of G. The

number of hamiltonian cycles of G containing e is even.

An obvious corollary of any theorem which says that the number of objects is even is:
Given one of the objects, there exists another. Give one hamiltonian cycle containing e,
Tutte's proof does not provide an algorithm for �nding another.

In 1978, Andrew Thomason [9] extended Smith's Theorem to any graph where all vertices
have odd degree:

Theorem 2 (Andrew Thomason, [9]) Let G be a graph with at least 3 vertices and let e = xy
be an edge of G. Assume that all vertices except possibly x and y have odd degree. Then the

number of hamiltonian cycles of G containing e is even.

Andrew Thomason's proof constructs a graph X(G) which he calls a lollipop graph such
that, when G is simple, the odd-degree vertices of X(G) correspond precisely to the hamil-
tonian cycles of G containing e, and when G has parallel edges, the odd-degree vertices of
X(G) correspond precisely to the hamiltonian paths of G containing e which are extendible
to a hamiltonian cycle in an odd number of ways. This provides an algorithm for �nding a
second hamiltonian cycle containing e by walking in X(G) from a given odd-degree vertex
to another odd-degree vertex. Unfortunately, this elegant algorithm is exponential [3, 8, 13],
even for 3-regular graphs. Jack Edmonds and I use the term exchange graph for a graph like
Thomason's in which the odd-degree vertices correspond to the objects of interest. Many
theorems which say that the number of objects is even can be proved by constructing an
exchange graph [5].

Inspired by a result of Carsten Thomassen [10], I extended Thomason's Theorem to graphs
in which no two even-degree vertices are adjacent [4] using an exchange graph proof:

Theorem 3 Let G be a graph with an odd-degree vertex and where no two even-degree vertices

are adjacent. Let e be an edge of G. Then the number of cycles containing e and all the odd-

degree vertices of G is even.

Shunichi Toida proved:

Theorem 4 (Shunichi Toida, [11]) Let G be an eulerian graph. Then for any edge e, the

number of cycles of G containing e is odd.

Theorems 2 and 4 say that for a given edge e in a graph G, the number of cycles containing
e and all the odd-degree vertices is even if all vertices of G have odd degree and is odd if
all vertices of G have even degree. Carsten Thomassen and I showed that the parity of the
number of cycles containing e and all the odd-degree vertices is even as soon as G has an
odd-degree vertex:
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Theorem 5 Let G be a graph and let e = xy be an edge of G. The number of cycles of G
containing e and all the odd-degree vertices is odd if and only if G is eulerian.

The proof in [7] is not algorithmic. In this paper, I give an exchange graph proof.
In 1986, Ken Berman [1] extended Thomason's Theorem where all vertices have odd degree

to trees. Note that a hamiltonian cycle C containing edge e = xy in graph G corresponds to
a spanning tree T = C \ e in G \ e where x and y have degree 1 in T and all other vertices
have degree 2 in T . Given a subgraph H of a graph G, we de�ne the excess degree of a vertex
v to be its degree in G minus its degree in H, that is, its degree in G \ E(H). Ken Berman
proved:

Theorem 6 (Ken Berman, [1]) Let G be a graph and T a spanning tree of G such that each

vertex has odd excess degree. Then there is an even number of spanning trees of G with the

same degree as T at each vertex of G.

Berman's proof is a counting argument. In 1999, Edmonds and I [5] extended Berman's
Theorem and gave an exchange graph proof. We recently [6] further extended this to include
Theorem 3.

Before stating the theorem, we need the following de�nitions.
Let G be a graph, B a set of even-degree vertices of G, and A = V (G) \ B. A tree T in G

is called good if T contains all vertices of A and if each vertex of B which is in T has degree
2 in T . Let T ∗ be a good tree in G. A good tree T is called T ∗-similar if each vertex of A
has the same degree in T ∗ and in T .

Theorem 7 Let G be a bipartite graph with bipartition (A,B), where every vertex in B has

even degree. Suppose T ∗ is a good tree such that some vertex of A has odd excess degree and

each vertex of A which is not a leaf of T has odd excess degree. Then the number of T ∗-similar

trees is even.

My main result is is an extension of Theorem 7 to non-bipartite graphs, which includes
Theorem 5.

Theorem 8 Let G be a graph, B a set of even-degree vertices of G, and A = V (G) \ B.

Suppose T ∗ is a good tree such that some vertex of A has odd excess degree and each vertex

of A which is not a leaf of T has odd excess degree. Then the number of T ∗-similar trees is

even.

I prove Theorem 8 by constructing an exchange graph. This provides an algorithm for
�nding a second T ∗-similar tree. Analogous to our exchange graphs for Theorems 6 and 7,
the exchange graph requires choosing a special vertex, and our hope is that if the algorithm
is run in parallel for all choices of special vertex, it may be polynomial-time.
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Extended Abstract

1 Introduction

All graphs in this extended abstract are undirected, �nite, and simple. A subset X of vertices
of a graph G is independent if no two vertices in X are adjacent in G. We let α(G) denote
the maximum size of an independent set in G. A graph G is said to be subcubic if G has
maximum degree at most 3, and cubic if G is 3-regular.

One of the �rst results about independent sets in subcubic triangle-free graphs is the
following theorem of Staton [8] from 1979.

Theorem 1 (Staton [8]) Let G be a subcubic triangle-free n-vertex graph. Then, α(G) ≥
5
14n.

Di�erent proofs of this result have appeared in the literature; see in particular Heckman
and Thomas [5] for a short proof. The bound is best possible, as witnessed by the two cubic
graphs on 14 vertices in Figure 1 (top left and top center). In fact, these two graphs are
the only tight examples among connected graphs [4], which suggests that a better bound
might hold for connected subcubic triangle-free graphs when n is not too small. Indeed,
Fraughnaugh and Locke [3] proved the following result in 1995.

Theorem 2 (Fraughnaugh and Locke [3]) Let G be a connected subcubic triangle-free n-
vertex graph. Then, α(G) ≥ 11

30n− 2
15 .

Figure 1: The graphs F
(1)
14 , F

(2)
14 , F22, F11, F

(1)
19 and F

(2)
19 .

The factor 11
30 is best possible, as shown by a construction of Fraughnaugh and Locke [3]

illustrated in Figure 2. Note that this construction is far from being 2-connected, thus it is
natural to wonder whether the bound could be improved further under some extra connectivity
assumption. In fact, already in 1986 Locke [7] conjectured that there are only �nitely many 3-
connected cubic triangle-free n-vertex graphs G with α(G) < 3

8n. Fraughnaugh and Locke [3]
made a similar conjecture under the assumption of 2-connectivity:
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Figure 2: Construction of connected subcubic triangle-free n-vertex graphs G with α(G) =
11
30n − 1

15 : Start with a 4-regular tree, replace each internal node with a copy of B8 (see
Figure 3) and each leaf with a copy of F11 (see Figure 1), and link them using the degree-2
vertices. One can verify that for the resulting graph G, α(G) is three times the number of
internal nodes plus four times the number of leaves. The construction is illustrated starting
with a 4-leaf star.

Conjecture 3 (Fraughnaugh and Locke [3]) Let G be a 2-connected subcubic triangle-
free n-vertex graph. Then, α(G) ≥ 3

8n− 1
4 .

Bajnok and Brinkmann [2] investigated this conjecture using a computer search. While
they found no counterexample in the range they considered, they also noted that they only
found six 2-connected triangle-free subcubic n-vertex graphs G with α(G) < 3

8n, namely the

graphs F11, F
(1)
14 , F

(2)
14 , F

(1)
19 , F

(2)
19 , F22 from Figure 1. They conjectured that there are no

other such graphs.

Conjecture 4 (Bajnok and Brinkmann [2]) There are exactly six 2-connected triangle-

free subcubic n-vertex graphs G with α(G) < 3
8n, namely F11, F

(1)
14 , F

(2)
14 , F

(1)
19 , F

(2)
19 , F22.

Fraughnaugh and Locke [3], aware of the six graphs found in [2], formulated the following
closely related conjecture.

Conjecture 5 (Fraughnaugh and Locke [3]) If G is a subcubic triangle-free n-vertex graph

containing none of F11, F
(1)
14 , F

(2)
14 , F

(1)
19 , F

(2)
19 , F22 as subgraph, then α(G) ≥ 3

8n.

This conjecture implies Conjecture 4, because if G is 2-connected and contains some graph
F among these six graphs as subgraph then G must be isomorphic to F .

Observe also that Conjecture 5 implies in particular that α(G) ≥ 3
8n holds for every

planar subcubic triangle-free n-vertex graph G, since none of F11, F
(1)
14 , F

(2)
14 , F

(1)
19 , F

(2)
19 , F22

is planar. This was conjectured by Albertson, Bollobás, Tucker [1] in 1976 and was still an
open problem when the two papers [2, 3] were written. It was eventually proved by Heckman
and Thomas [6] in 2006:

Theorem 6 (Heckman and Thomas [6]) Let G be a subcubic triangle-free n-vertex pla-
nar graph on n vertices. Then, α(G) ≥ 3

8n.

2 Main result

In our recent work, we have proved that the conjectures mentioned above are true, thus in
particular obtaining a strengthening of Theorem 6:
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Theorem 7 (Main theorem) Let G be a subcubic triangle-free n-vertex graph containing

none of F11, F
(1)
14 , F

(2)
14 , F

(1)
19 , F

(2)
19 , F22 as (induced) subgraph. Then α(G) ≥ 3

8n.

Corollary 8 Let G be a 2-connected subcubic triangle-free n-vertex graph. Then, α(G) ≥
3
8n − 1

4 . Moreover, α(G) ≥ 3
8n if G is not isomorphic to any of F11, F

(1)
14 , F

(2)
14 , F

(1)
19 , F

(2)
19 ,

F22.

3 About the proof

Theorem 7 is proved by induction on the size of the graph. In order to help the induction go
through, we need to prove a slightly stronger version of the theorem. Before stating it, we
introduce a few de�nitions.

An edge e of a graph G is called critical if α(G− e) > α(G). A graph is called critical if
each of its edges is critical. In particular, K1 is critical.

For a graph G, we de�ne

µ(G) :=
6|V (G)| − |E(G)|

12
=

1

24
(9n3 + 10n2 + 11n1 + 12n0) ,

where ni denotes the number of vertices of degree i in G.
In order to state our main technical theorem, we also need to mention two families of

exceptional graphs, whose explicit inductive de�nition we will not provide in this extended
abstract; please refer to the full paper, which we aim to put on arXiv before the start of this
workshop. They are the family of bad graphs and the family of dangerous graphs. Let us just
remark that the smallest dangerous graph is the �ve-cycle and the smallest bad graph is the
8-vertex graph depicted in �gure 3.

Figure 3: The smallest bad graph B8.

Theorem 9 (Main technical theorem) Let G be a connected critical subcubic triangle-

free graph which is not isomorphic to any of F11, F
(1)
14 , F

(2)
14 , F

(1)
19 , F

(2)
19 , F22. Then

• α(G) = µ(G)− 1
6 if G is bad

• α(G) ≥ µ(G)− 1
12 otherwise.

Furthermore, if G has at least three vertices of degree 2 and G has no bad subgraph, then

• α(G) = µ(G)− 1
12 if G is dangerous

• α(G) ≥ µ(G) otherwise.

Theorem 7 follows from Theorem 9, as we now explain. The proof is by induction. We
may assume that G is connected, since otherwise we are done by induction. We are similarly
done by induction if α(G− e) = α(G) holds for some edge e ∈ E(G). Thus we may suppose
that G is critical. If G is bad then it is easily checked from the inductive de�nition of bad
graphs that µ(G) = 3

8n+
1
6 , and thus α(G) = µ(G)− 1

6 = 3
8n by Theorem 9. If G is not bad,

then Theorem 9 gives

α(G) ≥ µ(G)− 1

12
≥ 3

8
n− 1

12
,
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which can be rewritten as 3(8α(G)−3n) ≥ −2. However, since α(G) and n are both integers,
it follows that 3(8α(G) − 3n) ≥ 0, i.e. α(G) ≥ 3

8n, as desired. This �nishes the proof of
Theorem 7 conditional on Theorem 9.

As a side remark, let us mention that we also recover Theorem 2 of Fraughnaugh and
Locke [3] using our main technical theorem, with a slight improvement matching the con-
struction in Figure 2:

Theorem 10 Let G be a connected subcubic triangle-free n-vertex graph. Then, α(G) ≥
11
30n− 1

15 , unless G is isomorphic to F
(1)
14 or F

(2)
14 , in which case α(G) = 11

30n− 2
15 .

This answers a small question from [3].
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Extended Abstract

We present a lower bound for the domination number of the Cartesian product of a path
and a cycle, that is tight if the length of the cycle is a multiple of �ve. This bound improves
the natural lower bound obtained by using the domination number of the Cartesian product
of two paths, that is the best one known so far.

Our strategy is similar to the approach in [5], where the concept of wasted domination
in grids was introduced. We rede�ne this parameter in cylinders and moreover, we use a
technique inspired by the construction of cylinders as rotagraphs [6, 7], to design a (min,+)
matrix multiplication algorithm that computes the minimum wasted domination. These tools
will allow us to obtain the new lower bound. The results presente here can be found in [3].

1 Known bounds

A dominating set in a graph G is a vertex subset S such that every vertex in V (G) \ S has a
neighbor in S. The domination number γ(G) is the minimum size of a dominating set of G.
The cylinder Pm�Cn is the Cartesian product of path Pm and cycle Cn and the exact value
of γ(Pm�Cn) remains unknown for the general case. The known bounds of γ(Pm�Cn), for
big enough m ≥ n, are:

⌊ (m+ 2)n

5

⌋
− 4 ≤ γ(Pm�Cn) ≤





(m+ 2)k if n = 5k,

(m+ 2)(k + 3
8 ) if n = 5k + 1,

(m+ 2)(k + 1
2 ) if n = 5k + 2,

(m+ 2)(k + 1) otherwise.

The lower bound comes from the general formula for the domination number of grids [4]
⌊ (m+ 2)n

5

⌋
− 4 = γ(Pm�Pn−2) ≤ γ(Pm�Cn)

and the upper bound (see [7]), is not tight for n 6≡ 0 (mod 5). However, the dominating set
of Pm�C5k with (m+ 2)k vertices shown in [7] (see Figure 1), is likely to be optimal.

2 Wasted domination in cylinders

In order to improve the known lower bound, we recall the concept of wasted domination
from [5]. A dominating set of Pm�Cn avoiding overlapping among the neighborhoods of its
vertices, would have cardinal close to mn/5. But such dominating sets, also called perfect
codes, just exist in cylinders with m = 2 and n ≡ 0 (mod 4) (see [1]). The wasted domination
computes how far this γ(Pm�Cm) from mn/5.

De�nition 1 (adapted from [5]) Let A ⊆ V (Pm�Cn). The wasted domination of A is
w(A) = 5|A| − |N [A]|, where N [A] is the closed neighborhood of A.

If S is a minimum dominating set of Pm�Cn, then γ(Pm�Cn) =
mn+ w(S)

5
. In order to

compute a lower bound for w(S), we divide Pm�Cn (m ≥ 20) into three cylinders G1, G2, G3

(see Figure 2).
∗Partially supported by grant RTI2018-095993-B-I00
†Partially supported by grant MTM2015-63791-R (MINECO/FEDER)
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Figure 1: Dominating set of P12�C10 with (12+2)10
5 vertices and following a regular pattern

G1 G2 G3

Pm

Cn

10︷︸︸︷ m−20︷ ︸︸ ︷ 10︷︸︸︷

Figure 2: Partition of the cylinder Pm�Cn

For D a dominating of Pm�Cn, not necessarily minimum, we denote Dk = D∩V (Gk). Then

w(D) ≥ w(D1) + w(D2) + w(D3) ≥ w(D1) + w(D3).

We expect the wasted domination to be mainly �located� next to both borders of the cylinder,
while w(D2) is zero or close to zero. We compute a lower bound of w(D1) and w(D3) by
applying the following theorem to an appropriate weighted digraph.

Theorem 2 (Carre'79 [2]) Let G be a digraph with vertex set V (G) = {v1, v2, . . . , vs} to-
gether with a labeling function ` which assigns to every arc of G an element of the semi-ring
of tropical numbers in the min convention (R ∪ {∞},min,+,∞, 0) (see [8]).
Let Sk

ij be the set of paths of length k from vi to vj and let A(G) be the matrix de�ned by

A(G)ij =

{
`(vi, vj) if (vi, vj) is an arc of G,
∞ otherwise.

Then (A(G)k)ij = min{`(Q) : Q ∈ Sk
ij} (using the (min,+) matrix power).

This result that was also used in [6, 7], but our choice of a suitable weighted digraph is inspired
by the construction shown in [9], that also provides a technique to recursively compute a
general formula for the minimum wasted domination, by using standard properties of the
(min,+) matrix multiplication. We have obtained the following result.

Proposition 3 For Pm�Cn with m ≥ 20, n ≥ 30 and for i = 1, 3:

w(Di) ≥ L(n) =
{
n+ 1 if n = 32, 33, 37, 38, 42, 43, 47, 48, 53, 58, 63,
n otherwise.

104



3 Main Results

We can now use the minimum value of wasted domination to �nd a lower bound for the
domination number of the cylinder

Theorem 4 For 20 ≤ m, 30 ≤ n:

γ(Pm�Cn) ≥





⌈n(m+ 2) + 2

5

⌉
if n = 32, 33, 37, 38, 42, 43, 47, 48, 53, 58, 63,

⌈n(m+ 2)

5

⌉
otherwise.

The case n ≡ 0 (mod 5) has an special behaviour because the upper bound shown in [7],
combined with this new lower bound, gives the exact value of the domination number.

Corollary 5 For 20 ≤ m and 30 ≤ n ≡ 0 (mod 5):

γ(Pm�Cn) =
n(m+ 2)

5

References

[1] R. Barbosa and P. Slater. On the e�ciency index of a graph. J. Comb. Optim. 31:1134�
1141, 2016.

[2] B. Carré. Graphs and Networks. Clarendon Press, Oxford, (1979).

[3] J.J. Carreño, J.A Martínez and M.L. Puertas. A General Lower Bound for the Domination
Number of Cylindrical Graphs. Bull. Malays. Math. Sci. Soc. accepted

[4] D. Gonçalves, A. Pinlou, M. Rao and S. Thomassé. The Domination Number of Grids.
SIAM J. Discrete Math. 25:1443�1453, 2011.

[5] D.R. Guichard. A lower bound for the domination number of complete grid graphs. J.
Combin. Math. Combin. Comput. 49:215�220, 2004.

[6] S. Kla�vzar and J. �erovnik. Algebraic approach to fasciagraphs and rotagraphs. Discrete
Applied Mathematics 68:93�100, 1996.

[7] P. Pavli£ and J. �erovnik. A note on the domination number of the Cartesian products
of paths and cycles. Kragujevac J. Math. 37:275�285, 2013.

[8] J.-E. Pin. Tropical Semirings. Publications of the Newton Institute 11:50�69, 1998.

[9] A. Spalding. Min-Plus Algebra and Graph Domination. (Ph.D. Thesis). Department of
Applied Mathematics, University of Colorado, (1998).

105



On star edge colorings of bipartite and subcubic graphs
Carl Johan Casselgren 1, Jonas Granholm 1, and André Raspaud 2

1 Linköping University, Sweden
2 LaBRI-CNRS, University of Bordeaux, France

Extended Abstract

A star edge coloring of a graph is a proper edge coloring with no 2-colored path or cycle
of length four. The star chromatic index χ′

st(G) of G is the minimum number t for which G
has a star edge coloring with t colors.

Star edge coloring was recently introduced by Liu and Deng [5], motivated by the vertex
coloring version, see e.g. [1, 4]. This notion is intermediate between acyclic edge coloring,
where every two-colored subgraph must be acyclic, and strong edge coloring, where every
color class is an induced matching.

Dvorak et al [3] studied star edge colorings of complete graphs and obtained the currently
best upper and lower bounds for the star chromatic index of such graphs. A fundamental open
question here is to determine whether χ′

st(Kn) is linear in n. Bezegova et al [2] investigated
star edge colorings of trees and outerplanar graphs. Wang et al. [8, 9] quite recently obtained
some upper bounds on the star chromatic index of graphs with maximum degree four, and
also for some families of planar and related classes of graphs. Besides these results, very little
is known about star edge colorings.

We primarily consider star edge colorings of bipartite graphs. As for complete graphs, a
fundamental problem for complete bipartite graphs is to determine whether the star chromatic
index is a linear function on the number of vertices. We determine the star chromatic index
of complete bipartite graphs where one part has size at most 3, and obtain some bounds on
the star chromatic index for larger complete bipartite graphs.

Furthermore, we study star edge colorings of bipartite graphs where the vertices in one
part all have small degrees. Nakprasit [7] proved that if G is a bipartite graph where the
maximum degree of one part is 2, then G has a strong edge coloring with 2∆(G) colors; we
prove analogous results for star edge colorings.

Theorem 1 If G is a bipartite graph where the parts have maximum degree 2 and 2k, respec-
tively, then χ′(G) ≤ 3k.

The upper bound in Theorem 1 is sharp. Using Theorem 1 we deduce the following upper
bound which is best possible up to a additive factor of 1.

Corollary 2 If G is a bipartite graph where the parts have maximum degree 2 and 2k+1 ≥ 3,
respectively, then χ′

st(G) ≤ 3k + 3.

Finally, we consider the following conjecture first posed in [3].

Conjecture 3 If G has maximum degree at most 3, then χ′
st(G) ≤ 6.

Dvorak et al [3] proved a slightly weaker version of Conjecture 3, namely that χ′
st(G) ≤ 7 if

G is cubic; Bezegova et al [2] established that Conjecture 3 holds for all trees and outerplanar
graphs; while the conjecture is still open for e.g. planar graphs. We verify that the conjecture
holds for some families of graphs, namely bipartite graphs where one part has maximum
degree 2, cubic Halin graphs and another family of planar graphs.
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Extended Abstract

Given a graph G, assign to each vertex v of G a set L(v) of colors (positive integers). Such
an assignment L is called a list assignment for G and the sets L(v) are referred to as lists or
color lists. We then want to find a proper vertex coloring ϕ of G, such that ϕ(v) ∈ L(v) for
all v ∈ V (G). If such a coloring ϕ exists then G is L-colorable and ϕ is called an L-coloring.
Furthermore, G is called k-choosable if it is L-colorable for every k-list assignment L. This
particular variant of vertex coloring is known as list coloring or choosability of graphs and
was introduced independently by Vizing [8] and by Erdős et al. [4].

A recent variation on list coloring is the so-called model of choosability with separation,
where we require that lists of adjacent vertices have a bounded number of common colors.
A (k, d)-list assignment for a graph G is a map that assigns to each vertex v a list L(v) of
at least k colors such that |L(x) ∩ L(y)| ≤ d whenever x and y are adjacent. A graph is
(k, d)-choosable if for every (k, d)-list assignment L of G there is an L-coloring of G.

Choosability with separation was first considered by Kratochvil et al. [5]. Among other
things, they proved that every planar graph is (4, 1)-choosable, which is a refinement for choos-
ability of separation of Thomassens well-known result that planar graphs are 5-choosable [7].

Skrekovski [6] gave examples of triangle-free planar graphs that are not (3, 2)-choosable,
and posed the following question:

Problem 1 Is every planar graph (3, 1)-choosable?

It follows from a result of Kratochvil et al. [5] that this question has a positive answer for
the case of triangle-free graphs. Recently, Choi et al. [3] proved that planar graphs without
4-cycles are (3, 1)-choosable, and Chen et al. [2] improved this slightly by proving that planar
graphs with no adjacent 4-cycles and no adjacent 3- and 4-cycles are (3, 1)-choosable, where
two cycles of a graph are adjacent if they share a common edge; two cycles are intersecting if
they have at least one common vertex.

The main purpose of this talk is to give some further progress on Problem 1. In particular
we prove the following:

Theorem 2 If G is a planar graph with no intersecting triangles and no intersecting 4-cycles,
then G is (3, 1)-choosable.

Theorem 3 If G is a planar graph where every triangle has most one edge in common with
a 4-cycle and every 5-, 6-, and 7-cycle has at most two, four, and six edges, respectively, in
common with triangles, then G is (3, 1)-choosable.

Theorem 4 If G is a planar graph where no triangle of G is adjacent to a triangle or a
4-cycle, and each 5-cycle has at most three edges in common with triangles, then G is (3, 1)-
choosable.

The proofs of these results are based on connections between (3, 1)-choosability and ori-
entations of the underlying graph, which makes them rather short compared to the proofs of
many other results in this area (cf. [3, 1, 2]).
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Extended Abstract

Hamiltonian Cycle is one of the oldest mathematical puzzles, whose study can be traced
back to the 9th century, and it is still actively studied. Our results about the Hamiltonian
Cycle problem are in the intersection of two research areas: kernelization and algorithms on
special graph classes. In both areas Hamiltonian Cycle has been intensively investigated.
Graph classes. There is a large research area in graph algorithms, where the structural
properties of graphs, like being interval or chordal, are exploited for developing of efficient
algorithms problems intractable on general graphs. We refer to the book [4] for the introduc-
tion and survey of the known results. Without a doubt, the oldest and the most studied class
of intersection graphs is the class of interval graphs and there is a long history of research
on the Hamiltonian Cycle and Hamiltonian Path problems on interval, circular-arc and
related graph classes. It was shown by Keil [10] in 1985 that Hamiltonian Cycle can be
solved in linear time for interval graphs (see also [5, 7]). The problem for circular-arc graphs
proved to be much more involved and the first polynomial algorithm for Hamiltonian Cy-
cle on circular-arc graphs was given by Shih et al. [14] in 1992. On the other hand, for
proper interval graphs, it was already shown by Bertossi [1] that every connected proper in-
terval graph has a Hamiltonian path, and a proper interval graph has a Hamiltonian cycle if
and only if it is 2-connected graph with at least three vertices. Hamiltonian Cycle can be
solved in linear time for (proper) interval and circular graphs (see [3]). For chordal graphs,
Hamiltonian Cycle is well-known to be NP-complete and is even NP-complete for strongly
chordal split graphs [12].
Our results. In this paper we follow the main question of structural kernelization—if a
computational problem can be solved in polynomial time on instances with some structural
properties, does it admit a polynomial kernel parameterized by some distance to this structural
property? In our setting the structural property is to be a proper interval graph. However,
the distance we use is quite different from the commonly used the size of a modulator.

Our measure of similarity with proper interval graphs is based on the beautiful concept
of H-graph introduced by Biró et al. [2] in the context of the precoloring extension problem.
An intersection representation of a graph G assigns a set Sv to every vertex v ∈ V (G) such
that Su ∩ Sv 6= ∅ if and only if uv ∈ E(G). When the sets Su are intervals of the real
line, this defines an interval graph. From a different perspective, every interval graph can
be viewed as an intersection graph of subpaths of some (sufficiently long) path. Similarly,
circular-arc graphs, a natural generalization of interval graphs, are the intersection graphs of
subpaths of some cycle. It is also a well-known fact that a graph is chordal if and only if
it is an intersection graph of subtrees of some tree. All of these classes are known to have
efficient algorithms for various computational problems. We refer to [4] for the introduction
and survey of the known results. A natural generalization of these classes are intersection
graphs of subgraphs of some subdivision of an arbitrary underlying graph H. For a fixed
graph H, we say that a graph G is an H-graph, if it is an intersection graph of connected
subgraphs of a subdivision of H. In this language, interval graphs are K2-graphs, circular-arc
graphs are K3-graphs, and every chordal graph is a T -graph for some tree T .

An intersection representation {Sv}v∈V (G) of a graph G is a proper representation, if
Su ⊆ Sv implies u = v. Then a graph G is a proper H-graph, if it admits a proper intersection
representation by connected subgraphs of a subdivision of H. For example, proper K2-graphs
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are proper interval graphs, that is, the graphs admitting a proper representation by intervals
of the real line. Various aspects of proper interval and proper circular-arc representations
are well-studied, and our goal is again to study how these carry to general proper H-graphs.
Clearly, all positive algorithmic results obtained for H-graphs e.g. in [6, 8] are valid for
proper H-graphs, but since we consider a more restricted graph class, we can hope that the
tractability area could be expanded.

Note that every graph has the following trivial model (representation). For a graph G,
let I(G) be the incidence graph of G, that is, the result of subdividing each edge of G
exactly once. Then, the graph G is a proper G-graph: Its trivial proper G-representation is
(I(G), {NI(G)[v]}v∈V (G)).

We consider the following fundamental generalizations of Hamiltonian Cycle and Hamil-
tonian Path problems.

Cycle Cover (Path Cover)
Input: A graph G and a positive integer k.
Task: Decide whether G has a cycle (path) cover C with at most k cycles (paths).

The main results of this paper are the following theorems about kernelization of Cycle
Cover and Path Cover. In both theorems we assume that a proper H-representation of
input graph G is given.

Theorem 1 Path Cover admits a kernel of size O(h8), where h is the size of the graph H
in a proper H-representation of the input graph G.

For Cycle Cover we only construct a polynomial compression of the explicitly stated
size. (Roughly speaking, the difference between kernelization and compression is that kernel-
ization algorithm outputs an equivalent instance of the same parameterized problem, while a
compression algorithm maps an instance of a parameterized problem to an equivalent instance
of another non-parameterized problem; see e.g. [9] for more details.)

Theorem 2 Cycle Cover admits a compression of size O(h10), where h is the size of the
graph H in a proper H-representation of the input graph G.

It is worth noting that for the special case of Cycle Cover with k = 1, namely Hamil-
tonian Cycle, we also are able to obtain a kernel of size O(h8).

Note that, the requirement that a proper H-representation is given in the input of the
considered problems on proper H-graphs is likely unavoidable. Namely, the hardness result of
Chaplick et al. [6] can be adapted to show that the recognition problem for proper H-graphs
is NP-hard even for small fixed graphs H.

From small Clique Covers to Kernels. The parameterization of Hamiltonian Cycle
by the clique cover size was considered by Lampis et al. [11] who proved that the problem is
FPT for this parameterization. We extend their result by showing the following theorem.

Theorem 3 Cycle Cover, Path Cover, and Hamiltonian Cycle admit kernels of
size O(s8), where s is the size of a clique cover.

Here we only sketch the main ideas of the kernelization for Cycle Cover, which is the
easiest among these problems.

Recall that a clique cover is a collection Q = {Q1, . . . , Qs} of disjoint cliques such
that V (G) =

⋃s
i=1Qi. First we show that there is always an optimal solution to Cycle

Cover with very specific properties. We call a cycle cover regular (for the clique cover
Q = {Q1, . . . , Qs}) if it satisfies the following properties for each distinct i, j ∈ {1, . . . , s}:

(i) at most one cycle of the cover has an edge between cliques Qi and Qj ,

(ii) every cycle of the cover has at most two edges between Qi and Qj .
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It is possible to prove that every cycle cover can be transformed into a regular one without
increasing its size. Informally, if two distinct cycles have edges between two cliques Qi and
Qj , we can “glue” them together as it is shown in Figure 1(left), and if a cycle has at least
three edges between the cliques, then we can pick two of them that are in the “same direction”
according an arbitrary orientation of the cycle and reroute the cycle, see Figure 1(right).

Because the cycles of a regular cycle cover have a limited number of edges that are between
the cliques of Q, it is possible to modify and/or reroute them using the fact that the vertices
of the same clique are pairwise adjacent. The regularity of a cycle cover allows us to apply
the following reduction rules.

• If there is a clique Qi ∈ Q and v ∈ Qi such that NG[v] = Qi and |Qi| ≥ s+ 3, then set
G = G− v and Qi = Qi \ {v}.

• If there are i, j ∈ {1, . . . , s}, i 6= j, such that the bipartite graph Gij , with vertex set
Qi ∪Qj and whose edges are the edges of G between Qi and Qj , has a matching M of
size at least 4s− 3, then select (arbitrarily) an edge e ∈M , set G = G− e.

• If there is a clique Qi ∈ Q and v ∈ V (G) \Qi such that |NG(v)∩Qi| ≥ 2s+1, then for
an arbitrary edge e = uv with u ∈ Qi, set G = G− e.

We apply the rules exhaustively. It is not hard to see that in none of the above rules is
applicable to a graph G, then G has O(s4) vertices, that is, the size of the obtained instance
of Cycle Cover is O(s8) and this implies the claim of Theorem 3 for the problem.

From Proper H-representations to Small Clique Covers. Now we use Theorem 3 to
construct kernelization and compression algorithms for Path Cover and Cycle Cover on
proper H-graphs, i.e., we build kernels with small clique covers.

Suppose that G is a proper H-graph given together with its proper H-representation
(H ′,M). Notice that for every branching node x ∈ V (H), the set Kx = {v ∈ V (G) | x ∈Mv}
is a clique of G, where Mv is the model of the vertex v (i.e., a connected component of a
subdivision of H). Observe also that the graph G − ⋃

x∈V (H)Kx can be seen as a union
of proper interval graphs Ge corresponding to the edges e ∈ E(H). More formally, let
e = xy ∈ E(H) and consider the (x, y)-path Pe in H ′ obtained from e by the subdivisions.
We denote by Ge the subgraph of G induced by Ve = {v ∈ V (G) | Mv ⊆ V (Pe) \ {x, y}}.
Clearly, Ge is a proper interval graph and the sets Mv for v ∈ Ve form a proper interval
representation of it. This representation defines a corresponding total ordering of its vertices
(see [13]). We assume that these orderings are fixed for every Ge. In particular, whenever we
speak about leftmost and rightmost vertices of Ge, we mean the leftmost and the rightmost
vertices with respect to this ordering. Notice that for e = xy, NG(Ve) ⊆ Kx ∪ Ky, that is,
paths or cycles that cover the vertices in Ge are either completely in Ge or enter Ge via the
vertices of Kx or Ky that we call the left and right cliques respectively.

The graphs Ge could be huge but, since they are proper interval graphs, they have a
relatively simple structure. We exploit this structure in order to replace them by small
gadget graphs while maintaining the equivalence of the instances of the considered problems.

Qj Qi Qj

(a) (b)
Qi

Figure 1: Rerouting cycles; the deleted
edges are shown by dashed lines and the
added edges are shown by thick lines.

vep(e)

Ge

Ge

vep(e)−1

vep(e)

vep(e)

vep(e)−1
ve1
ve2

ve1
ve2

ve1

Ge

ve1
ve2

Ge

Figure 2: The types of covering (up to
symmetry) of Ge by a tamed path cover.
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Since the vertices of
⋃

x∈V (H)Kx can be covered by at most |V (H)| cliques and the set of
vertices of each gadget replacing Ge can be covered by a constant number of cliques, we obtain
a graph that has a clique cover of size O(|V (H)|+ |E(H)|).

Covering Ge. Without loss of generality we assume Ge is connected. One possibility is that
Pe (the path cover of Ge) consists of a single Hamiltonian path of Ge with its end-vertices
being the leftmost and the rightmost vertices of Ge. In all other cases, Pe consists of at
most two paths that are proper subpaths of some paths of P and, moreover, every path of Pe

extends in two directions in the path of P.
The structure of paths in the projection of a path cover is shown in Figure 2, the vertices

of Ge are denoted by ve1, . . . , vep(e) in the figure according to their proper interval ordering.
Note that every path of the path cover P that enters Ge uses the (one or two) leftmost and
rightmost vertices as entry-points.
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Extended Abstract

We investigate the structure of two-dimensional partial cubes, i.e., of isometric subgraphs
of hypercubes whose vertex set defines a set family of VC-dimension at most 2. To establish
an isometric embedding of a graph G into a hypercube, Djoković [6] introduced a binary
relation Θ – called Djoković-Winkler relation – on the edges of G. It can be shown that Θ is an
equivalence relation which defines classes of parallel edges. Therefore, two-dimensional partial
cubes are partial cubes which are not contractible to the 3-cube Q3. Here contraction means
contracting the edges belonging to the same class of parallel edges,i.e. edges corresponding
to the same coordinate of the hypercube. We establish a multitude of properties of those
partial cubes. We show that any two-dimensional partial cube can be built from specific
combinatorial cells and can be completed to a two-dimensional ample graph.

Partial cubes comprise many important and complex graph classes occurring in metric
graph theory and initially arising in completely different areas of research such as geometric
group theory, combinatorics, discrete geometry, and media theory. Most of those classes can
be characterized via forbidden Q-minors; in case of partial cubes, Q-minors are endowed
with a second operation called restriction and are called partial cube minors, or pc-minors
[4]. The class of partial cubes is closed under pc-minors. Thus, given a set G1, G2, . . . , Gn

of partial cubes, one considers the set F(G1, . . . , Gn) of all partial cubes not having any
of G1, G2, . . . , Gn as a pc-minor. For example, the following classes can be characterized
via forbidden Q-minors: hypercellular graphs (F(Q−3 ) [4]), median graphs (F(Q−3 , C6) [4]),
bipartite cellular graphs (F(Q−3 , Q3) [4]), rank two of complexes of oriented matroids (COMs)
(F(SK4, Q3) [10]), and two-dimensional ample graphs (F(C6, Q3) [10]). Here Q−3 denotes the
3-cube Q3 with one vertex removed and SK4 the full subdivision of K4.

Moreover, partial cubes can be view as set families which are fundamental objects in
combinatorics, algorithmics, machine learning, discrete geometry, and combinatorial opti-
mization. The Vapnik-Chervonenkis dimension of a set family S ⊆ 2X is the size of a largest
subset of Y ⊆ X which can be shattered by S [15], i.e., 2Y = {Y ∩ S : S ∈ S}. Introduced in
statistical learning by Vapnik and Chervonenkis [15], the VC-dimension was adopted in the
above areas as complexity measure and as a combinatorial dimension of S. An important
inequality relates a set family S ⊆ 2X with its VC-dimension, called the sandwich lemma,
proves that |S| is sandwiched between the number of strongly shattered sets and the number
of shattered sets [1, 3, 7, 14]. The set families for which the upper bounds in the sandwich
lemma are tight are called ample or lopsided [2, 3, 11].

We can easily show the next result that point out the link between classes of partial cubes
having cube-free pc-minors and their VC-dimension.

Lemma 1 A partial cube G belongs to F(Qd+1) if and only if G has VC-dimension ≤ d.

We consider the class F(Q3), i.e. the class of partial cubes which has no 3-cube as pc-
minors. By Lemma 1, they correspond to partial cubes of VC-dimension at most 2. We called
them two-dimensional partial cubes.

Now we want to understand the structure of those graphs. Let us introduce the notion
of gatedness before to describe the combinatorial cells. A subgraph H of G induced by V is
called gated in G [8] if for every vertex x outside H there exists a vertex x′, the gate of x,
in H such that each vertex y of H is connected with x by a shortest path passing through
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the gate x′. We can show that the gate of x is unique and that gated sets are convex. Since
the intersection of gated subgraphs is gated, for every subset S ⊆ V there exists the smallest
gated set gate(S) containing S, referred to as the gated hull of S.

We say that a graph is a full subdivision of Kn (or full subdivision for short) if it is the
graph obtained from the complete graph Kn on n vertices by subdividing each edge of Kn

once. We show that any two-dimensional partial cube can be obtained by amalgamations
from two types of combinatorial cells : gated cycles and gated full subdivisions, see Figure 1.

(a) (b) (c)

Figure 1: (a) A gated cycle. (b) A gated full subdivision. (c) Amalgamation of (a) and (b).

Then, we explore the gated hull of isometric cycles. We say that a partial cube is a disk
if it is the region graph of a pseudoline arrangement. We show the following result:

Theorem 2 Let G be a two-dimensional partial cube. Then the gated hull of each isometric
cycle C of G is a disk or a full subdivision.

The cell structure of two-dimensional partial cubes enables us to establish a variety of
results. The main property of two-dimensional partial cubes that we showed is :

Theorem 3 Any G ∈ F(Q3) can be completed to an ample partial cube (Gq)p∈ F(Q3).

We perform this completion in two steps. First, we canonically extend G to a partial
cube Gq ∈ F(Q3) not containing convex full subdivisions. The resulting graph Gq is a COM
of rank 2: its cells are the gated cycles of G and the 4-cycles created by extensions of full
subdivisions. Second, we transform Gq into an ample partial cube (Gq)p∈ F(Q3) by filling
each gated cycle C of length ≥ 6 of G (and of Gq) by a planar tiling with squares.

This completion result yields that the set families defined by such graphs satisfy the sample
compression conjecture by Littlestone and Warmuth [12] in a strong sense. They introduced
this compression technique for deriving generalization bounds in machine learning. Floyd and
Warmuth [9] asked whether any set family S of VC-dimension d has a sample compression
scheme of size O(d). This question remains one of the oldest open problems in this area, that
is far from being solved even for general set families of VC-dimension 2. In view of this, it
was noticed in [13] that the original sample compression conjecture of [9] would be solved if
one can show that any set family S of VC-dimension d can be extended to an ample partial
cube of VC-dimension O(d) or can be covered by exp(d) ample partial cubes of VC-dimension
O(d). Considering this and Theorem 3, we obtain the following result:

Corollary 4 Any set family which defines a two-dimensional partial cube admits a compres-
sion scheme of constant size, i.e. verify the sample compression conjecture of Littlestone and
Warmuth.

Additionally, we provide several characterizations of two-dimensional partial cubes; their
proof and other characterizations can be found in the full version [5]. First, let us introduce
some definitions. Let G be a partial cube and Ei be a Θ-class of G. The hyperplane Hi of
Ei has the middles of edges of Ei as the vertex-set and two such middles are adjacent in Hi
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Figure 2: Hyperplanes of G

if and only if the corresponding edges belong to a common square of G. In the Figure 2,
hyperplanes of G are represented with dotted lines.

Let G be a graph containing two isometric subgraphs G1 and G2 such that G = G1 ∪G2,
there are no edges from G1 \G2 to G2 \G1, and G0 := G1 ∩G2 is nonempty. Then the triple
(G1, G0, G2) is called an isometric cover of G. A graph G′ is an isometric expansion of G
with respect to an isometric cover (G1, G0, G2) of G if G′ is obtained from G by replacing
each vertex v of G1 by a vertex v1 and each vertex v of G2 by a vertex v2 such that ui and
vi, i = 1, 2 are adjacent in G′ if and only if u and v are adjacent vertices of Gi and v1v2 is an
edge of G′ if and only if v is a vertex of G0. For a construction of an isometric expansion of
a partial cube G, we can see the Figure 3.

(a) (b)

Figure 3: (a) A two-dimensional partial cube G. (b) An isometric expansion of G.

Theorem 5 For a partial cube G = (V,E) the following conditions are equivalent:

(i) G is a two-dimensional partial cube;
(ii) the hyperplanes of G has VC-dimension ≤ 1;
(iii) G can be obtained from the one-vertex graph via a sequence {(G1

i , G
0
i , G

2
i ) : i = 1, . . . ,m}

of isometric expansions, where each G0
i , i = 1, . . . ,m has VC-dimension ≤ 1.

Moreover, any two-dimensional partial cube G satisfies the following condition:

(iv) the gated hull of each isometric cycle of G is a disk or a full subdivision.

Note that it is not true that if in a partial cube G the convex hull of every isometric cycle
is a two-dimensional partial cube, then G is too, see the graph H in Figure 4. However, we
conjecture that the condition (iv) of Theorem 5 is equivalent to the other conditions:

Conjecture 6 Any partial cube G in which the gated hull of each isometric cycle is a disk
or a full subdivision is a two-dimensional partial cube.
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Figure 4: Graph H
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Extended Abstract

Cascading failures. A cascading failure in a complex system is a process in which an initial
failure in one or several of its elements leads to a sequence of failures which spread to other
elements and in some cases collapses the whole system.

In our interconnected world, these processes are increasingly becoming common and affect
our everyday lives. This is the case of the recent power-grid failure of 16 June 2019 in
Argentina and neighbor countries and the recurrent failures of Twitter, Facebook, Instagram
and other social networks, all of them carrying important disruptions in relevant services.

What causes these cascade processes is not well understood, and thus they are really
difficult to predict or contain. In many cases cascading failures arise from changes in flows,
as happens in transportation networks, including electric grids or logistic supply chains, but
there are not many models or a general graph theoretical framework to help in their analysis.

Background. The publication of a paper by Wang and Rong (WR) in 2009 [12] on cas-
cading failures in the power grid of western US and Canada had a big impact. Their study
was based on public data available from the most-cited paper on small-world networks by
Watts and Strogatz [13] and received a wide interest after its review in the New York Times,
with some curious anecdotes, like that a military analyst, L. M. Wortzel, asked the House of
Foreign Affairs Committee to investigate the authors of the article for possible terrorism.

The WR paper had an important repercussion leading to tens of publications on this topic,
including the study of other networked systems, interdependent networks, vulnerable sets, etc.
(see, for example, [2, 11, 14, 10] and references therein.) This research is based mainly on
computer simulations and in many cases lacks a founding mathematical background.

Since 1998 [13] we know that many graphs which are associated to complex systems belong,
mainly, to a category that is now known as "small-world scale-free". Their characteristics are a
large local concentration of vertices or clustering (the vertices have many common neighbors)
and, at the same time, a small average distance and diameter. Other properties present
in some real complex systems are that their degrees follow a power law [1] and modularity
(sometimes related to the existence of communities or clusters) [9, 4]. Thus, it make sense to
consider different graph families when modeling a cascading failure process.

In [12], WR studied the vulnerability of the western US and Canada electric grid, modeled
as a graph, from the failure of some sets of vertices. Their model for cascading failures, fol-
lowing the previous work of Motter and Lai[6], is very simple as each vertex has an associated
load which is computed from its degree and the degree of its neighbors. Vertices have also
a maximum capacity. If a vertex fails, its load is distributed to all its neighbors and if their
new load becomes larger than this capacity, they also fail. The most important result is that
the collapse of a network is triggered more easily from the failure of a few nodes of low degree
than the failure of nodes of high degree. From their model we see that WR actually selects
the set of initial failing vertices from values of their degree centrality. Clearly, there is need
to go beyond this simple model and consider other centralities which could reflect better a
dynamic flow process in a real network.

Our approach. In this research we consider different families of model graphs and also
data available for real systems (US and European power grids and airport networks, human
interactome etc.), and we compare the classical WR model with new cascading failure models
based on other relevant graph centralities. In this way we can study which topological and
dynamic parameters of a network are most likely to affect the propagation (cascading) of
failures.
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The new centralities are based on graph parameters and invariants like usual distance
measures, the betweenness of a vertex, which reflects how many short paths between all pairs
of possible vertices go through a given vertex, communicability [3] which measures the set
of paths that begin and end in a vertex, and others based on the eigenvectors of the graph
Laplacian and adjacency matrices, like PageRank.

All these centralities are a significant improvement with respect to the usual degree central-
ity from WR, which only accounts for direct links to a vertex. As an example, the PageRank
of a vertex depends on the PageRank value of all vertices in the graph; vertices that are
several edges apart contribute less to the calculation. Thus, a vertex that is linked (directly
or through others) to many vertices which have a high PageRank value receives a high rank
itself and it is said to be more central.

With this study, we want to know which sets of nodes can produce a maximum cascading
failure for each different graph family and centrality.

A cascading failure general model. Each node starts with an initial load Lj which depends
on the centrality that we are studying, and an initial maximum capacity, Cj . This load and
capacity are defined as Lj = [cj(

∑
m cm]α and Cj = T ·Lj , where cj is the centrality of vertex

j, m runs on the set of adjacent vertices, α is a tunable parameter which controls the strength
of the initial load and T is the tolerance parameter (T ≥ 1). Once these parameters are fixed,
the next steps are:

· Sort all verticess by their load Lj and select (initial failing sets) NIFS vertices with the
highest load, NIFS with the lowest load and NIFS with a load value around the median.
· For a given load group consider, independently, the failure of each vertex and distribute its
load to active neighbours. If i is the failing vertex and j an active adjacent vertex then:

Lnewj = Lj + ∆Lji where ∆Lji = Lj
Lj∑

m∈Γi
Lm

is the contribution of extra load received

from the set of failing neighbours Γi. Therefore an adjacent vertex with a higher load will
receive a higher shared load from the the failing vertex.
· When the load has been distributed to its neighbouring vertices, check if any of the vertices
affected exceeds its maximum capacity Cj . If this is the case, these vertices will fail and
their load redistributed as explained. This procedure is repeated until the remaining active
vertices stabilize or all vertices fail.
· When the cascading process is over, we count the vertices that have failed due to the failure
of the initial vertex i, CFi, and repeat the process with the remaining vertices in the same
load group.
· To measure the robustness of the whole graph, we calculate CFIFS as CFIFS =

∑
i∈IFS CFi

NIFS(N−1)

where IFS and NIFS represent the initial failing set of vertices and its cardinality, respec-
tively.

Note that the original cascading failure model of Wang and Rong, corresponds to consider
for ci the degree centralities.

Methodology. We have considered ten topologically different graph families: Geographical
Threshold 2D, Geographical Threshold 3D, Watts-Strogatz (high clustering), Watts-Strogatz
(low clustering), Barabasi-Albert, Erdős - Rényi, Power-law Clustered, Random Geometric,
Random Partition, Random Regular. See the NetworkX documentation [7] for details on each
family and associated bibliography.

The centralities used in our study are: Degree, Betweenness, Communicability, Closeness
Current Flow, PageRank and Eigenvector [7, 5].

We have coded all cascading failure methods in Python 2.7 while using the NetworkX
package 1.10 [7] to generate all graphs and call its preprogrammed centrality functions.

For each combination of a graph family, centrality and α value (0.1 and 0.5), we run a set
of 20 simulations for 20 different graphs with the same order |V | = 100 and size |E| ≈ 400
from this graph family (these graphs are saved and used for each other centrality). Each run
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involves increasing the load tolerance parameter from 1 to 1.5 in steps of 0.025. The results
are averaged for these 20 simulations.

As an example of the results obtained, the following two figures compare, for Power-law
Clustered graphs, cascading failure processes based on the WR model of degree centrality
(left) with the closeness current flow centrality model (right), both with parameter α = 0.1.

Both figures represent CF IFS versus T . We note a clear different behavior with respect
the two centralities when the initial failing vertices have a load around the median.

Results. Our results show, as expected, a different behavior among graph families and
centralities. However in many cases cascading failure sizes depend on the load of the initial
vertices in a similar way to the results obtained by Wang and Rong, which we have reproduced
validating our methods. But, when checking, for a given graph family, the effects of selecting
the initial failing nodes according to different centralities show a pattern: With cascading
failure models based on centralities like Betweenness and Communicability, all three load
options for the initial failing set lead to no cascading failures for small values of the tolerance
parameter. Models based on the Closeness Current Flow and Pagerank centralities, on the
other hand, show graph global failures at higher values of the tolerance. This reflects the
fact that, for the former centralities, a high load for a vertex means that it is well connected
through shortest paths to nearby vertices (and all other vertices) and this facilitates a redis-
tribution of loads. For the latter centralities a high load means a more diffuse connection to
all vertices.

We have also found for some models a clearly different behavior with respect to the WR
results for initial failing sets of median loads, see the figure above. All these results suggest
that, to increase a graph resilience, and thus to protect a real life network associated to it,
there is need to decide which centrality can model better flows in the network and check all
vertices according to it to select those vulnerable following all former criteria and not just by
considering their degrees as it happens in most of the current models for cascading failures.
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Extended Abstract

The first goal of this work was to present a proof of Leighton’s graph covering Theorem [10]
in terms of regular trees. The study of coverings is motivated in particular by distributed

computing. This led us to studying weighted graphs, trees, and (strongly) regular trees.
These trees have no order between nodes (as have syntactic trees of terms) and they may
have infinite degree, thanks to our new notion of weight.

We obtain easily an analog of Leighton’s theorem to the case of unfoldings of finite (pos-
sibly weighted) directed graphs, frequently discussed as transition systems in a semantical
perspective.

Regarding Leighton’s Theorem, we have an easy proof in a special case, covering the case
of regular graphs.

1 Coverings and Universal Cover of a Graph

We consider finite, undirected graphs having possibly loops or multi-edges. We write G ≃ G′

whenever G and G′ are isomorphic. The set of all the edges of G incident with v is denoted
by IG(v).

We say that a graph G is a covering of a graph H via γ if γ is a surjective homomorphism
from G onto H such that for every vertex v of G the restriction of γ to IG(v) is a bijection
onto IH(γ(v)) [5, 6].

Let G be a graph and v a vertex. Following Angluin [2] (and Leighton’s presentation [10]),
the universal cover of G with respect to v, denoted U(G, v), is the tree defined as follows:

• its vertex set is {w|w is a walk, starting at v, that does not traverse the same edge in
opposite directions twice in consecutive steps},

• and an edge in U(G, v) links w1 and w2, if w1 is a one-edge extension of w2 or vice-versa.

remark The universal cover U(G, v) is unique up to isomorphism and independent of the
choice of the vertex v. It is denoted by U(G).

The theory of distributed computing uses the notion of (universal) covering of graphs.
Distributed algorithms such as the one for election require the network to reach a non-
symmetric state. It is not difficult to see that similarity of infinite radius may exist in finite
graphs. It is precisely captured by the notion of covering used by Angluin [2]. Networks
in which symmetries exist are non-minimal for the covering relation and the impossibility
of breaking symmetry can be shown for these graphs. In particular, the election problem
has no deterministic distributed solution. Coverings are also used for impossibility proofs
concerning the consensus problem [9], and for the study of simulation of large networks on
smaller networks [5].

Leighton [10] proves that if finite graphs G and H have isomorphic universal coverings,
then they have a finite common covering. This result was conjectured by Angluin [2], and first
proved in the case of regular graphs by Angluin and Gardiner [3]. The proof of Leighton uses
combinatorial tools from graph theory (as the degree refinement of a graph) and it does not
give much structural information. In this framework, Norris [13] proves that the isomorphism
of universal covers of graphs of size n until depth n − 1 implies isomorphism at all depths.
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Several works developed in different contexts yield different proofs of the results of Angluin-
Gardiner and of Leighton. They use combinatorial, topological or group theory tools: [1, 4,
11, 14, 15].

2 Unfoldings and Coverings Treated Similarly

The complete unfolding of a directed graph from a vertex (called an origin) defines a tree
that is infinite if the graph has directed cycles. Formally, it is the tree of directed walks in the
graph. It has been introduced in the case where the graph is a transition system (an abstract
program) and its complete unfolding represents its semantics [7, 8]. If the graph is finite, its
complete unfolding is a regular tree (without ordering between the sons of a node). We call
unfolding, a graph that approximates the complete unfolding.

Let us make precise that the notion of a regular tree has nothing to do with that of a
regular graph. Every finite tree is regular. Hence, this notion concerns infinite trees. Similarly,
strongly regular trees have nothing to do with strongly regular graphs.

Unfoldings and coverings are defined similarly in terms of surjective graph homomorphisms
that are locally bijective. This locality notion is a parameter that gives rise to several types
of unfoldings or coverings. For unfoldings, the "neighbourhood" is the set of outgoing edges
from any vertex (any "state" in a transition system). For coverings, it is the set of all incident
edges to a vertex. Yet other notions can be defined.

3 Our Results

In this communication, we develop in parallel both notions. We establish for complete un-
foldings existing results for universal coverings, in particular the theorems by Leighton and
Norris presented above.

The main new definitions and results are as follows:

1. We define coverings and unfoldings for weighted graphs. The weight of an edge (or of
an half-edge) is a positive integer or the infinite cardinal ω. A directed edge of weight
3 (resp. ω) unfolds into 3 edges (resp. countably many edges). In this way, we obtain
trees with nodes of countable degree. The universal covering of an edge with half-edges
of weights 3 and 4 is the infinite tree whose nodes have degree 3 or 4, and two adjacent
nodes have different degrees.

2. We extend to complete unfoldings of weighted directed graphs the above mentioned
theorems by Norris and Leighton. We give an easy proof of Leighton’s Theorem for a
special case, including the case of regular graphs [3]. We show why this proof does not
extend to the general case.

3. The complete unfoldings of finite weighted directed graphs are the regular rooted trees

(regular in a new sense, allowing infinite degree). The universal coverings of finite
weighted graphs are trees without root that we call strongly regular. A tree is strongly
regular if it yields finitely many regular trees, up to isomorphism, obtained by taking
the different nodes as a roots. We give equivalent characterizations of strongly regular
trees. We can decide if a regular tree is strongly regular.

4. Finite weighted graphs are thus finite descriptions of regular and strongly regular trees.
Canonical such descriptions can be computed. It is no surprize that the associated
isomorphism problems of the defined trees are decidable.
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Extended Abstract

A graph is H-free if it does not contain the graph H as an induced subgraph, and a graph
is (H1, H2)-free if it is both H1-free and H2-free. Classes of H-free graphs and (H1, H2)-
free graphs are hereditary, that is, closed under vertex deletion. A graph class G has bounded
clique-width if there exists a constant c such that every graph in G has clique-width at most c;
otherwise G has unbounded clique-width. Recently, a detailed survey was published about the
boundedness of clique-width for hereditary graph classes [4]. This survey includes an almost
complete classification for (H1, H2)-free graphs (five open cases remain).

It is well known that many NP-complete graph problems are polynomial-time solvable on
classes of bounded-clique-width; see [2, 10] for examples of such meta-theorems. A cliqueK in
a connected graph G is a clique cut-set of G if G−K is disconnected. A graph G is an atom if
it is connected and has no clique cut-set. Decomposition into atoms is a widely used technique
for solving algorithmic graph problems on hereditary graph classes. In particular, Tarjan [11]
showed that the well-known problems Colouring and Minimum Independent Set are
polynomial-time solvable on a hereditary graph class G if and only if they are polynomial-
time solvable on the atoms of G.

Due to the above, our research aim is to identify the hereditary graph classes of unbounded
clique-width whose atoms have bounded clique-width. Gaspers et al. [6] showed that for a
graph H, the class of H-free atoms has bounded clique-width if and only if H is an induced
subgraph of P4 (the 4-vertex path). This classification coincides with the classification for
boundedness of clique-width on general graphs. This means that restricting to atoms does not
help when we forbid only one forbidden induced subgraph. On the other hand, split graphs,
which can be characterized by three forbidden induced subgraphs, namely 2P2, C4 and C5 [5],
have unbounded clique-width [8], but their atoms are cliques and thus have clique-width at
most 2. Hence, it is a natural question whether there exist classes of (H1, H2)-free graphs of
unbounded clique-width whose atoms have bounded clique-width.

Gaspers et al. [6] showed the first positive result for the case of two forbidden induced
subgraphs H1 and H2 by proving that atoms of (C4, P6)-free graphs have clique-width at
most 18 (whereas the class of (C4, P6)-free graphs itself contains all split graphs and thus has
unbounded clique-width). We also note that Cameron et al. [1] proved that (cap, C4)-free
odd-signable atoms have clique-width at most 48, whereas the corresponding (hereditary)
class of all such graphs, which contains the class of split graphs, has unbounded clique-width.

We extend the result of [6] by initiating a systematic study on the boundedness of clique-
width of (H1, H2)-free atoms. We prove that the atoms of many graph classes of (H1, H2)-free
graphs of unbounded clique-width still have unbounded clique-width. We do this by using or
modifying existing constructions for showing unboundedness of clique-width. However, as our
main result, we also identify a new class of (H1, H2)-free graphs of unbounded clique-width
whose atoms have bounded clique-width.

Theorem 1 The class of (2P2, P2 + P3)-free atoms has bounded clique-width (whereas the
class of (2P2, P2 + P3)-free graphs has unbounded clique-width).

1Dabrowski and Paulusma were supported by the Leverhulme Trust (RPG-2016-258). Masařík and Novotná
were supported by Charles University student grants (SVV–2017–260452 and GAUK 1277018) and GAČR
project (17-09142S). Rzążewski was supported by the London Mathematical Society (41744) and the Polish
National Science Centre (2018/02/X/ST6/00145).
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2P2 P2 + P3

Figure 1: The forbidden induced subgraphs from Theorem 1.

Note that the class of (2P2, P2 + P3)-free graphs (see Figure 1 for pictures of the forbidden
graphs) contains the class of split graphs and thus has unbounded clique-width. The proof
of the main statement in Theorem 1 is partially based on the proof of a result of Malyshev
and Lobanova [9], who showed that Colouring is polynomial-time solvable on the class of
(P5, P2 + P3)-free graphs.

Their proof is split into two parts. First, they assume the presence of an induced C5.
They show that the prime (with respect to modular decomposition) induced subgraphs of
(P5, P2 + P3)-free atoms with an induced C5 either have a bounded number of vertices [9,
Lemmas 5–9] (in which case the clique-width is bounded) or are 3P1-free. In both cases,
the (weighted) Colouring problem can be solved in polynomial time. Second, they observe
that (P5, C5, P2 + P3)-free graphs are perfect and thus admit a polynomial-time algorithm for
Colouring [7].

For the proof of Theorem 1 we distinguish the same two cases. We first show that the
class of (2P2, P2 + P3, 3P1)-free graphs with an induced C5 has bounded clique-width. Then,
as the clique-width of a graph is equal to the maximum clique-width of its prime induced
subgraphs [3], the first case follows from the above result of [9]. That is, (2P2, P2 + P3)-free
atoms that contain an induced C5 have bounded clique-width. In the second case, we consider
(2P2, P2 + P3, C5)-free atoms. A non-trivial analysis into the structure of (2P2, P2 + P3, C5)-
free atoms is needed to prove boundedness of their clique-width, and this is where our main
contribution lies.
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Extended Abstract

A set S of vertices of a graph G is P ∗3 -convex if there is no vertex outside S having
two non-adjacent neighbors in S. The P ∗3 -convex hull of S is the minimum P ∗3 -convex set
containing S. If the P ∗3 -convex hull of S is V (G), then S is a P ∗3 -hull set. The minimum
size of a P ∗3 -hull set is the P ∗3 -hull number of G. In this talk, we show that the problem
of deciding whether the P ∗3 -hull number of a chordal graph is at most k is NP-complete,
present polynomial algorithms to determine this parameter and provide a minimum P ∗3 -hull
set for subclasses of the chordal graph superclass [4] , discuss how to extend those results to
a broader class of convexities, and comment on some related open problems.

Here we consider �nite, undirected, and simple graphs. The path with k vertices is denoted
by Pk and an induced path is a path having no chords. Given a set S of vertices of a graph G,
the interval of S in the convexity of induced paths of order 3, also known as the P ∗3 convexity,
is the set [S]∗3 = S ∪{u : u belongs to an induced P3 between two vertices of S}. The set S is
P ∗3 -convex if S = [S]∗3 and is P ∗3 -concave if V (G)\S is P ∗3 -convex. The P

∗
3 -convex hull of S is

the minimum P ∗3 -convex set containing S and it is denoted by 〈S〉∗3. If 〈S〉∗3 = V (G), then S is
a P ∗3 -hull set. The minimum size of a P ∗3 -hull set is the P

∗
3 -hull number h∗3(G) of G. Finally,

the distance between vertices u and v is here denoted by d(u, v) and the neighborhood of a
vertex v is denoted by N(v). The set {1, . . . , k} for an integer k ≥ 1 is denoted by [k]. A
subgraph of G induced by vertex set S is denoted by G[S]. A vertex u is simplicial if its
neighborhood induces a complete graph. Note that every P ∗3 -hull set contains all simplicial
vertices and at least one vertex of each P ∗3 -concave set of the graph.

Recently, the P ∗3 convexity has attracted attention as an alternative to other quite known
convexities with di�erent behavior despite a similar de�nition. It is particularly interesting
in spreading dynamics which forbid the same in�uence by two neighbors to get spread to
a common neighbor. For instance, in [1], it is shown that the problem of deciding whether
the P ∗3 -hull number of a bipartite graph is at most k is NP-complete, while polynomial-time
algorithms for determining this parameter for P4-sparse graphs and cographs are presented.
Apart from these results very little is known, as results of quite similarly de�ned well-known
convexities do not help, since the proofs depend on the existence of longer shortest paths or
a non-induced P3.

Theorem 1 Given a chordal graph G and an integer k, it is NP-complete to decide whether

h∗3(G) ≤ k.

Proof: Since the P ∗3 -convex hull of a set can be computed in polynomial time, the problem
of deciding whether h∗3(G) ≤ k belongs to NP.

In order to prove NP-completeness, we describe a polynomial reduction from a restricted
version of Satisfiability. Let C be an instance of Satisfiability consisting of m clauses
C1, . . . , Cm over n boolean variables x1, . . . , xn such that every clause in C contains at most
three literals and, for every variable xi, there are exactly two clauses in C, say Cj1i

and Cj2i
,

that contain the literal xi, and exactly one clause in C, say Cj3i
, that contains the literal x̄i,

and these three clauses are distinct. Using a polynomial reduction from [LO1] [5], it has been
shown in [3] that Satisfiability restricted to such instances is still NP-complete.

Let the graph G be constructed as follows starting with the empty graph:

• For every j ∈ [m], add a vertex cj .

128



• For every i ∈ [n], add 10 vertices xi, yi, zi, x
1
i , x

2
i , w

1
i , w

2
i , x̄i, ȳi, w̄i and 17 edges to obtain

the subgraph indicated in Figure 1.

• Add a vertex z and the edges to make a clique of C ∪ Z ∪ {z}, where

C = {cj : j ∈ [m]} and
Z = {zi : i ∈ [n]}.

C

cj1i cj2i cj3i

zi

xi xiyi
yix1i

w1
i

x2i

w2
i

w̄i

Figure 1: When the construction of G ends, zi will belong to the clique C∪{z1, . . . , zn}∪{z}.

The graph G is now constructed. Note that the order of G is 10n + m + 1. In order to
show that G is chordal, we indicate a perfect elimination ordering, which is a linear ordering
v1, . . . , v10n+m+1 of its vertices such that v1 is simplicial in G and vi is simplicial in G \
{v1, . . . , vi−1} for every i ∈ [10n+m+ 1] \ [1]. Such an ordering is obtained by

• starting with the vertices w1
i , w

2
i , and w̄i for all i ∈ [n] (in any order),

• continuing with the vertices x1i and x2i for all i ∈ [n],

• continuing with the vertices yi, ȳi for all i ∈ [n],

• continuing with the vertices xi and x̄i for all i ∈ [n], and

• ending with the vertices in the clique C ∪ Z ∪ {z}.

Setting k = 4n+1, we have to show that C is satis�able if and only if G contains a P ∗3 -hull
set of order at most k.

To prove necessity, let S be a satisfying truth assignment of C.
Let

S = {z} ∪
⋃

i∈[n]

{
w1

i , w
2
i , w̄i

}
∪

⋃

i∈[n]: xi true in S
{xi} ∪

⋃

i∈[n]: xi false in S
{x̄i} .

Clearly, |S| = k = 4n+ 1. For every i ∈ [n], either zi ∈ [{xi, z}]∗3 or zi ∈ [{x̄i, z}]∗3. Thus,
zi ∈ [S]∗3.
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Since S is a satisfying truth assignment, for every j ∈ [m], there is a neighbor, say v, of
cj in ⋃

i∈[n]: xi true in S
{xi} ∪

⋃

i∈[n]: xi false in S
{x̄i} .

Then cj ∈ [{v, z}]∗3. Hence C ∪ Z ⊆ [S]∗3.
Now, for i ∈ [n], we have x1i ∈ [{w1

i , cj1i }]
∗
3, x

2
i ∈ [{w2

i , cj2i }]
∗
3, ȳi ∈ [{w̄i, cj3i }]

∗
3, yi ∈

[{x1i , x2i }]∗3, xi ∈ [{yi, zi}]∗3 ∪S, and x̄i ∈ [{ȳi, zi}]∗3 ∪S. (See Figure 1). Altogether, we obtain
that S is a P ∗3 -hull set of G of order 4n+ 1. Now, to prove su�ciency, let S be a hull set of
G of order at most 4n+ 1.

First Claim: For every i ∈ [n], set {xi, zi, x̄i} is P ∗3 -concave.

Proof: The set {xi, zi, x̄i} is P ∗3 -concave as N(xi) \ {zi}, N(zi) \ {xi, x̄i}, and N(x̄i) \ {zi} are
cliques. �

C

cj

zi
xi xiyi

yi
x2i

w2
i

x1i

w1
i

w̄i zk
xk xkyk

yk
x2k

w2
k

x1k

w1
k

w̄k z`
x` x`y`

y`x2`

w2
`

x1`

w1
`

w̄`

Figure 2: Vj = {cj , xi, yi, x1i , xk, yk, x1k, x̄`, ȳ`} for Cj = {xi, xk, x̄`} = Cj1i
= Cj1k

= Cj3`
.

Now, for j ∈ [m], de�ne

Vj = {cj} ∪
⋃

i∈[n]:j=j1i

{
xi, yi, x

1
i

}
∪

⋃

i∈[n]:j=j2i

{
xi, yi, x

2
i

}
∪

⋃

i∈[n]:j=j3i

{x̄i, ȳi} .

Second Claim: The set Vj is P
∗
3 -concave in G for every j ∈ [m].

Proof: First, suppose that Cj contains the positive literal xi. By symmetry, w.l.o.g., we may
assume that j1i = j and j2i = j′ for some j′ ∈ [m] \ {j}. (See Figure 2). Observe that, for
v ∈ {xi, yi, x1i }, it holds N(v) \ Vj is a clique. Then, no induced P3 between two vertices in
V (G) \ Vj contains v ∈ {xi, yi, x1i }.

Next, suppose that Cj contains the negative literal x̄i. Observe that, for v ∈ {x̄i, ȳi}, it
holds N(v) \ Vj is a clique. Then, no induced P3 between two vertices in V (G) \ Vj contains
v ∈ {x̄i, ȳi}.

Finally, since N(cj) \ Vj is a clique, no induced P3 between two vertices in V (G) \ Vj
contains cj , which completes the proof of the claim. �
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Note that all 3n+ 1 simplicial vertices of G, namely, {z} ∪⋃i∈[n]
{
w1

i , w
2
i , w̄i

}
, belong to

S. Since S contains at most n non-simplicial vertices, the �rst claim implies that, for every
i ∈ [n], the set S contains exactly one of the three vertices in {xi, zi, x̄i}, and that these are
the only non-simplicial vertices in S. Now, the second claim implies that, for every j ∈ [m],
there is some i ∈ [n] such that

• either Cj contains the literal xi and the vertex xi belongs to S

• or Cj contains the literal x̄i and the vertex x̄i belongs to S.

Therefore, setting the variable xi to true if and only if the vertex xi belongs to S yields a
satisfying truth assignment S of C, which completes the proof. �

Now, given a set S of vertices of a graph G and an integer 3 ≤ ` ≤ d(G), de�ne in a
more general way the interval of S in the convexity of induced paths of order at most `, called
here P ∗` convexity, to be the the set [S]∗3 = S ∪ {u : u belongs to an induced Pi between two
vertices of S for some i ≤ `}. The terms P ∗` -convex, P

∗
` -concave, P

∗
` -convex hull of S, P

∗
` -hull

set, and P ∗` -hull number h∗` (G) of G are then de�ned in a similar way to the geodetic and
the P ∗3 convexities. Note that this more ample de�nition provides us with a family of distinct
convexities, where the extreme values of ` give us already well-known ones: by setting ` = 3
we get the P ∗3 convexity while by setting ` = d(G) we get the geodetic convexity. The next
corollary shows that the proof of Theorem 1 also works in all such convexities, thus yielding a
more simple and shorter proof (half the size) than the already known NPC result for chordal
graphs in the geodetic convexity [2] (from which Theorem 1 cannot be derived due to the
usage of induced paths of order larger than 3).

Corollary 2 Given a chordal graph G, an integer k, and an integer 3 ≤ ` ≤ d(G), it is
NP-complete to decide whether h∗` (G) ≤ k.
Proof: Consider the very same proof as in Theorem 1. In the necessity direction, all nodes
are generated by induced paths of order 3, which are also present in the interval of a set in
the P ∗` convexity. In the su�ciency direction, the neighbors of {xi, zi, x̄i} in the �rst claim
always form a clique, while the neighbors of v ∈ Vj not belonging to Vj in the second claim
always form a clique as well, and hence, there is no induced path between two nodes outside
Vj which intersects Vj . Therefore, the proof also holds for the P

∗
` convexity, given an integer

3 ≤ ` ≤ d(G). �
Finally, we close the talk by showing polynomial algorithms obtaining the h∗3-hull number

and a minimum P ∗3 -hull set for subclasses of chordal graphs [4] which can be adapted as well
to a broader class of convexities, and by commenting on related open problems.
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Extended Abstract

A hypergraph H consists of a vertex set V (H) and an edge set E(H) ⊆ 2V (H). If all edges
have size r, then H is called r-uniform. A matching in H is a collection of pairwise disjoint
edges, and a cover of H is a set of edges whose union contains all vertices. A matching is
perfect if it is also a cover. These concepts are widely applicable, as `almost all combinatorial
questions can be reformulated as either a matching or a covering problem of a hypergraph' [6],
and their study is thus of great relevance in combinatorics and beyond.

Results like Hall's theorem and Tutte's theorem that characterize when a graph has a
perfect matching are central in graph theory. However, for each r ≥ 3, it is NP-complete
to decide whether a given r-uniform hypergraph has a perfect matching. It is thus of great
importance to �nd su�cient conditions that guarantee a perfect matching or almost perfect
matching in an r-uniform hypergraph. A celebrated theorem of Pippenger states that any
almost regular hypergraph with small codegrees has an almost perfect matching. We show
that one can �nd such an almost perfect matching which is `pseudorandom', meaning that,
for instance, the matching contains as many edges from a given set of edges as predicted by a
heuristic argument. We further discuss applications of this result to obtain blow-up lemmas
for rainbow embeddings and approximate graph decompositions.

1 Pseudorandom hypergraph matchings

For a hypergraphH and vertices u, v ∈ V (H), we de�ne the degree and codegree as degH(v) :=
|{e ∈ E(H) : v ∈ e}| and degH(uv) := |{e ∈ E(H) : {u, v} ⊆ e}|, respectively. Let ∆(H) :=
maxv∈V (H) degH(v), and ∆c(H) := maxu6=v∈V (H) degH(uv) denote the maximum degree and
maximum codegree of H, respectively.

To motivate our result on hypergraph matchings, suppose for simplicity that we are given
a D-regular hypergraph and want to �nd an (almost) perfect matching M. Moreover, we
wish M to be `pseudorandom', that is, to have certain properties that we expect from an
idealized random matching. In a perfect matching, at a �xed vertex, exactly one edge needs
to be included in the matching, and assuming that each edge is equally likely to be chosen,
we may heuristically expect that every edge of H is in a random perfect matching with
probability 1/D. Thus, given a (large) set E ⊆ E(H) of edges, we expect |E|/D matching
edges in E. More generally, given a set X, a weight function on X is a function ω : X → R≥0.
For a subset X ′ ⊆ X, we de�ne ω(X ′) :=

∑
x∈X′ ω(x). If ω is a weight function on E(H),

the above heuristic would imply that we expect from a `pseudorandom' matching M that
ω(M) ≈ ω(E(H))/D. The following is a simpli�ed version of our main theorem in [3] which
asserts that a hypergraph with small codegrees has a matching that is pseudorandom in the
above sense.

Theorem 1 ([3]) Suppose δ ∈ (0, 1) and r ∈ N with r ≥ 2, and let ε := δ/50r2. Then there

exists ∆0 such that for all ∆ ≥ ∆0, the following holds: Let H be an r-uniform hypergraph

with ∆(H) ≤ ∆ and ∆c(H) ≤ ∆1−δ as well as |E(H)| ≤ exp(∆ε2). Suppose that W is a set

of at most exp(∆ε2) weight functions on E(H). Then, there exists a matchingM in H such

that ω(M) = (1±∆−ε)ω(E(H))/∆ for all ω ∈ W with ω(E(H)) ≥ maxe∈E(H) ω(e)∆1+δ.

Let us discuss a few aspects of this theorem. First, note that we do not require H to be
almost regular but the theorem can be applied with any (su�ciently large) ∆. If H is almost
regular, an almost perfect matching can be obtained by considering the weight function ω ≡ 1
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which then yields that |M| ≥ (1−o(1)) |E(H)|
∆(H) ≥ (1−o(1))|V (H)|/r, where the last inequality

uses that r|E(H)| = ∑x∈V (H) degH(x) = (1± o(1))|V (H)|∆(H).

Further, we remark that Theorem 1 is (qualitatively) more general than a similar theo-
rem of Kahn [10] as well as the Alon�Yuster theorem [1, Theorem 1.2]. The Alon�Yuster
theorem builds on a theorem of Pippenger and Spencer [14] and states that any almost reg-
ular hypergraph with small codegrees contains an almost perfect matching M that covers
a collection V of subsets U ⊆ V (H) almost completely. For each target subset U ∈ V,
we can de�ne a weight function ωU by setting ωU (e) := |e ∩ U |. Note that ωU (E(H)) =∑
x∈U degH(x) = (1 ± o(1))|U |∆(H). Thus, if ωU (M) = (1 ± o(1))ωU (E(H))/∆(H), we de-

duce that |U ∩V (M)| = ωU (M) = (1± o(1))ωU (E(H))/∆(H) ≥ (1− o(1))|U |, implying that
almost all vertices of U are covered byM.

In fact, we prove a more general theorem in [3] which not only allows weight functions on
edges, but on tuples of edges. This allows, for instance, to specify a set of pairs of edges, and
control how many pairs will be contained in the matching.

2 Applications

In this section, we provide two results on rainbow embeddings and approximate graph de-
compositions that use Theorem 1 (or its more general version) as a key ingredient.

2.1 A rainbow blow-up lemma

A subgraph of an edge-coloured graph is called rainbow if all its edges have di�erent colours.
We provide a rainbow version of the blow-up lemma of Komlós, Sárközy and Szemerédi [12]
that applies for almost optimally bounded edge-colourings.

We call an edge-colouring locally k-bounded if each colour class has maximum degree at
most k, and we call it globally k-bounded if any colour appears on at most k edges. The
following is a special case of our rainbow blow-up lemma.

Theorem 2 ([4]) Suppose H is a graph on at most n vertices with ∆(H) = O(1). Then any

locally O(1)-bounded and globally (1− o(1))
(
n
2

)
/e(H)-bounded edge-colouring of Kn contains

a rainbow copy of H.

Note that the assumption that the colouring is (1−o(1))
(
n
2

)
/e(H)-bounded is asymptotically

best possible in the sense that if the colouring was not
(
n
2

)
/e(H)-bounded, there might be

less than e(H) colours, making the existence of a rainbow copy of H impossible. Theorem 2
is very similiar in spirit to the main result of Montgomery, Pokrovskiy and Sudakov [13] on
embedding rainbow trees. Roughly speaking, instead of dealing with trees, our results apply
to general graphs H, but we require H to have bounded degree, whereas one of the great
achievements of [13] is that no such requirement is necessary when dealing with trees.

We derive Theorem 2 from an even more general `blow-up lemma' for k-partite `super-
regular' graphs and collect some terminology. For a bipartite graph G with vertex partition
(V1, V2), we de�ne the density ofW1,W2 withWi ⊆ Vi by dG(W1,W2) := |E(G[W1,W2])|/|V1||V2|.
We say G is (ε, d)-regular if dG(W1,W2) = d± ε for all Wi ⊆ Vi with |Wi| ≥ ε|Vi| and (ε, d)-
super-regular if in addition |NG(v) ∩ V3−i| = (d ± ε)|V3−i| for each i ∈ [2] and v ∈ Vi. If
c : E(G) → C is an edge-colouring of a graph G and α ∈ C, denote by eαG(S, T ) the number
of α-coloured edges of G with one endpoint in S and the other one in T .

We say that (H,G, (Xi)i∈[r], (Vi)i∈[r]) is an (ε, d)-super-regular blow-up instance if

• H and G are graphs, (Xi)i∈[r] is a partition of V (H) into independent sets, (Vi)i∈[r] is
a partition of V (G), and |Xi| = |Vi| for all i ∈ [r], and

• for all ij ∈
(

[r]
2

)
, the bipartite graph G[Vi, Vj ] is (ε, d)-super-regular.

We say that φ : V (H) → V (G) is an embedding of H into G if φ is injective and φ(x)φ(y) ∈
E(G) for all xy ∈ E(H). We also write φ : H → G in this case. We say that φ is rainbow if
φ(H) is rainbow. We now state our new rainbow blow-up lemma.
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Theorem 3 (Rainbow blow-up lemma [4]) For all d, γ,∆,Λ, r, there exists an ε > 0
and an n0 ∈ N such that the following holds for all n ≥ n0. Suppose (H,G, (Xi)i∈[r], (Vi)i∈[r])
is an (ε, d)-super-regular blow-up instance with ∆(H) ≤ ∆. Assume further that

(i) |Vi| = (1± ε)n for all i ∈ [r];

(ii) c : E(G)→ C is a locally Λ-bounded edge-colouring such that for all α ∈ C:
∑
ij∈([r]

2 ) e
α
G(Vi, Vj)eH(Xi, Xj) ≤ (1− γ)dn2.

Then there exists a rainbow embedding φ of H into G such that φ(x) ∈ Vi for all i ∈ [r] and
x ∈ Xi.

In the following, we sketch how we employ Theorem 1 as a crucial tool in the proof of
Theorem 3. We proceed cluster by cluster and �nd a partial embedding φi which maps almost
all vertices of Xi into Vi and which is consistent with the partial embedding so far. Each
such embedding step can be modeled as �nding a rainbow matching in an auxiliary bipartite
`candidacy graph' Ai on (Xi, Vi).

To illustrate this, we consider the following toy example and assume that Ai is the com-
plete bipartite graph with bipartition (Xi, Vi) and |Xi| = |Vi| = n. Suppose further that
c : E(Ai) → C is a proper edge-colouring of Ai. Our aim is to �nd an almost perfect rain-
bow matching in Ai. When the colouring is optimal, then �nding such a matching of size
n − 1 is equivalent to the famous Ryser�Brualdi�Stein conjecture on almost transversals in
Latin squares. In order to apply our theorem, we formulate the problem as a hypergraph
matching problem. Let H be the hypergraph with vertex set Xi ∪ Vi ∪ C and edge set
{{u, v, c(uv)} : uv ∈ E(Ai)}. The key property of H is the following bijection between the set
of all rainbow matchings in Ai and the set of all matchings in H � we simply assign a rainbow
matching M in G to the matching M := {{u, v, c(uv)} : uv ∈ M} in H. Clearly, ∆(H) = n
and ∆c(H) = 1. The existence of an almost perfect rainbow matching in Ai follows now from
Theorem 1. By considering the weight function ω ≡ 1, we obtain a a hypergraph matchingM
of size (1 − o(1)) |E(H)|

∆(H) = (1 − o(1))n in H and in turn a rainbow matching M in Ai of this

size (this follows even already from Pippenger's theorem).
In order to perform the embedding rounds for all candidacy graphs Ai, i ∈ [r], repeatedly,

we need to ensure that certain quasirandomness properties are preserved throughout the
procedure. In our toy example this would mean, for instance, that for some speci�ed sets
X ′i ⊆ Xi, V

′
i ⊆ Vi, we have |E(Ai[X

′
i, V

′
i ])∩M | ≈ |X ′i||V ′i |/n, and more generally that for sets

E′ ⊆ E(Ai), we have |E′ ∩M | ≈ |E′|/n. This can be ensured utilizing weight functions as in
Theorem 1 by de�ning ωE′(e) = 1e∈E′ for all e ∈ E(Ai).

In the end, φr will be a rainbow embedding that maps almost all vertices of H into G.
Using a recent result of the second and third author [7] for o(n)-bounded edge-colourings
allows us to complete the embedding.

2.2 A blow-up lemma for approximate decompositions

Questions on packings and decompositions have a long history and lead to several beautiful
conjectures which have driven a large amount of research. A prime example is the Oberwolfach
problem where Ringel asked in 1967 whether one can decompose (the edge set of)K2n+1 into n
copies of any 2-regular graph on 2n+1 vertices. This problem received considerable attention
and Glock, Joos, Kim, Kühn and Osthus solved it for large n [8]. Possibly equally well-known
is Ringel's conjecture from 1963 stating that K2n+1 can be decomposed into any tree with n
edges, as well as the tree packing conjecture due to Gyárfás and Lehel from 1976 stating that
(the edge set of) Kn can be decomposed into any collection of trees T1, . . . , Tn, where Ti has i
vertices. Ringel's conjecture has been solved approximately Montgomery, Pokrovskiy and
Sudakov [13] using their aforementioned result on embedding rainbow trees together with a
rotation technique, and both conjectures have been solved for bounded degree trees by Joos,
Kim, Kühn and Osthus [9].
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On a very high level, numerous decomposition results combine approximate decomposition
results with certain absorbing techniques. For many questions in extremal combinatorics, the
blow-up lemma due to Komlós, Sárközy and Szemerédi [12] in combination with Szemerédi's
regularity lemma has demonstrated its power and usefulness. Having this in mind and in
need of a powerful approximate decomposition result, Kim, Kühn, Osthus and Tyomkyn [11]
proved a far-reaching generalisation of the blow-up lemma, a `blow-up lemma for approximate
decompositions' stating that multipartite quasirandom graphs can be almost decomposed into
any collection of bounded degree graphs with the same mulipartite structure and slightly
fewer edges. This tool can also be combined with the regularity lemma to obtain almost
decompositions of graphs into bounded degree graphs, and it has been utilized in [9] and
in [2] for a `bandwidth theorem for approximate decompositions', which in turn is one of the
key ingredients for the resolution of the Oberwolfach problem in [8]. Therefore, the blow-up
lemma for approximate decompositions has already exhibited its versatility. However, its very
complex and long proof is an obstacle for further generalisations. By using a similar approach
as sketched in Section 2.1 and employing our more general version of Theorem 1, we present
a new and signi�cantly shorter proof [5] that even allows us to prove a more general version
with stronger quasirandom properties.
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Extended Abstract

The aim of this paper is to define and investigate some relevant parameterized variants of
homomorphism problems for edge-coloured graphs.

A t-edge-coloured graph is a multigraph where each edge has a colour in {1, . . . , t}. A
homomorphism f between two t-edge-coloured graphs G and H is a mapping from the vertices
of G to the vertices of H such that, if x and y are joined by one edge of colour t in G, this
also holds for f(x) and f(y) in H (see [2, 3]). If there exists such homomorphism, we write
G

ec−→ H. A core is a t-edge-coloured graph G such that if G ec−→ H and H is a subgraph of G
then H is isomorphic to G. A signed graph G is a 2-edge-coloured graph where we can switch
at the vertices (usually the colours are signs). A switch at a vertex v consists in inverting
the colours of the edges incident to v. A signed homomorphism is a homomorphism where
we can arbitrarily switch at the vertices of the source graph. See Zaslavsky [11] for more on
signed graphs, and Naserasr et al. [10] for studies on their signed homomorphisms. A signed
core G is a signed graph such that any signed homomorphism from G to one of its subgraphs
H implies that H is isomorphic to G (up to switching).

A parameterized problem is a decison problem together with a parameter of the input.
Such problem is fixed parameter tractable (FPT) if for any input I with parameter value k
can be solved in time f(k)O(|I|c) for some computable function f and integer c. It is XP if
it can be solved in time |I|g(k) for some computable function g. For more details see [7].

Our inspiration comes from the following two popular parameterized graph modification
problems. P denotes a fixed graph property.

P Vertex-Deletion (resp. Edge-Deletion) Parameter: k.
Input: A graph G, an integer k.
Question: Is there a set S of at most k vertices (resp. edges) of G such that G − S
satisfies P?

This class of problem contains some fundamental problems such as Vertex Cover,
Feedback Vertex/Edge Set or Odd Cycle Transversal and Edge Bipartization,
that are all well-known to be NP-complete but FPT, see the book [7].

Given a fixed edge-coloured graph H, the classic H-Colouring decision problem consists
in determining, for an input graph G, whether G ec−→ H. (We can restrict ourselves to graphs
H that are cores by replacing H with one of its subgraphs H ′ such that H ec−→ H ′.) Similarly,
the Signed H-Colouring decision problem consists in determining whether there exists a
signed homomorphism from a given 2-edge-coloured graph G to H. The complexity of these
problems is studied for example in [2, 3] and [5, 6], respectively.

Since for many edge-coloured graphs H, H-Colouring is polynomial-time solvable [2, 3,
4], it is of interest to refine this problem. We do this as follows (H is a fixed edge-coloured
graph).
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VD (resp. ED) H-Colouring Parameter: k.
Input: An edge-coloured graph G, an integer k.
Question: Is there a set S of at most k vertices (resp. edges) of G such that (G−S) ec−→
H?

SW H-Colouring Parameter: k.
Input: A 2-edge-coloured graph G, an integer k.
Question: Is there a set S of at most k vertices of G such that the 2-edge-coloured graph
G′ obtained from G by switching at every vertex of S satisfies G′ ec−→ H?

In this paper, we study the complexity of the three problems VD H-Colouring, ED
H-Colouring and SW H-Colouring. In Section 1, we make some preliminary obser-
vations in relation with the literature. In Section 2, we are able to completely classify the
decision complexity of VD H-Colouring. In Section 3, we address the case of edge-coloured
graphs H of order 2, that are already nontrivial and interesting (see [1, 4]). We completely
classify the parameterized complexity of VD H-Colouring, ED H-Colouring and SW
H-Colouring. Finally, we conclude in Section 4.

1 Preliminaries and known results
Whenever H-Colouring is NP-complete, we deduce that VD H-Colouring and ED H-
Colouring are NP-complete even for k = 0, and thus are not FPT for parameter k. For
example this is the case when H is a monochromatic triangle. When Signed H-Colouring
is NP-complete, then SW H-Colouring is NP-complete even for k = |V (G)| (but could
still be XP or FPT for k). On the other hand, if H-Colouring is polynomial, then all three
problems are in XP for parameter k:

Proposition 1 Let H be an edge-coloured graph such that H-Colouring is polynomial-time
solvable. Then, the three problems can be solved in time |G|O(k).

When k = 0 and H is 1-coloured, Hell and Nešetřil [8] proved that H-Colouring is
polynomial if the core of H has at most one edge (H is bipartite or has a loop), and NP-
complete otherwise. As a consequence, for any edge-coloured graph H where one of the
colours induces a graph with no loop and an odd cycle, then the non-parameterized versions
of VD H-Colouring, ED H-Colouring and SW H-Colouring are NP-complete even
for k = 0, and thus, not FPT for parameter k, unless P = NP .

For the non-parameterized version of SW H-Colouring with k = |V (G)|, (that is,
Signed H-Colouring), we have:

Theorem 2 (Brewster et al. [5, 6]) Let H be a signed graph. Signed H-Colouring is
polynomial if the switching core of H has at most two edges, and NP-complete otherwise.

Generally, not much is known about H-Colouring for t-edge-coloured graphs. One
notable result is the following.

Theorem 3 (Brewster et al. [4]) Let H be a t-edge-coloured graph. H-Colouring is
polynomial by reduction to 2-Sat when H has order 2, or when H has order 3, is loop-free
and contains no monochromatic triangle.

2 NP-completeness of VD H-Colouring

Lewis and Yannakakis defined a non-trivial property P on graphs as a property true for
infinitely many graphs and false for infinitely many graphs. A property P is hereditary on
induced subgraphs if and only if P(G) implies P(I) for I induced subgraph of G. They showed
the following:
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Theorem 4 (Lewis and Yannakakis [9]) The P Vertex-Deletion problem for non-
trivial graph-properties P that are hereditary on induced subgraphs is NP-complete.

By modifying their proof of the previous result, we can prove the two following results:

Theorem 5 The P Vertex-Deletion problem for nontrivial properties P, on loopless t-
edge-coloured graphs, that are hereditary on induced subgraphs and true for all independent
sets is NP-hard.

Corollary 6 The problem VD H-Colouring for a t-edge-coloured graph H is polynomial
if H contains a vertex having all t coloured loops and NP-complete otherwise.

3 Graphs of order at most 2

It was proved in [1, 4] that for every edge-coloured graph H of order at most 2, H-Colouring
is polynomial-time solvable. In this section, we will refine this result by studying the three
generalizations of H-Colouring.

First of all, we describe in Figure 1 the twelve 2-edge-coloured graphs of order at most 2
that are cores, we consider these graphs up to symmetry of the two colours. We use the
terminology of [1] to describe the graphs. We do not consider any 2-edge-coloured graph of
order 2 with both kinds of loops since it would not be a core.

H1
rb H1

b H1
− H2−

r,b

H2b
−,− H2b

r,b H2b
r,− H2b

r,r

H2rb
−,− H2rb

r,b H2rb
r,− H2rb

r,r

Figure 1: The twelve 2-edge-coloured graphs of order at most 2 considered in Section 3.

We classify here the complexity of the ED H-Colouring problems according to the
graph H. The VD H-Colouring classification was done in Section 2.

Theorem 7 Let H be an edge-coloured core of order at most 2. If each colour of H induces a
set of loops or contains all three possible edges, then ED H-Colouring lies in P, otherwise
it is NP-complete.

For many t-edge-coloured graphs H of order at most 2, we can show that VD H-
Colouring and ED H-Colouring are FPT by giving ad-hoc reductions to Vertex Cover,
Odd Cycle Transversal or a combination of both. However, we can generalize the tech-
nique used for proving Theorem 3 by showing that all these problems can be expressed as an
FPT variant of 2-Sat: Variable Deletion Almost 2-Sat (see [7]) for VD H-Colouring
and a new variant that we call Group Deletion Almost 2-Sat for ED H-Colouring.

Theorem 8 For every edge-coloured graph H of order at most 2, VD H-Colouring is FPT
by reduction to Variable Deletion Almost 2-Sat, and ED H-Colouring is FPT by
reduction to Group Deletion Almost 2-Sat.

Note that for ED H-Colouring, the same kind of argument gives a similar result for
graphs of order 3 with no monochromatic triangle and no loop.

We now consider the SW H-Colouring problem.
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Theorem 9 Let H be a 2-edge-coloured graph from Figure 1. If H is in {H2rb
r,b , H

2rb
r,−, H

2rb
r,r }

the SW H-Colouring is NP-complete and W[1]-hard. If H is in {H2b
r,b, H

2b
r,−}, SW H-

Colouring is NP-complete but FPT. Otherwise, it is polynomial-time solvable.

The W-hard cases are proved by a reduction to Multicoloured Independent Set and
the FPT cases are resolved by a branching tree technique. The fact the SW H-Colouring
problem is harder than the other two comes from the fact that the switch operation does not
remove constraints but moves them. It it thus not surprising to see W-hard problems here.

4 Conclusion and perspectives
In this paper, we introduced VD H-Colouring, ED H-Colouring and SW H-Colouring
and we characterized the complexity of the three problems for some small H. The full com-
plexity landscape still needs to be determined.

Regarding their decision complexity, we have fully classified the VD H-Colouring prob-
lems that are polynomial-time solvable. It remains to do the same for ED H-Colouring
and SW H-Colouring.
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Extended Abstract

A series of works has been done on the combinatorics of dominating sets of graphs, that
is sets of vertices such that any vertex of the graph is neighbour of a vertex in this set,
and some variants, including notably minimal dominating sets. For instance, what is the
minimal cardinality of a dominating set of a graph? This question was answered for finite
square grids in [1]. We follow this stream by studying the number of dominating sets for
finite square grids. Although it is very hard to have a closed formula for this number, one
can have some information on its asymptotic behaviour. In particular, we prove the existence
of an asymptotic growth rate by giving enclosing it between quantities related to a symbolic
dynamical system (called subshift of finite type), whose asymptotic behaviour is related to
the entropy of the system. Moreover, using some properties of this dynamical system, we
prove that the growth rate is a computable number, meaning that it can be approximated by
an algorithm. We then obtain some bounds by running a program. All this is also done for
other variations of the notion of dominating set: minimal dominating, total dominating and
minimal total dominating sets.

Some definitions. A regular dominating set S of a graph G is a subset of its vertices
such that any vertex not in S is connected to a vertex in S. A minimal dominating set is
a dominating set which is inclusionwise minimal: for any v ∈ S, S \ {v} is not dominating.
A total dominating set S is a subset of vertices such that any vertex v in G is connected
to a vertex in S. When v ∈ S is the neighbour of some w we say that w is dominated by
v. Any element of S is called dominant. If a vertex v is dominated by a single w ∈ S then
we say that v is a private neighbour of w. A dominant vertex is isolated n and height m.
The notions of dominating sets are illustrated on Figure 1.

(a)
(1,1)

(b) (c)

Figure 1: Illustration of grids and some domination concepts on G4,4:
(a) a dominating set which is neither minimal dominating nor total dominating;
(b) a minimal dominating set which is not total dominating (the bottom-left dominant vertices
are not dominated);
(c) a minimal total dominating set.

In this abstract, we focus on regular dominating sets (other domination notions have
similar statements). We denote by Dn,m the number of dominating sets of the grid Gn,m.
Our aim is to evaluate the asymptotic behaviour of these numbers when n,m→ +∞.

From dominating sets to symbolic dynamical systems. In order to check if a set of
vertices of a square grid is dominating (for any notion of domination), one can look at the
neighbours of each vertex to check that the vertex, if not dominant, is dominated. This notion
of locality is the main ingredient of the definition of subshift of finite type, a particular type
of dynamical system. Informally, given a finite set of colours A, a bidimensional SFT is the
set of colourings of Z2 with elements of A avoiding all the patterns in F , where F is a finite
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set of finite patterns (formally, a finite pattern is an element of AU for U a finite subset of
Z2). Formally:

X =
{
x ∈ AZd

: ∀u ∈ Z, x|u+U /∈ F
}
.

The elements of F are called forbidden patterns.

One can see a regular dominating set S of the infinite grid Z2 as a colouring of the grid
with two colours, say gray and white, by colouring the elements of S with gray and the other
vertices with white. The local rules for a set S to be a dominating set can be seen as forbidden
patterns, and the set of dominating sets is a subshift of finite type, denoted by XD.

Existence of asymptotic growth rates using topological entropy. Let us denote by
Nn,m(XD) the number of patterns on the grid Gn,m which do not contain any forbidden
pattern for XD. One important property of this sequence is that log2(Nn,m(XD))

nm converges
when n and m tend towards +∞. The limit is called the topological entropy of XD (this
quantity can be defined for any dynamical system). Let us just notice that Nn,m(XD) is not
equal to Dn,m, due to border effects in the definition of dominating set.

In order to prove the existence of an asymptotic growth rate for Dn,m, meaning that the
sequence log2(Dn,m)/nm converges, we enclose it between Nn,m(XD) and Nn−1,m−1(XD).
The arguments involved in the proof of this comparison are few-to-one transformations of
dominating sets of the finite grids to patterns of XD and reciprocally. Moreover, the growth
rate (the limit of log2(Dn,m)/nm) is equal to the topological entropy of XD.

Computability of the growth rate. It is known that in general the entropy of a subshift
of finite type is not computable [3], in the sense that there are no algorithms which would
provide a rational approximation of it given an arbitrary precision as input. However, we
proved that the SFT XD satisfies a strong dynamical property called block-gluing. This
means that there exists some integer c such that any pair of patterns appearing in a colouring
of XD can be glued in any relative positions in another colouring of XD, provided that the
distance between the patterns is greater than c. This implies that the entropy of XD is
computable, and an explicit algorithm is known to compute its entropy [4].

Some bounds obtained with a program. One can compute the sequence Nn,m(XD)
algorithmically by checking for any possible pattern if it contains a forbidden pattern or not.
However, one can do a bit more efficient by using the notion of transfer matrix, an object
which describes which pairs of finite columns patterns (with the same height) can be adjacent
without breaking the rules of the SFT. If we denote by Vm the transfer matrix for height m,
one can see that log2(Nn,m)/n converges towards the greatest eigenvalue of Vm. Since Vm a
Perron-Frobenius matrix (due to properties of symmetry of XD), we can use an algorithm to
compute the Perron Frobenius of the matrices Vm in order to obtain approximations of the
growth rate. We use this to provide some numerical bounds.
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Extended Abstract

Given a graph G and a nondecreasing sequence S = (s1, . . . , sk) of positive integers, the
mapping c : V (G) −→ {1, . . . , k} is called an S-packing coloring of G if for any two distinct
vertices x and y in c−1(i), the distance between x and y is greater than si. The smallest
integer k such that there exists a (1, 2, . . . , k)-packing coloring of a graph G is called the
packing chromatic number of G, denoted χρ(G).

One of the main questions since the problem was introduced a decade ago [6] is concerning
graphs with bounded maximum degree ∆, in particular, subcubic graphs (i.e., graphs with
∆ = 3). For graphs with maximum degree ∆, where ∆ ≥ 4, already the in�nite ∆-regular
tree serves as an example showing that in this class of graphs the packing chromatic number
is unbounded. On the other hand, the question whether in subcubic graphs the packing
chromatic number is bounded was much more intriguing. Recently, Balogh, Kostochka and
Liu [1] have provided a negative answer to the question. Moreover, they proved that for
every �xed k and g ≥ 2k + 2, almost every n-vertex cubic graph of girth at least g has the
packing chromatic number greater than k. An explicit in�nite family of subcubic graphs with
unbounded packing chromatic number was then presented in [3].

As the question was answered in negative for all graphs with bounded maximum degree 3,
it becomes interesting for some subclasses of subcubic graphs. In particular, already in [4] it
was asked, whether there is an upper bound for the packing chromatic number of all planar
cubic graphs, and this question was repeated in [3]. Very recently, packing chromatic number
of subcubic outerplanar graphs was considered [5]. The upper bounds obtained in the paper
involve the number of (internal) faces of the plane embedding of an outerplanar graph; for
instance, it is proven that if G is a 2-connected subcubic outerplanar graph with r internal
faces, then χρ(G) ≤ 17 · 63r − 2. The question of boundedness of the packing chromatic
number in subcubic outerplanar graphs thus seems widely open. In this paper, we prove that,
quite surprisingly, only 7 colors su�ce if we restrict to bipartite 2-connected case:

Theorem 1. Let G be a 2-connected bipartite subcubic outerplanar graph. Then χρ(G) ≤ 7.

Proof. (sketch of) The general idea of the proof is to use the tree structure of the weak
dual of G to color every but one (adequately chosen) vertex of each face, using �rst the
colors 1, 2, 3. The remaining uncolored vertices, called the big vertices are then colored using
colors from {4, 5, 6, 7}. In order to do this, we prove at each step that the obtained coloring
f : V (G) −→ {1, . . . , 7} satis�es the following four properties:

(i) Any vertex with color from {2, . . . , 7} has all its neighbors colored by color 1.

(ii) Any face α of G contains exactly one big vertex if |V (α)| ≥ 6 and at most one big vertex
if |V (α)| = 4.

(iii) Any big vertex is at distance at least 4 of any other big vertex.

(iv) Any vertex with color from {6, 7} is at distance at least 6 of any vertex of color from
{6, 7}.

Depending on the position of the big vertex of a face ω, the big vertex of each face α that
is a child of ω in a BFS ordering of the weak dual will be chosen (by considering three cases
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depending on the distance between the big vertex of ω and the face α). Now, in order to color
the big vertices, a step is to consider the face α and to color all the uncolored big vertices at
distance at most two of α. We need to consider three cases depending on the position of the
big vertex and the corresponding coloring of α.

For instance, one of the three con�gurations is illustrated in Figure 1, where u is the big
vertex of face α. Then, depending on the colors of u, r and s, we present in each case a pattern
to color the remaining big vertices. For example, if f(u) = 4 and {f(r), f(s)} = {5, 7}, then
we color the big vertices starting from the one of β1 and going around the face α with one of
these patterns, depending on the length n of α (where numbers between vertical bars are to
be repeated k times):

u′ u

ω

α
β1

β2

βk

βk−1

. . .

r
s

Figure 1: Con�guration for the big vertices (red boxes) for the case the big vertex u of α is
at the intersection with face ω.

Pattern for length n = 4k + 8:
7 6 7 4 5

5 4 5 6

Pattern for length n = 8k + 6:
5 5 5 5 5 5

6 4 7 4 6

Pattern for length n = 8k + 10:

5 5 5 5 5 5 5 5
7 4 6 4 7 4 6

The following proposition shows that the above theorem is sharp in general:

Proposition 2. There exists a 2-connected bipartite subcubic outerplanar graph G such that

χρ(G) ≥ 7.

Proof. Let T be the in�nite binary tree. Sloper [7] has proven that χρ(T ) = 7. A consequence
is that there exists a �nite subcubic tree T such that χρ(T ) = 7. Let d be the depth of T .
Finally, let k = 2d+ 2.

Let x and y be two adjacent vertices of degree 2 in a graph G. Adding a k-cycle on x
and y is an operation that consists of adding a path of k − 2 vertices to G and joining one
endvertex of the path to x and the other endvertex to y. Let G1 be a cycle of order k. Let
Gi+1, i ≥ 1, be the graph obtained from Gi by adding a k-cycle on every adjacent pair of
vertices of degree 2 in Gi, where we arrange these pairs in such a way that each vertex of
degree 2 belongs to one adjacent pair; this can be done by adding k-cycles on adjacent vertices
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of degree 2 following the outer cycle of Gi. In this way, in Gi+1 there does not remain any
vertex of degree 2 from V (Gi). Note that, by construction, Gi is a 2-connected bipartite
subcubic outerplanar graph for every integer i ≥ 1.

Let u be a vertex that belongs to G1 in the construction of Gk. Note that the set
{v ∈ V (Gk)| d(u, v) ≤ d} induces a subcubic tree containing T as an induced subgraph.
Thus, since every graph has a packing chromatic number larger or equal than the packing
chromatic number of any of its (induced) subgraphs, we derive χρ(Gk) ≥ 7.

We now present a result about bipartite outerplanar graphs (i.e., no restriction to 2-
connectedness and arbitrary maximum degree).

Theorem 3. Let G be a bipartite outerplanar graph. Let S = (1, 3, . . . , 3) be the sequence

containing one time the integer 1 and k times the integer 3, k ≥ 3. If ∆(G) ≤ k, then G is

S-packing colorable.

It can be observed that a (k−1)-ary tree of height (at least) �ve is not S = (1, 3, . . . , 3, 4)-
packing colorable, where 3 appears k − 1 times in S, showing the sharpness of the above
result.

For the non-bipartite case we are able to prove:

Theorem 4. If G is a subcubic triangle-free outerplanar graph, then G is (1, 2, 2, 2)-packing
colorable.

Again, this result is sharp since there exist counter examples both if the graph is not
triangle-free or if an integer 2 is replaced by 3 in the sequence.

We �nish by proposing two problems that lie between Theorem 1 and the question of
boundedness of the packing chromatic number in the class of planar subcubic graphs posed
in several papers. In one of them, we consider non-bipartite extension of the theorem, and in
the other we replace outerplanar graphs by planar graphs.

Question 5. Is the packing chromatic number bounded in the class of 2-connected outerplanar

subcubic graphs?

Question 6. Is the packing chromatic number bounded in the class of 2-connected bipartite

planar subcubic graphs?

We strongly believe that Theorem 1 could be extended from the 2-connected case to all
bipartite outerplanar subcubic graphs.
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Extended Abstract

Let D be a strong digraph. A vertex coloring of D is a strong vertex-monochromatically
connecting coloring (SVMC-coloring, for short) if for every pair u, v of distinct vertices in D,
there exists a (u, v)-path and a (v, u)-path having all the internal vertices of the same color.
Let smcv(D) denote the maximum number of colors used in an SVMC-coloring of a strong
digraph D. In this work we present lower and upper bounds for smcv(D) of a strong digraph
D. We determine the value of smcv(D), when D is the line digraph of a digraph. Finally, if
T is a strong tournament, we give conditions to find the exact value of smcv(T ).

introduction

In 2011, Caro and Yuster [1] introduced the concept of monochromatically-connecting
coloring of a graph. An edge-coloring of a graph is a monochromatically-connecting coloring
(MC-coloring, for short) if there exists a monochromatic path joining any two vertices of
the graph. The study of monochromatically-connecting colorings arises from the rainbow
connecting coloring problem, in which rainbow paths are considered (a path is rainbow if no
two edges of them are colored the same).

The monochromatically-connecting colorings can be naturally extended to digraphs. An
arc-coloring of a digraph D is a strong monochromatically-connecting coloring (SMC-coloring,
for short) if for every u, v ∈ V (D) there exist an (u, v)-monochromatic path and a (v, u)-
monochromatic path. The strong monochromatic connection number of a strong digraph D,
denoted by smc(D), is the maximum number of colors used in an SMC-coloring of D.

Given a strong digraph D and a strong spanning subdigraph H of D, by coloring the arcs
of H with one single color and the remaining arcs with distinct colors, an SMC-coloring of
D with m − |A(H)| + 1 colors is obtained. If Ω(D) denotes the minimum size of a strong
connected spanning subdigraph of D, then smc(D) ≥ m − Ω(D) + 1. In fact, the equality
always holds.

Theorem 1 (González-Moreno, Guevara, Montellano-Ballesteros ’17 [3]) Let D be
a strong oriented graph of size m, and let Ω(D) be the minimum size of a strong spanning
subdigraph of D. Then

smc(D) = m − Ω(D) + 1.

Corollary 2 Let D be a strongly connected oriented graph of size m and order n. Then D
is hamiltonian if and only if smc(D) = m − n + 1.

Notice that from Corollary 2, we can see also that computing Ω(D) is NP-hard.
Cai, Li and Wu [6] defined the vertex version of MC-colorings. This concept also can be

extended to digraphs. A directed path in a vertex-colored digraph is vertex-monochromatic
if its internal vertices are colored the same. A vertex-coloring of a digraph D is a strong
vertex-monochromatically connecting coloring (SVMC-coloring, for short) if for every u, v ∈
V (D) there exist a directed (u, v)-vertex-monochromatic path and a directed (v, u)-vertex-
monochromatic path. The vertex-monochromatic connection number of a strong digraph D,
denoted by smcv(D), is the maximum number of colors that can be used in a SMVC-coloring
of D.

For a general overview of the monochromatic and rainbow connection subjects we refer
the reader to [2, 4, 5].
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Vertex-monochromatic connecting colorings in strong digraphs

A set S ⊆ V (D) is absorbing (dominating) if for each vertex v ∈ V (D) \ S there exists
a vertex u ∈ S such that v ∈ N−(u) (v ∈ N+(u)). Let D be a strong digraph and let
H be a strong subdigraph of D such that V (H) is an absorbing and dominating set of D.
By coloring the vertices of H with one single color and the remaining vertices with distinct
colors, an SVMC-coloring of D with n− |V (H)|+1 colors is obtained. Let Ωv(D) denote the
minimum order of a strong subdigraph H of D such that V (H) is absorbing and dominating.
Therefore

smcv(D) ≥ n − Ωv(D) + 1. (1)

The proof of the following proposition is straightforward and is the digraph version of the
bounds obtained by Cai, Li and Wu [6] for the vertex-monochromatic connection number of
a graph.

Proposition 3 Let D be a strong digraph of order n and diameter d. Then

i) smcv(D) = n if and only if d ≤ 2.

ii) If d ≥ 3, then smcv(D) ≤ n − d + 2.

Let D be the digraph with vertex set V (D) = {v1, v2, . . . , vn} and arc set A(D) = {v1v2}∪
{v2vi, viv1 | i ∈ {3, 4, . . . , n}} (see Figure 1). Observe that Ωv(D) = 3, diam(D) = 3 and
smcv(D) = n − diam(D) + 2 = n − 1 > n − Ωv(D) + 1.

v1 v2

v3

v4

...

vn

D :

Figure 1: Digraph D with smcv(D) = n − diam(D) + 2.

Lemma 4 Let D be a strong digraph and let Γ be an SV MC-coloring of D. Let S be the set
of singular chromatic classes of Γ and let D∗ be the digraph induced by V (D) \ S.

i) If for every vertex v of D there exists a vertex x such that d(v, x) ≥ 3, then V (D∗) is
an absorbing set of D.

ii) If for every vertex v of D there exists a vertex x such that d(x, v) ≥ 3, then V (D∗) is a
dominating set of D.

iii) If g(D) ≥ 5, then V (D∗) is strong, absorbing and dominating set of D.

Theorem 5 Let D be a strong digraph of order n and girth g ≥ 5. Let Γ be an SVMC-
coloring of D that uses smcv(D) colors. If ℓ is the minimum cardinality of a non-singular
chromatic class of Γ, then

n − Ωv(D) + 1 ≤ smcv(D) ≤ n − Ωv(D) +
Ωv(D)

ℓ
.
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Corollary 6 Let D be a strong digraph of order n. Then

n − Ωv(D) + 1 ≤ smcv(D) ≤ n − Ωv(D)

2
.

We continue studying the vertex-monochromatic connection number of line digraphs. Re-
call that the line digraph L(D) of a digraph D = (V, A) has A for its vertex set and ef is an
arc of L(D) if the head of e coincides with the tail of f . A digraph H is called a line digraph
if there exists a digraph D such that L(D) is isomorphic to H .

We need some previous results before determining the value of smcv(D) for a line digraph
D.

Proposition 7 Let D be a strong digraph and let H be a spanning and strong subdigraph
of D. If L(H) is the subdigraph of L(D) induced by the arcs of H, then L(H) is a strong
subdigraph and V (L(H)) is an absorbing and dominating set of L(D).

Let H be a spanning and strong subdigraph of a strong digraph D with |E(H)| = Ω(D).
By the above proposition, there is an SVMC-coloring of L(D) with |V (L(D))|− |V (L(H))|+
1 = m − Ω(D) + 1 = smc(D) colors. Hence,

smcv(L(D)) ≥ smc(D).

An ordered pair (u, v) of vertices of a strong digraph D is said to be a bad pair if N+(u) =
{v} and N−(v) = {u}. Observe that if (u, v) is a bad pair, then uv is an arc of D and the
pair (v, u) is not a bad pair.

Lemma 8 Let D be a strong digraph and let H = L(D). Let Γ be an SVMC-coloring of H
and let Γ′ be the arc-coloring of D that assigns to each arc e ∈ A(D) the color Γ(e) of the
vertex e ∈ V (H). Given two vertices u and v in D there exists an (v, u)-edge-monochromatic
path in D if one of the following conditions holds.

i) The ordered pair (u, v) is not a bad pair.

ii) The ordered pair (u, v) is a bad pair and there exists an arc vw in D such that (v, w) is
not a bad pair.

iii) The ordered pair (u, v) is a bad pair and there exists an arc wu in D such that (w, u)
is not a bad pair.

iv) If the previous cases do not happen and D is different from C3.

Theorem 9 Let D be a strong directed graph different from the cycle of length 3. Then

scmv(L(D)) = smc(D).

Notice that L(C3) ∼= C3, smcv(C3) = 3 and smc(C3) = 1.
Finally, a condition on Ωv(T ) of a strong tournament T is given in order to find the exact

value of smcv(T ).

Theorem 10 Let T be a strong tournament of diameter d ≥ 6. If Ωv(T ) ≤ 2d − 6, then

smcv(T ) = n − Ωv(T ) + 1.
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Self contained graphs and twin graph conjectures
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Extended Abstract

A graph G is embedded in a graph H if there exists an embedding of G into H, that is,
an injection e : V (G) −→ V (H) that is not surjective and whose image induces a graph
isomorphic to G. Note that our de�nition requieres that the two graphes be non-isomorphic;
this eliminates trivialities from the discussion. A graph is self-contained1 if G embeds into
itself. Such graphs are necessarily in�nite. Two non-isomorphic graphs are twins (called
equimorphic in [4]) if each embeds in the other. Clearly if G and H are twins then each is
self-contained.

It has been conjctured by Bonato and Tardif in [2] that a tree has zero either in�nitely
many twins. This has be proved for rooted trees [7] and for scattered trees [4]. In general,
there are several conjectures that can be made.

Conjecture 1 If a graph has a twin, it has in�nitely many.

Conjecture 2 If a connected graph has a twin, it has in�nitely many.

Conjecture 3 If a connected graphs has a connected twin, it has in�nitely many.

Conjecture 4 Conjectures 1 and 3 are equivalent

Conjecture 5 Conjectures 1 and 2 are equivalent

The authors of [5] attempted to prove Cojecture 4. Unfortunately, the main lemma in the
paper is false. It concerns the structure of self-contained graphs. The paper is our starting
point. We prove a correct version of the lemma and, using it, prove Conjecture 5. Of course,
Conjecture 5 has a much simpler proof, but our structural lemma allows us to show that if a
disconnected graph has in�nitely many twins, it has at least 2ℵ0 of them. The results lead to
a proof of Conjecture 1 for several classes of graphs.

Work in progress in collaboration with Julien Codsi, Alizée Gagnon and Robert Woodrow.
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Extended Abstract

Let G be a finite, connected, simple and undirected graph with vertices V and edges E.
Consider a vertex set S = {s1, s2, . . . , sk}. We define the distance array of v ∈ V with respect
to S as DS(v) = (d(s1, v), d(s2, v), . . . , d(sk, v)). If each vertex of G has a unique distance
array with respect to S, then S is a resolving set of G. The smallest cardinality of a resolving
set of G is called the metric dimension of G and it is denoted by β(G). Resolving sets were
first introduced by Slater [7] and Harary and Melter [3], independently. This concept is now
widely studied and many variants have been introduced.

One quite recent concept is the {`}-resolving set of a graph, which was introduced in
[6]. Instead of individual vertices, we now consider sets of vertices with at most ` elements.
To that end, we define the distance array of a vertex set X with respect to S as DS(X) =
(d(s1, X), . . . , d(sk, X)), where d(si, X) = min{d(si, x) | x ∈ X}.

Definition 1 If each non-empty vertex set X with at most ` elements has a unique distance
array with respect to S, then S is an {`}-resolving set of G. The smallest cardinality of an
{`}-resolving set of G is called the {`}-metric dimension of G and it is denoted by β`(G).

When ` = 1, this definition is equivalent with the definition of the regular resolving set.
Resolving sets can be used to locate objects in sensor networks. Consider for example

a network where we locate faulty processors with a regular resolving set. If there are two
or more faulty processors simultaneously, the distance array given by the resolving set might
correspond to some vertex which does not represent a faulty processor. Now we end up trying
to repair a processor which is functioning correctly. To avoid this type of situation, solid-
resolving sets were introduced in [1]. A vertex set is a solid-resolving set, if each vertex has
a unique distance array and no vertex set with two or more vertices has the same distance
array as any one vertex. The following definition generalises this concept.

Definition 2 Let X and Y be non-empty vertex sets such that X 6= Y and |X| ≤ `. If S is a
vertex set such that DS(X) 6= DS(Y ) for all X and Y , then S is called an `-solid-resolving set.
The smallest cardinality of an `-solid-resolving set of G is called the `-solid-metric dimension
of G and it is denoted by βs

` (G).

In general, determining the metric dimension of a graph is difficult. In [5], it was shown
that determining the regular metric dimension of an arbitrary graph is NP-complete. Similar
results can be shown for the `-solid- and {`}-metric dimensions of an arbitrary graph.

Theorem 3 If G is a graph and k is an integer, then deciding whether the {`}-metric dimen-
sion β`(G) ≤ k is an NP-complete problem. Similarly, deciding whether the `-solid-metric
dimension βs

` (G) ≤ k is an NP-complete problem.

However, if ` is large enough compared to the number of vertices of the graph, the decision
problem for the {`}-metric dimension becomes algorithmically easy since β`(G) = |V | by the
following theorem.

Theorem 4 Let G be a connected graph such that the minimum degree δ(G) ≥ 2. If ` ≥
(|V | − 1)/2 + 1, then we have β`(G) = |V |.
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1 General Results
In what follows, we will state without proofs some of our new results regarding {`}-resolving
sets and `-solid-resolving sets. The characterisation of the following theorem makes finding
`-solid-resolving sets of a graph easier. Indeed, compared to Definition 2 we need to make
significantly fewer comparisons between distance arrays of distinct sets. Furthermore, the
following theorem gives us a way to consider `-solid-resolving sets in graphs via the structure
of the graph and not the distance arrays.

Theorem 5 Let S ⊆ V and ` ≥ 1. The set S is an `-solid-resolving set of G if and only if
for all x ∈ V and nonempty Y ⊆ V such that x /∈ Y and |Y | ≤ `, there exists an element
s ∈ S such that

d(s, x) < d(s, Y ). (1)

Theorem 6 Let S ⊆ V and ` ≥ 1.

(i) If S is an `-solid-resolving set, then it is also an {`}-resolving set of G.

(ii) If S is an {`+ 1}-resolving set, then it is also an `-solid-resolving set of G.

Theorem 6 shows the connection between {`}-resolving sets and `-solid-resolving sets. By
means of Theorems 5 and 6 we can search for an {`}-resolving set of G by considering first
(`− 1)-solid-resolving sets of G with the characterisation (1).

In Theorem 7, we give a general lower bound for the `-solid-metric dimension of a graph,
and in Theorem 8 we characterise the graphs for which this bound is obtained. A similar
bound and characterisation for the {`}-metric dimension of a graph have been proved in [2].

Theorem 7 Let G be a graph with n vertices. When 1 ≤ ` ≤ n− 1, we have βs
` (G) ≥ `+ 1.

Theorem 8 Let G be a connected graph with n vertices and let 2 ≤ ` ≤ n − 1. Then
βs
` (G) = `+ 1 if and only if n = `+ 1 or G = S`+2.

In [2], it was shown that when ` ≥ 2 certain types of vertices are included in every {`}-
resolving set. These vertices are called forced vertices. However, {1}-resolving sets do not
have any forced vertices, since V \{v} is a {1}-resolving set of G for any v ∈ V . The following
two theorems provide characterisations for forced vertices of `-solid- and {`}-resolving sets.
As it turns out, the forced vertices of an {`}-resolving set are exactly the same as those of an
(`− 1)-solid-resolving set. For U ⊆ V , let us denote

N [U ] =
⋃

u∈U

N [u].

Theorem 9 Let ` ≥ 1. A vertex v ∈ V is a forced vertex of an `-solid-resolving set if and
only if there exists a set U ⊆ V such that v /∈ U , |U | ≤ ` and N(v) ⊆ N [U ].

Theorem 10 Let ` ≥ 2. A vertex v ∈ V is a forced vertex of an {`}-resolving set if and only
if there exists a set U ⊆ V such that v /∈ U , |U | ≤ `− 1 and N(v) ⊆ N [U ].

2 Flower snarks
The family of flower snarks is an infinite graph family for which the `-solid-metric dimensions,
when ` ≤ 2, and the {`}-metric dimensions, when ` ≤ 3, are all nontrivial and different.
Moreover, as it turns out, the {1}-, 1-solid- and {2}-metric dimensions are all constants, and
the rest are dependent on the order of the graph.

In what follows, we define flower snarks by giving their construction (see Figure 1).

Construction. Let n = 2k + 1 be an odd integer, n ≥ 3.
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a1

b1

d1c1

(a) A {1}-resolving set. (b) A 1-solid-resolving set.

(c) A {2}-resolving set. (d) A 2-solid-resolving set.

(e) A {3}-resolving set. (f) A 3-solid-resolving set.

Figure 1: Optimal `-solid- and {`}-resolving sets of J9 for ` ∈ {1, 2, 3}.
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1. First we draw n copies of the star S4. We denote by Ti = {ai, bi, ci, di} the vertices of
the ith star, where the leaves of the star are ai, ci and di.

2. We connect the vertices ai by drawing the cycle a1a2 . . . ana1.

3. We connect the remaining leaves of the stars by drawing the cycle c1c2 . . . cnd1d2 . . . dnc1.

The resulting graph is the flower snark Jn with 4n vertices. The flower snark J9 is illustrated
in Figure 1.

In [4], it was shown that β1(Jn) = 3 when n ≥ 5. However, the proof for the upper bound
β1(Jn) ≤ 3 is erroneous. The authors claim that the set W = {c1, d1, dk} is a resolving set
of Jn, since all vertices have unique distance arrays with respect to W . However, we have
DW (a1) = (2, 2, k + 1) = DW (bn) and DW (ak) = (k + 1, k + 1, 2) = DW (bk+1). Thus, the set
W is not a resolving set of Jn. Despite this, the upper bound holds. We can replace dk with
dk+1 in W , after which it is straightforward to correct the proof and verify that the new set
is indeed a resolving set of Jn.

When n ≥ 5, flower snarks do not have forced vertices for `-solid-resolving sets if ` ≤ 2
and {`}-resolving sets if ` ≤ 3. When ` ≥ 3, all vertices are forced vertices for `-solid- and
{`+ 1}-resolving sets. The following theorem discusses the values of `-solid- and {`}–metric
dimensions of flower snarks with n ≥ 7. When n = 3 or n = 5, the values of the metric
dimensions differ slightly. However, since these two graphs are quite small, the values of their
metric dimensions can be calculated swiftly with a computer.

Theorem 11 Let n ≥ 7 be an odd integer. We have

β1(Jn) = 3, βs
1(Jn) = 6, β2(Jn) ≤ 8,

βs
2(Jn) = n+ 5, β3(Jn) = 3n, βs

3(Jn) = 4n.

Optimal `-solid- and {`}-resolving sets of J9 are illustrated in Figure 1.
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Extended Abstract

Abstract

For a �xed integer ` a path is long if its length is at least `. We prove that for all
integers k and ` there is a number f(k, `) such that for every graph G and vertex sets
A,B the graph G either contains k edge-disjoint long A-B-paths or it contains an edge
set F of size |F | ≤ f(k, `) that meets every long A-B-path. This is the edge analogue of
a theorem of Montejano and Neumann-Lara (1984). We also prove a similar result for
long A-paths and long S-paths.

1 Introduction

Menger showed that in any graph with vertex sets A and B and for any k ∈ N there are
either k disjoint A-B-paths in G or at most k − 1 vertices that intersect all A-B-paths (an
A-B-path is a path from A to B that is internally disjoint from A and B). Montejano and
Neumann-Lara [7] proved a similar result for long A-B-paths (paths of length at least ` for
some �xed integer `): for a �xed integer `, any positive integer k and any graph G with vertex
sets A and B there are either k disjoint long A-B-paths in G or a set of at most (3` − 5)k
vertices that intersects all long A-B-paths. Relating to the classic result of Erd®s and Pósa
[6] on the relation between the maximum number of disjoint cycles and the minimum size
of a vertex set that intersects all cycles, we say that long A-B-paths have the Erd®s-Pósa
property.

More generally, a family of graphs H (possibly with some extra structure, e.g. long A-
B-paths) is said to have the (vertex-)Erd®s-Pósa property if there is a function f : N → R
such that for every k ∈ N and every graph G there are either k vertex-disjoint subgraphs of
G that belong to H or there is a set X of at most f(k) vertices in G such that X intersects
all subgraphs of G that belong to H.

By replacing every occurence of "vertex" by "edge" in the de�nition of the Erd®s-Pósa
property, an edge variant naturally arises. This property is weaker in the sense that we only
need to �nd edge-disjoint subgraphs but at the same time it is stronger since we have to �nd a
set of edges that intersects all these subgraphs. More precisely, a family of graphs H (possibly
with some extra structure) has the edge-Erd®s-Pósa property if there is a function f : N→ R
such that for every k ∈ N and every graph G there are either k edge-disjoint subgraphs of G
that belong to H or there is a set X of at most f(k) edges in G such that X intersects all
subgraphs of G that belong to H. We call a set of edges that intersects all subgraphs that
belong to H an edge hitting set for H (or mostly just hitting set) and the function f a hitting
set function for H.

Long A-B-paths have the vertex-Erd®s-Pósa property but do they have the edge-Erd®s-
Pósa property, too? We prove:

Theorem 1 Long A-B-paths have the edge-Erd®s-Pósa property.

Bruhn, Heinlein and Joos [2] showed that long A-paths also have the vertex-Erd®s-Pósa
property (paths with both endvertices in a vertex set A and otherwise disjoint of A) and
asked whether the same remains true for the edge variant. We answer this question:

Theorem 2 Long A-paths have the edge-Erd®s-Pósa property.

From this results we can easily follow that also long S-paths have the property (for a
partition S = {A1, . . . , An} of a set A this is an A-path with the endvertices in two di�erent
partition sets).
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Theorem 3 Long S-paths have the edge-Erd®s-Pósa property.

The ordinary Erd®s-Pósa property is fairly well studied. The most general result is ar-
guably due to Robertson and Seymour on H-models [10], graphs that can be contracted to
some graph H. The set of H-models has the Erd®s-Pósa property if and only if H is planar,
also see [12] for a recent proof of this with an essentially best possible hitting set function.
In contrast, the edge-Erd®s-Pósa property is less well understood. In particular, no edge-
analogue of the result by Robertson and Seymour is possible. As in the vertex version, the
set of H-models does not have the edge-Erd®s-Pósa property for non-planar graphs [9]. But,
contrary to the vertex version, the same is true for large (and subcubic) trees and also large
ladders [4], which are both planar. Hence only one direction of that equivalence is still true
in the edge version.

There are not many results on the edge-Erd®s-Pósa property, besides some further small
results on H-models [1, 3, 8, 11], it is only known that A-B-paths, A-paths and S-paths have
the edge-Erd®s-Pósa property but any of these paths such that its length is congruent to some
x modulo some m do not have it [2].

For a comprehensive list of Erd®s-Pósa property results (vertex and edge version) see [2]
or [9]. In this paper we will use the standard notation of Diestel [5].

We want to note here that Montejano and Neumann-Lara already claimed that long A-
B-paths have the edge-Erd®s-Pósa property, but they did not include a proof and only stated
that it can be done in the same way as the vertex version, which we do not believe. At the
end of their proof for the vertex version they obtain a graph in which all A-B-paths are long
but this only works because they can put the �rst and last ` vertices of some paths into a
potential hitting set. In the edge version we can only remove the �rst and last ` edges and
then the construction might yield a graph in which we can use a shortcut from one of the
�rst ` vertices to one of the last ` giving us a short A-B-path.

2 Proof of the Main Result

The idea of the proof is to do an induction on the length of the paths. The induction start
` = 1 and also the case ` = 2 follow almost immediately from the edge version of Menger's
theorem. Now we �x some ` > 2 and we assume that A-B-paths of length at least ` have
the edge-Erd®s-Pósa property. From this we can follow the following theorems (and in that
order):

In a graph G with a vertex set A, an A-path is a path with both endvertices in A and
otherwise disjoint from A (length at least 1, single vertices of A are not considered as A-paths).

Theorem 4 A-paths of length at least `− 1 have the edge-Erd®s-Pósa property.

In A-B-paths we explicitly forbid vertices of A or B to be in the interior of the path. But
for our proof we also need to look at paths which are allowed to do just that. For such paths
we mark the set which can be used in the interior with a star. So an A∗-B-path is a path
which starts in A, ends in B, and such that vertices of A can be in its interior but not of
B. An A∗-B∗-path is a path which starts in A and ends in B and does not have any further
restrictions.

Lemma 5 If A and B are disjoint, then A∗-B-paths of length at least ` − 1 have the edge-
Erd®s-Pósa property.

With these two results we prove:

Lemma 6 A∗-B∗-paths of length at least `− 1 have the edge-Erd®s-Pósa property.

Lastly, we can deduce from this (and thus �nish the proof):
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Theorem 7 If A and B are disjoint, then A-B-paths of length at least `+ 1 have the edge-
Erd®s-Pósa property.

Also see Figure 1 for a more in-depth view of the dependencies.

A-B-paths of
at least length `

A-paths of
at least length `− 1

A∗-B-paths of
at least length `− 1

A∗-B∗-paths of
at least length `− 1

A-B-paths of
at least length `+ 1

Figure 1: In this way we can deduce that if A-B-paths of length at least ` have the edge-
Erd®s-Pósa property, then also A-B-paths of length at least `+ 1 have it.

3 Corollaries

Using the results of the previous section we can prove some further results. First of all we
can prove our main result with non-disjoint sets A and B.

Theorem 8 A-B-paths of length at least ` have the edge-Erd®s-Pósa property.

From the fact that A-paths of at least length ` have the edge-Erd®s-Pósa property we can
deduce some more results.

Corollary 9 A∗-paths of length at least ` have the edge-Erd®s-Pósa property.

A more general type of A-paths are S-paths. Let A be a set of vertices and S =
{A1, . . . , An} a partition of A, i.e. all Ai are pairwise disjoint and their union is A. An
S-path is a path that starts in some partition set Ai, ends in another set Aj and is otherwise
disjoint of A.

Theorem 10 S-paths of length at least ` have the edge-Erd®s-Pósa property.

Finally we can also show that long cycles have the edge-Erd®s-Pósa property. Note that
this has already been proven by Bruhn, Heinlein and Joos [4], but we have a much shorter
proof (although with a worse hitting set function).

Corollary 11 Cycles of length at least ` have the edge-Erd®s-Pósa property.
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Abstract

We provide an O(n logn) algorithm computing the linear maximum induced matching

width of an n-node tree and an optimal layout.

1 Background

The study of structural graph width parameters like tree-width, clique-width and rank-width
has been ongoing for a long time, and their algorithmic use has been steadily increasing [1, 2].
The maximum induced matching width, denoted MIM-width, and the linear variant LMIM-
width, are graph parameters having very strong modelling power introduced by Vatshelle
in 2012 [3]. The LMIM-width parameter asks for a linear layout of vertices such that the
bipartite graph induced by edges crossing any vertex cut has a maximum induced matching
of bounded size. Belmonte and Vatshelle [4] showed that interval graphs, bi-interval
graphs, convex graphs and permutation graphs, where clique-width can be proportional
to the square root of the number of vertices [5], all have LMIM-width 1 and an optimal layout
can be found in polynomial time.

Since many well-known classes of graphs have bounded MIM-width or LMIM-width, al-
gorithms that run in XP time in these parameters will yield polynomial-time algorithms on
several interesting graph classes at once. Such algorithms have been developed for many
problems: by Bui-Xuan et al [6] for the class of LCVS-VP - Locally Checkable Vertex Subset
and Vertex Partitioning - problems, by Jaffke et al for non-local problems like Feedback
Vertex Set [7, 8] and also for Generalized Distance Domination [9], by Golovach et
al [10] for output-polynomial Enumeration of Minimal Dominating sets, by Bergoug-
noux and Kanté [11] for several Connectivity problems and by Galby et al for Semitotal
Domination [12]. These results give a common explanation for many classical results in the
field of algorithms on special graph classes and extends them to the field of parameterized
complexity.

Note that very low MIM-width or LMIM-width still allows quite complex cuts compared
to similarly defined graph parameters. For example, carving-width 1 allows just a single edge,
maximum matching-width 1 a star graph, and rank-width 1 a complete bipartite graph. In
contrast, LMIM-width 1 allows any cut where the neighborhoods of the vertices in a color
class can be ordered linearly w.r.t. inclusion. In fact, it is an open problem whether the
class of graphs having LMIM-width 1 can be recognized in polynomial-time or if this is NP-
complete. Sæther et al [13] showed that computing the exact MIM-width and LMIM-width
of general graphs is W-hard and not in APX unless NP=ZPP, while Yamazaki [14] shows
that under the small set expansion hypothesis it is not in APX unless P=NP. The only
graph classes where we know an exact polynomial-time algorithm computing LMIM-width
are the above-mentioned classes interval, bi-interval, convex and permutation that
all have structured neighborhoods implying LMIM-width 1 [4]. Belmonte and Vatshelle also
gave polynomial-time algorithms showing that circular arc and circular permutation
graphs have LMIM-width at most 2, while Dilworth k and k-trapezoid have LMIM-width
at most k [4]. Recently, Fomin et al [15] showed that LMIM-width for the very general class
of H-graphs is bounded by 2|E(H)|, and that a layout can be found in polynomial time if
given an H-representation of the input graph. However, none of these results compute the
exact LMIM-width. On the negative side, Mengel [16] has shown that strongly chordal
split graphs, co-comparability graphs and circle graphs all can have MIM-width, and
LMIM-width, linear in the number of vertices.
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Just as LMIM-width can be seen as the linear variant of MIM-width, path-width can
be seen as the linear variant of tree-width. Linear variants of other well-known parameters
like clique-width and rank-width have also been studied. Arguably, the linear variant of
MIM-width commands a more noteworthy position, since in contrast to these other linear
parameters, for many well-known graph classes where the original parameter (MIM-width) is
bounded then also the linear variant (LMIM-width) is bounded.

In this paper we give an O(n log n) algorithm computing the LMIM-width of an n-node
tree. This is the first graph class of LMIM-width larger than 1 having a polynomial-time
algorithm computing LMIM-width and thus constitutes an important step towards a better
understanding of this parameter. The path-width of trees was first studied in the early 1990s
by Möhring [17], with Ellis et al [18] giving an O(n log n) algorithm computing an optimal
path-decomposition, and Skodinis [19] an O(n) algorithm. In 2013 Adler and Kanté [20] gave
linear-time algorithms computing the linear rank-width of trees and also the linear clique-
width of trees, by reduction to the path-width algorithm. Even though LMIM-width is very
different from path-width, the basic framework of our algorithm is similar to the path-width
algorithm in [18].

2 Main result

For a bipartite graph G we denote by MIM(G), or simply MIM if the graph is understood,
the size of its Maximum Induced Matching, the largest number of edges whose endpoints
induce a matching. Let σ be the linear order corresponding to the enumeration v1, . . . , vn of
the nodes of G, this will also be called a linear layout of G. For any index 1 ≤ i < n we
have a cut of σ that defines the bipartite graph on edges ”crossing the cut” i.e. edges with
one endpoint in {v1, . . . , vi} and the other endpoint in {vi+1, . . . , vn}. The maximum induced
matching of G under layout σ is denoted mim(σ,G), and is defined as the maximum, over all
cuts of σ, of the value attained by the MIM of the cut, i.e. of the bipartite graph defined by
the cut. The linear induced matching width – LMIM-width – of G is denoted lmw(G), and
is the minimum value of mim(σ,G) over all possible linear orderings σ of the vertices of G.

T1 T2 T3 T4 T5 T6 T8T7

x1 x2 x3 x4

v1,1 v2,1
v1,2

v1,3 v3,1 v3,2

u1,1,1
u2,1,1u1,1,2 u1,2,1

u3,1,1
u3,1,2

u3,2,1 u3,2,2

T1 T2 T3 T4 T5 T6 T8T7

x1 x2 x3 x4

v1,1 v2,1v1,2 v1,3 v3,1 v3,2

u1,1,1 u2,1,1u1,1,2 u1,2,1 u3,1,1 u3,1,2 u3,2,1 u3,2,2

Figure 1: A tree with a path P = (x1, x2, x3, x4), with nodes in N [N [P ]] featured, and below
it the order given by the Path Layout Lemma

We start by proving the Path Layout Lemma, see Figure 1.

Lemma 1 (Path Layout Lemma) Let T be a tree. If there exists a path P = (x1, . . . , xp)
in T such that every connected component of T\N [P ] has LMIM-width ≤ k then lmw(T ) ≤
k + 1. Moreover, given the layouts for the components we can in linear time compute the
layout for T .
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We then prove the Classification Theorem, see Figure 2.

Theorem 2 (Classification of LMIM-width of Trees) For a tree T and k ≥ 1 we have
lmw(T ) ≥ k + 1 if and only if there is a node v such that after rooting T in v, at least three
children of v themselves have at least one child whose rooted subtree has LMIM-width at least
k

vu1 u2

u3S1 S2

S3

Figure 2: The smallest tree with LMIM-width 2.

From this it follows that the LMIM-width of an n-node tree is no more than log n. Our
O(n log n) algorithm computing LMIM-width of a tree T picks an arbitrary root r and pro-
ceeds bottom-up on the rooted tree Tr. We show how to assign labels to the rooted subtrees
encountered in this process giving their LMIM-width. However, as with the algorithm com-
puting pathwidth of a tree, the label is sometimes complex, consisting of LMIM-width of a
sequence of subgraphs, of decreasing LMIM-width, that are not themselves full rooted sub-
trees. In particular, this happens if the subtree of Tr rooted in x has LMIM-width k and
contains what we call a k-critical node y (being a node with two children having children
whose rooted subtrees have LMIM-width k) that is a descendant of one of the children of x.
We give an 8-way case analysis, depending among other things on the placement of k-critical
nodes in the subtrees rooted at the children, providing a subroutine used to update the label
at a node given the labels at all children. Our bottom-up algorithm will make calls to this
subroutine in order to compute the complex labels and the LMIM-width. Finally, we use all
the computed labels to lay out the tree in an optimal manner.

Theorem 3 Given any tree T , lmw(T ) can be computed and an optimal layout can be found,
in O(n log n)-time.
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Extended Abstract

1 The edge-Ramsey property of graphs of girth g ≥ 4

A class K of �nite graphs has the edge-Ramsey property (is edge-Ramsey) if for every graph
G ∈ K there exists a graph H ∈ K such that for every 2-colouring of edges in H there exists
a monochromatic induced subgraph of H isomorphic to G (a copy of G in H).

In the 1970s, independently by Erd®s, Hajnal, Posa and by Deuber, Rödl (see [10] for refer-
ences and a simple proof), it was established that the class of all �nite graphs is edge-Ramsey.
This result was subsequently strengthened to several special classes of graphs including the
class of all triangle-free graphs [6, 8]. Nowadays, all these results can be seen as relatively
easy special cases of the Ne²et°il�Rödl theorem [9] which is a cornerstone of the structural
Ramsey theory.

It is however a long-standing open problem whether for every g ≥ 3 the class Gg of all
�nite graphs of girth at least g has the edge-Ramsey property (see e.g. [11, 7]). (Recall that
the girth of a graph is the length of the shortest cycle contained in it.) We show:

Theorem 1 The class Gg has the edge-Ramsey property for every 3 ≤ g ≤ 8.

For g = 3 and g = 4 this follows from the aforementioned results on graphs and triangle-free
graphs. A sketch of the proof of the edge-Ramsey property for graphs of girth at least �ve
is shown in [11, Theorem 7.2] along with remark �Note that �ve in Theorem 7.2 can be with
the same proof replaced by six. We have more complicated argument for seven; however the
present method does not allow us to go further.� There has been no progress on the problem
in the last three decades.

2 The A-Ramsey property of graphs of girth g ≥ 4

In addition to showing the edge-Ramsey property, we generalise the result for colouring special
g-closed subgraphs. To state these results precisely, let us �rst introduce some key notions of
the structural Ramsey theory, in particular the notion of an A-Ramsey class.

In the following, we will consider graphs as a special case of (model-theoretic) structures.
Let L be a language with relational symbols R ∈ L, each having its arity. An L-structure A
is a structure with vertex set A and relations RA ⊆ Ar for every symbol R ∈ L of arity r. If
the set A is �nite we call A a �nite structure. Given two L-structures A and B, a function
f : A→ B is an embedding f : A→ B if it is injective and for every R ∈ L of arity r it holds
that (v1, v2, . . . , vr) ∈ RA ⇐⇒ (f(v1), f(v2), . . . , f(vr)) ∈ RB.

For L-structures A and B, we denote by
(
B
A

)
the set of all (induced) substructures of B

which are isomorphic to A. Given a structure A, a class of structures C has the A-Ramsey
property (is A-Ramsey) if for every B ∈ C and for every positive integer k there exists a
structure C in C such that the following holds: For every partition

(
C
A

)
into k classes there

exists B̃ ∈
(
C
B

)
such that

(
B̃
A

)
belongs to one class of the partition. It is usual to shorten the

last part of the de�nition to C −→ (B)Ak . Class C is a Ramsey class if it is A-Ramsey for
every A ∈ C.

It is a well known fact that under mild assumptions, every Ramsey class consists of
linearly ordered structures [13]. In the following, we will consider graphs endowed with a
linear order on vertices. We see them as structures in a language consisting of a binary
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Ã1 Ã2

Figure 1: Ordered graphs of girth 5 are not Ramsey for colouring independent sets of size 4.

relation E representing the edges and a binary relation ≤ representing the order. Denote by−→G g the class of all orderings of �nite graphs of girth at least g. By the Ne²et°il�Rödl theorem
it follows:

Theorem 2 (Ne²et°il-Rödl [9]) The classes
−→G 3 and

−→G 4 are Ramsey classes.

It is not di�cult to see the following

Observation 3 The classes
−→G g are not Ramsey for g > 4.

Proof. A counter-example for g = 5 is depicted in Figure 1. Here, A is the independent
set on four vertices and B is the depicted structure containing two copies of A which one
can distinguish from each other by the (non-)existence of an edge connecting the midpoints
of the respective paths of length 2. Because graphs of girth 5 contain no 4-cycles, in every C
and every B̃ ∈

(
C
B

)
the situation will be the same and therefore this gives a colouring of

(
C
A

)

with no monochromatic copy of B. �
This example can be generalised to show that one can only hope to colour certain sub-

graphs:

De�nition 4 Let G be a graph. We say that its induced subgraph H is g-closed in G if for
every two vertices u 6= v ∈ G it holds that either uv is an edge of G or there is no path of
length at most b g−12 c connecting u and v whose internal vertices all lie in G \H.

For ordered graphs A and B, we denote by
(
B
A

)
g
the set of all (induced) g-closed sub-

structures of B which are isomorphic to A. Given a structure A, a class of structures C is
A-Ramsey for g-closed copies if for every B ∈ C and for every positive integer k there exists
a structure C ∈ C such that the following holds: For every partition

(
C
A

)
g
into k classes there

exists B̃ ∈
(
C
B

)
g
such that

(
B̃
A

)
g
belongs to one class of the partition. We will shorten the last

part of the de�nition to C
g−−→ (B)Ak . Class C is a Ramsey class for colouring g-closed copies

if it is A-Ramsey for colouring g-closed copies for every A ∈ C.
A star is graph with a central vertex c, leaf vertices connected by an edge to c and no

other edges or vertices (in other words, it is the complete bipartite graph where one bipartition
consists of a single central vertex c). In particular, a vertex and an edge are stars. We prove:

Theorem 5 Let 3 ≤ g ≤ 8 and let A be a disjoint union of stars endowed with an arbitrary

linear ordering of vertices. Then for every B ∈ −→G g there exists C ∈ −→G g such that C
g−−→

(B)A2 . In other words, the class
−→G g is A-Ramsey for g-closed copies.

3 Outline of the proofs

The main direction of attack is inspired by [11] where a connection between the hyperedge-
Ramsey property of partial Steiner systems and the edge-Ramsey property of bipartite graphs
of girth at least 5 is established. This is based on the following easy observation.
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Observation 6 Let G be a bipartite graph of girth at least 5 with parts P1 and P2 such that
all vertices from P1 have degree d. Consider the hypergraph M = (P2, {NG(v) : v ∈ P1})
on the vertex set P2 where hyperedges are neighbourhoods of vertices from P1. Then M is
a partial (d, 1)-Steiner system, that is, all hyperedges of M have size d and for every two
distinct hyperedges M1 6=M2 it holds that |M1 ∩M2| ≤ 1.

Moreover, if G has girth at least 7 then M contains no triangles (that is, distinct sets
M1 6=M2 6=M3 ∈M with pairwise non-empty intersections).

This makes it possible to apply the following Ramsey results:

Theorem 7 (Ne²et°il, Rödl [11]) The class of all (d, 1)-Steiner systems is hyperedge-Ramsey
for every d ≥ 2.

And the following, which is a direct consequence of the main result of [2] (see also [4]):

Theorem 8 (Evans, Hubi£ka, Ne²et°il [2]) The class of all triangle-free (d, 1)-Steiner
systems is hyperedge-Ramsey for every d ≥ 2.

With these ingredients one can show the following lemma using the proof outlined in [11].

Lemma 9 The class all �nite bipartite graph of girth g is edge-Ramsey for g ∈ {6, 8}.

Proof (sketch). Given a bipartite graph G of girth g, we �rst construct a bipartite graph
G′ of girth g with parts P ′1 and P ′2 and a linear order on P ′2, such that all vertices in P ′1 have
degree d and moreover every colouring of edges of G′ with 2 colours such that for every pair
of vertices v1, v2 ∈ P ′1 it holds that for every 1 ≤ i ≤ d the i-th edge containing v1 has the
same colour as i-th edge containing v2 (the order is determined by the order of P2) contains
a monochromatic copy of G. This is possible by an application of the pigeonhole principle.

Next we use Observation 6 to turn G′ into a (d, 1)-Steiner systemM. Applying Theorem 7
(for g = 6) or Theorem 8 (for g = 8), we construct a (d, 1)-Steiner system M′ such that
every 2d-colouring of hyperedges of M′ contains a monochromatic copy of M. Finally, we
construct a bipartite graph H of girth g based onM′. Every 2-colouring of edges of H gives
a 2d-colouring of the hyperedges of M′. A monochromatic copy of M then gives a copy of
G′ satisfying the property above which in turn yields a monochromatic copy of G. �

To show Theorem 1 it is then possible to adapt the Partite construction [12] with Lemma 9
playing the role of the partite lemma.

The proof of Theorem 2 requires a more re�ned approach inspired by the use of orientations
and model-theoretic structures with functions in [3] where Ramsey results are given for the
class of ordered directed graphs with out-degrees at most 2.

4 Concluding remarks and open problems

The notion of g-closed subgraphs seems to be the correct notion of subobjects in the context

of classes
−→G g. We believe that our results are not tight, however, the proof technique does

not seem to generalise. We strengthen the question about existence of edge-Ramsey graphs
of girth g ≥ 9 to:

Question 10 Is the class
−→G g Ramsey for colouring g-closed copies for every choice of g ≥ 3?

The connection to Steiner systems shows a somewhat surprising limitation of the current
techniques for showing that a given class is Ramsey. In particular, it provokes the following
two questions.

Question 11 Is the class of all �nite partial (d, 1)-Steiner systems omitting odd cycles of
length at most ` hyperedge-Ramsey for every ` > 3 and d ≥ 2?
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Question 12 Does the class of all �nite ordered partial (d, 1)-Steiner systems omitting odd
cycles of length at most ` have a precompact Ramsey expansion (in the sense of [13]) for
colouring strong subsystems (see [1]) for every ` > 3 and d ≥ 2?

There are two partial a�rmative answers to Question 12, one for graphs (that is, (2, 1)-Steiner
systems) in [5], the other for ` = 1 ([1]) and for ` = 3 (an easy consequence of the main result
of [2]). The general techniques in [5] can not be applied directly because an odd cycle in a
Steiner system may have a homomorphism to a hyperedge.

An a�rmative answer to Question 11 would immediately lead to a strengthening of The-
orem 1 to graphs of arbitrary girth. The results from the previous paragraph imply that the
answer to Question 11 is positive for ` = 1 and ` = 3.
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Extended Abstract

Let G be a graph. A partial function f : V (G) → V (G) with �nite domain is a partial
automorphism of G if it is an isomorphism of the subgraphs induced by G on the domain
and range of f . We say that a graph H is an EPPA-witness for G if it contains G as an
induced subgraph and every partial automorphism of G can be extended to an automorphism
of H. Note that these notions naturally extends to hypergraphs, or even more generally,
model-theoretic structures with relations and functions.

We say that a class C of �nite structures (e.g. graphs) has the extension property for
partial automorphisms (EPPA) if for every A ∈ C there is B ∈ C which is an EPPA-witness
for A.

EPPA has been studied for almost three decades, but despite being a purely combinatorial
property, it has been mostly considered in the context of model theory and in�nite permuta-
tion groups (where it originally comes from and where it has many applications). We believe
that it deserves more combinatorial attention and in aid of it, we �rst brie�y present the
status quo and then state several open problems which should have combinatorial solutions.

1 Introduction

EPPA is sometimes also called the Hrushovski property, because in 1992 Hrushovski [6] proved
EPPA for the class of all �nite graphs. Hrushovski's motivation came from the study of in�nite
topological groups (his result was used by Hodges, Hodkinson, Lascar and Shelah to prove
the small index property for the countable random graph [4]) and his proof was also group
theoretical. However, in 2000, Herwig and Lascar [3] gave a simple combinatorial proof by
embedding graphs into the complement of the Kneser graph:

Proof. [Sketch of proof of Hrushovski's theorem by Herwig and Lascar] Let G be a �nite
graph. First, for simplicity, assume that G is k-regular for some k. De�ne H to be the
complement of the Kneser graph on vertex set

(
E(G)

k

)
, that is, the vertices of H are all k-

subsets of E(G) and XY ∈ E(H) if and only if X ∩ Y 6= ∅. Note that every permutation of
E(G) induces an automorphism of H.

Next we de�ne an embedding ψ of G into H putting ψ(v) = {e ∈ E(G) : v ∈ e}, that is,
we send every vertex of G to the set of edges incident with it. It is straightforward to check
that the graph induced by H on ψ(V (G)) is isomorphic to G.

Finally we show that H extends all partial automorphisms of the graph induced by it on
ψ(V (G)). Take one such partial automorphism ϕ. We can treat it like an automorphism of
G which thereby gives a partial permutation of E(G). It su�ces to extend this permutation
to a permutation π : E(G)→ E(G) in such a way that for every v ∈ V (G) there is v′ ∈ V (G)
such that π(ψ(v)) = ψ(v′), where π(ψ(v)) = {π(e) : e ∈ ψ(v)}. This is possible because of
the k-regularity assumption. Now it is straightforward to verify that the automorphism of H
induced by π extends ϕ and hence we are done.

If G is not k-regular, one can add �half-edges� to every vertex to get a regular �graph�. �
Let us remark that using a similar construction one can prove EPPA for classes of hyper-

graphs, or even more generally, relational structures in a �nite language.
Since Hrushovski's result, EPPA has been shown for many more classes of structures,

such as the class of all �nite metric spaces [13] (see also [7] for a short combinatorial proof),
classes of structures omitting �nitely many homomorphisms [3, 8] or the class of all �nite
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two-graphs [1]. EPPA for metric spaces is essentially equivalent to a variant of EPPA for
graphs with distance-preserving maps, while EPPA for two-graphs is equivalent to a variant
of EPPA for graphs with the so-called switching isomorphisms.

Most of the results on EPPA use�directly or indirectly�some deep results from group
theory on the pro�nite topology on free groups. Only recently, the authors together with
other co-authors developed the ideas of Hodkinson and Otto [5] into the method of valuation
functions, a purely combinatorial method for proving EPPA (see Section 3).

2 Connections to model theory

We say that a structure is homogeneous if it is an EPPA-witness for itself. The study of
homogeneous structures was initiated by Fraïssé in the 1950s and has been an active area
ever since. In particular, there are several major classi�cation results. For example, we know
that the �nite homogeneous graphs are the disjoint unions of cliques of the same size and
their complements, the 5-cycle and the line graph of K3,3. We also know that the countably
in�nite homogeneous graphs are the disjoint unions of cliques of the same size (possibly
in�nite) and their complements, the countable random graph, its Kn-free variants and their
complements [12]. In other words, homogeneity is a very strong property and there are only
a few graph examples.

The following easy observation links EPPA with homogeneous structures.

Observation 1 Let C be a class of �nite structures which has EPPA. We inductively de�ne
a sequence B0 ⊆ B1 ⊆ · · · of structures from C such that B0 is an arbitrary structure from
C and Bi is an EPPA-witness for Bi−1 (it exists by the assumption that C has EPPA). It is
easy to see that F =

⋃∞
i=0 Bi is a homogeneous structure.

If C is hereditary (that is, closed under taking substructures), has only countably many
members up to isomorphism and has the joint embedding property (that is, for every A1 and
A2 from C there is B ∈ C which contains both A1 and A2 as substructures), one can alter the
construction a bit and guarantee that C will be precisely the class of all �nite substructures
of F. Since all these three conditions are very natural, this means that candidate classes for
EPPA are restricted by the classi�cation programme of homogeneous structures.

Remark 2 Let us remark that this construction also proves that EPPA for the class of all
�nite substructures of a countable homogeneous structure is equivalent to the fact that the
automorphism group of the homogeneous structure can be written as the closure of a chain of
�nite compact subgroups (in the so-called pointwise-convergence topology).

3 The method of valuation functions

In this section, we give another proof of Hrushovski's theorem using the method of valuation
functions, which was �rst used by Hodkinson and Otto [5] and recently developed by the
authors and their co-authors [2, 1, 7, 8, 11, 10].

Proof. We �rst de�ne graphs Hn for every n ≥ 1. The vertices of Hn are all pairs (i, f),
where i ∈ [n] and f is a function [n]→ {0, 1}. We call i the projection and f the valuation of
the given vertex and denote π(i, f) = i and χ(i, f) = f . Vertices u, v ∈ V (Hn) form an edge
of Hn if and only if χ(u)(π(v)) 6= χ(v)(π(u)).

Note that every permutation of [n] induces an automorphism of Hn (by permuting the
projections and valuations accordingly). Also note that for every i, j ∈ [n] the following
function (called a �ip) is also an automorphism of Hn: Fi,j(k, f) = (k, f ′), where

f ′(`) =

{
1− f(`) if {i, j} = {k, `},
f(`) otherwise.
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These graphs Hn will serve as our EPPA-witnesses. Let G be a �nite graph and assume,
without loss of generality, that V (G) = [n] for some integer n. Let M(G) be the asymmetric
adjacency matrix of G, that is,M(G)ij = 1 if i < j and ij ∈ E(G) andM(G)ij = 0 otherwise.
De�ne function ψ : G→ Hn as ψ(v) = (v,M(G)v∗), where by M(G)v∗ we mean the v-th row
of M(G) understood as a function [n] → {0, 1}, and note that ψ is an embedding of G into
Hn.

Now it remains to show that Hn extends partial automorphisms of ψ(G). Let ϕ be such a
partial automorphism. It induces a partial permutation of [n], which we extend arbitrarily to
a permutation ϕ̂ of [n]. Next we de�ne a set F ⊆ [n]2 by putting (i, j) ∈ F if and only if i < j
and for at least one of i, j�without loss of generality let it be i�it holds that (i,M(G)i∗) is
in the domain of ϕ and moreover

χ(ψ(i,M(G)i∗))(ϕ̂(j)) 6= χ(i,M(G)i∗)(j),

that is, if ϕ and ϕ̂ change the mutual valuations of the pair. Note that if both (i,M(G)i∗)
and (j,M(G)j∗) are in the domain of ϕ, the outcome is the same for both of them, because
ϕ is a partial automorphism of ψ(G).

Finally observe that the composition of all Fi,j 's for every (i, j) ∈ F and the automorphism
of Hn induced by ϕ̂ is an automorphism of Hn which extends ϕ. �

This idea can again be generalised for arbitrary relational structures (where the valuation
functions can have higher arities). However, it generalises even further. Note that in the
construction of Hn, we have combined an existing EPPA object (the projection, in this case
it is just the set [n] with no structure which is an EPPA-witness for itself) with a suitable
notion of valuations and �ips to get more complicated EPPA-witnesses. In this way, one can,
in a purely combinatorial way using no deep group theory, prove EPPA for classes of Kn-free
graphs [5], for classes with unary functions [2], for two-graphs [1], for classes of structures
with relations and unary functions omitting �nitely many homomorphisms [8] and for other
classes of structures.

Remark 3 Another reason why the method of valuation functions is appealing to us is that
it behaves similarly as proof techniques in the structural Ramsey theory. [9]

4 Open problems

We would like to conclude with several open problems of combinatorial �avour.

Problem 4 Determine the correct growth-rates for the number of vertices of EPPA-witnesses.

For example, the valuation-function method gives EPPA-witnesses on n2n vertices for graphs
on n vertices, while the Herwig�Lascar proof gives O((kn)k) for k-regular graphs. There are
no non-trivial lower bounds known to the authors.

The results of Section 2 can be re�ned. If a class C has the joint embedding property and
D-EPPA for a structureD (that is, a variant of EPPA extending those partial automorphisms
whose domain is isomorphic toD), then C has theD-amalgamation property, that is, for every
two structures B1,B2 ∈ C, both containing D as a substructure, there is E ∈ C containing
both B1 and B2 as substructures such that they overlap by D. This gives further restrictions
on which classes can have which variants of EPPA.

Problem 5 Find some non-trivial examples of classes which have a weaker variant of EPPA
(e.g., one only wants to extend partial automorphisms which satisfy certain properties).

As a particular instance of this problem, we ask the following questions:

Question 6 Let C be the class of all combinatorial embeddings of all planar graphs (that
is, we know the circular orientation of all edges around each vertex, and hence we know in
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particular the faces). Is it true that for every A ∈ C there is B ∈ C containing A as a
sub-embedding such that every partial automorphism f : A→ A whose domain is a face of A
extends to an automorphism of B?

Question 7 What is the answer to a variant of Question 6, where we consider the class of
all combinatorial embedding of all planar triangulations?

The following two questions are important open problems in the area, maybe waiting for
an ingenious combinatorial insight:

Question 8 Does the class of all �nite tournaments have EPPA?

Question 9 Does the class of all �nite partial Steiner systems have EPPA? (Here, a partial
Steiner system is a 3-uniform hypergraph such that every two vertices are together in at most
one hyperedge.)
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Extended Abstract

The notion of homomorphisms of 2-edge-colored graphs has already been studied as a
way of extending classical results in graph coloring such as Hadwiger’s conjecture. Guenin
[5] introduced the notion of switching homomorphisms for its relation with a well-known
conjecture of Seymour. In 2012, this notion has been further developed by Naserasr et al.
[6] as it captures a number of well-known conjectures that can be reformulated using the
definition of switching homomorphisms. In this extended abstract, we study homomorphisms
of 2-edge colored graphs and switching homomorphisms of bounded degree graphs.

A 2-edge-colored graph G = (V,E, s) is a simple graph (V,E) with two kinds of edges:
positive and negative edges. The signature s : E(G) → {−1,+1} assigns to each edge its
sign. In the sequel, Dk (resp. Dck) denotes the class of 2-edge-colored graphs (resp. connected
2-edge-colored graphs) with maximum degree k.

Given two 2-edge-colored graphs G and H, the mapping ϕ : V (G) → V (H) is a homo-
morphism if ϕ maps every edge of G to an edge of H with the same sign. This can be seen
as coloring the graph G by using the vertices of H as colors. The target graph H gives us
the rules that this coloring must obey. If vertices 1 and 2 in H are connected with a pos-
itive (resp. negative) edge, then every pair of adjacent vertices in G colored with 1 and 2
must be connected with a positive (resp. negative) edge. The chromatic number χ2(G) of a
2-edge-colored graph G is the order of a smallest 2-edge-colored graph H such that G admits
a homomorphism to H. The chromatic number χ2(C) of a class of 2-edge-colored graphs C
is the maximum of the chromatic numbers of the graphs in the class. This number can be
infinite.

2-edge-colored graphs are, in some sense, similar to oriented graphs since a pair of vertices
can be adjacent in two different ways in both kinds of graphs: with a positive or a negative
edge in the case of 2-edge-colored graphs, with a toward or a backward arc in the oriented
case.

The notion of homomorphism of oriented graphs has been introduced by Courcell [3] in
1994 and has been widely studied since then. Due to the similarity above-mentioned, we try
to adapt techniques used to study the homomorphisms of oriented graphs of bounded degree
to 2-edge-colored graphs of bounded degree. We also study switching homomorphisms of
2-edge-colored graphs in order to obtain results on signed graphs.

Switching a vertex v of a 2-edge-colored graph corresponds to reversing the signs of all
edges incident to v.

Two 2-edge-colored graphs G and G′ are switching equivalent if it is possible to turn G
into G′ after some number of switches. We call the classes created by this equivalence relation
switching classes (note that switching classes are equivalent to the notion of signed graphs).

Given two 2-edge-colored graphs G and H, the mapping ϕ : V (G)→ V (H) is a switching
homomorphism if there is a graph G′ switching equivalent to G such that ϕ maps every edge
of G′ to an edge of H with the same sign. The switching chromatic number χs(G) of a
2-edge-colored graph G is the order of a smallest 2-edge-colored graph H such that G admits
a switching homomorphism to H.

Table 1 summarizes results on the chromatic number and switching chromatic number of
the classes of (connected) 2-edge-colored graphs of bounded degree.

The first two lines of Table 1 are more or less folklore. Let us explain in the following
the difference that exists between the connected case and the non-connected case for the
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χ2(Dk) χ2(Dck) χs(Dk) χs(Dck)

k = 1 χ2(Dk) = 3 χ2(Dck) = 2 χs(Dk) = χs(Dck) = 2

k = 2 χ2(Dk) = 6 χ2(Dck) = 5 χs(Dk) = χs(Dck) = 4

k = 3 8 ≤ χ2(Dck) ≤ χ2(Dk) ≤ 11 6 ≤ χs(Dk) ≤ 7 [1] χs(Dck) = 6 [1]

k = 4 12 ≤ χ2(Dck) ≤ χ2(Dk) ≤ 31 10 ≤ χs(Dck) ≤ χs(Dk) ≤ 16

k ≥ 5 2
k
2 ≤ χ2(Dck) ≤ χ2(Dk) ≤ 2k+1(k − 1)2 [4] χs(Dck) ≤ χs(Dk) ≤ 2k+1(k − 1)2 [4]

Table 1: Results on the chromatic number and switching chromatic number of the classes of
(connected) 2-edge-colored graphs of bounded degree.

chromatic number of 2-edge-colored graphs with maximum degree 1 or 2. An edge of a 2-
edge-colored graph has chromatic number 2 and thus χ2(Dc1) = 2; however, a 2-edge-colored
graph with two non-adjacent edges, one positive and one negative, has chromatic number 3
(the target graph needs a positive and a negative edge, hence at least three vertices) and thus
χ2(D1) = 3. We therefore have a difference between the chromatic numbers of connected
and non-connected 2-edge-colored graphs with maximum degree 1. This difference does not
exist for switching homomorphisms since a negative edge can be changed into a positive one
after a switch. This difference (and lack thereof for switching homomorphisms) appears also
in graphs with maximum degree 2. We have χ2(D2) ≥ 6 since there is no 2-edge-colored
graph on 5 vertices that can color all the four graphs depicted in Figure 1. However, every
connected 2-edge-colored graph with maximum degree 2 admits a homomorphism to one of
the two graphs on 5 vertices depicted in Figure 2 and thus χ2(Dc2) ≤ 5. In order to color
any graph of D2, we need a target graph that contains both graphs depicted in Figure 2 as
subgraphs. This is possible with 6 vertices so χ2(D2) = 6. We do not know yet if this is also
the case for graphs with maximum degree at least 3.

Figure 1: Four examples of 2-edge-colored graphs with chromatic number 5.

Figure 2: Target graphs for connected 2-edge-colored graphs of maximum degree 2.

The last three lines of Table 1 are dedicated to graphs with maximum degree at least 3.
Our main results are the following:

Theorem 1 We have:

• 8 ≤ χ2(D3) ≤ 11,

• 12 ≤ χ2(D4) ≤ 31,

• 10 ≤ χs(D4) ≤ 16.
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In order to find an upper bound for a class of graphs, we need to find a target graph that
can color every graph in the class. In the case of oriented homomorphisms, oriented graphs
that are antiautomorphic, Kn-transitive for some n, or that have Property Pn,k for some n
and k are good candidates. We analogously define these properties in term of 2-edge-colored
graphs.

A 2-edge-colored graph (V,E, s) is said to be antiautomorphic if it is isomorphic to
(V,E,−s).

A 2-edge-colored graph G = (V,E, s) is said to be Kn-transitive if for every pair of cliques
{u1, u2, . . . , un} and {v1, v2, . . . , vn} in G such that for all i 6= j, s(uiuj) = s(vivj) there exists
an automorphism that maps ui to vi for all i. For n = 1, 2, or 3, we say that the graph is
vertex, edge, or triangle-transitive, respectively.

A 2-edge-colored graph G has Property Pk,n if for every sequence of k distinct vertices
(v1, v2, . . . , vk) that induces a clique in G and for every sign vector (α1, α2, ..., αk) ∈ {−1,+1}k
there exist at least n distinct vertices {u1, u2, ..., un} such that s(viuj) = αi for 1 ≤ i ≤ k
and 1 ≤ j ≤ n.

Given an integer q ≡ 1 (mod 4), we consider the family of complete signed Paley graphs
SPq built from the field of order q which has the above-mentioned properties. The vertices of
SPq are the elements of the field of order q and s(uv) = +1 if u−v is a square and s(uv) = −1
otherwise.

Lemma 2 ([7]) Graph SPq is vertex-transitive, edge-transitive, antiautomorphic, and has
properties P1, q−1

2
and P2, q−5

4
.

Let us consider the following operation. Given a 2-edge-colored graph G, we create the
antitwinned graph of G denoted by ρ(G) as follows. Let G+1, G−1 be two copies of G. The
vertex corresponding to v ∈ V (G) in Gi is denoted by vi, V (ρ(G)) = V (G+) ∪ V (G−),
E(ρ(G)) = {uivj : uv ∈ E(G), i, j ∈ {−1,+1}} and sρ(G)(uivj) = i× j × sG(u, v).

Lemma 3 ([2]) Let G and H be two 2-edge-colored graphs. The graph G admits a homo-
morphism to ρ(H) if and only if it admits a switching homomorphism to H.

In other words, if a 2-edge-colored graph admits a homomorphism to an antitwinned target
graph on n vertices, then it also admits a switching homomorphism to a target graph on n

2
vertices. The family ρ(SPq) also are interesting target graphs (especially for bounding the
switching chromatic number since they are antitwinned).

Lemma 4 ([7]) The graph ρ(SPq) is vertex-transitive, antiautomorphic, and has properties
P1,q−1, P2, q−3

2
, and P3,max( q−9

4 ,0).

Let SP+
q be SPq with an additional vertex that is connected to every other vertex with a

positive edge. The Tromp-Paley graph TR(SPq) corresponds to ρ(SP+
q ). This construction

improves the properties of ρ(SPq) at the cost of having two more vertices. Since Tromp-Paley
graphs are antitwinned, they are interesting for bounding the switching chromatic number.

Lemma 5 ([7]) TR(SPq) is vertex-transitive, edge-transitive, antiautomorphic, and has prop-
erties P1,q, P2, q−1

2
, and P3, q−5

4
.

Bensmail et al. [1] recently proved that every 2-edge-colored graph with maximum degree 3
except the all positive and all negative K4 admits a homomorphism to TR(SP5), hence
χ2(Dc3) ≤ 12, and χs(Dc3) ≤ 6 by Lemma 3. In the non-connected case, we can easily get
χ2(D3) ≤ 14 and thus χs(D3) ≤ 7 by Lemma 3 (it is possible to create an all positive K4 and
an all negative K4 in TR(SP5) by adding two vertices). Their proof uses a computer to show
that a minimal counter-example cannot contain some configurations and then concludes by
using the properties of TR(SP5). Theorem 1 improves the upper bound of 14 to 11.

Let us give a sketch of proof of the first result of Theorem 1, namely χ2(D3) ≤ 11.
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2x 2x + 1 2x + 2

Figure 3: The graph SP9, non-edges
are negative edges

Consider the graph SP ∗9 obtained from SP9 by
adding two new vertices 0′ and 1′ as follows. Take the
two vertices 0 and 1 of SP9 (note that s(01) = +1),
and link 0′ and 1′ to the vertices of SP9 in the same
way as 0 and 1 are, respectively; add an edge 0′1′

with s(0′1′) = −1; finally we add edges 00′ and 11′

with s(00′) = −1 and s(11′) = +1. We will prove
that every graph from D3 admits a homomorphism to
SP ∗9 .

We first show that every connected 2-degenerate
2-edge-colored graph with maximum degree 3 admits
a homomorphism to SP9 by using its structural prop-
erties given by Lemma 2 (a unique exception exists
and is separately treated).

Let G be a connected 3-regular 2-edge-colored graph. If G is all positive, then we color
it using an all positive K4 that SP ∗9 contains as a subgraph. Assume now that G is not all
positive. Let uv be a negative edge of G. We remove uv from G to create a new graph G′.
Graph G′ is 2-degenerate so it admits a homomorphism ϕ′ to SP9. If s(ϕ′(u)ϕ′(v)) = −1,
then ϕ′ is also a homomorphism from G to SP9.

If s(ϕ′(u)ϕ′(v)) = +1, then by edge-transitivity of SP9 we can recolor the vertices of G′
such that ϕ′(u) = 0 and ϕ′(v) = 1. We can then extend ϕ′ to a homomorphism ϕ of G to
SP ∗9 by recoloring u and v such that ϕ(u) = 0′ and ϕ(v) = 1′ since s(0′1′) = −1.

Finally, if ϕ′(u) = ϕ′(v), then by vertex-transitivity of SP9 we can recolor the vertices of
G′ such that ϕ′(u) = ϕ′(v) = 0. We can then extend ϕ′ to a homomorphism ϕ of G to SP ∗9
by recoloring v such that ϕ(v) = 0′ since s(00′) = −1.

We have proven that every graph in Dc3 admits a homomorphism to SP ∗9 which means
that SP ∗9 is universal for D3. This concludes the proof.

To prove the two other upper bounds of Theorem 1, we use the same method on target
graphs SP29 and TR(SP13).
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Extended Abstract

All graphs in this paper are �nite, simple undirected graphs. Let G be a graph and σ :
E(G) → {−1,+1} be a mapping. The pair (G, σ) is called a signed graph, σ is called the
signature of the graph, and G the underlying graph. If e is an edge of G, σ(e) is called the
sign of e. For convenience, when there is no ambiguities, we only write G to denote the signed
graph. Let (G, σ) be a signed graph, and let v be a vertex of G. Switching the vertex v in G
consists in switching the sign of every edge incident to v.

Má£ajová, Raspaud and �koviera [1] de�ned a k-signed coloring of a signed graph G as a
mapping:

c : V (G)→ {−k/2, . . . ,−1, 1, . . . , k/2} if k ≡ 0 (mod 2), or

c : V (G)→ {−(k − 1)/2, . . . ,−1, 0, 1, . . . , (k − 1)/2} otherwise,
s.t. ∀uv ∈ E(G), c(u) 6= σ(uv) ·c(v). The signed chromatic number of a graph χ(G) is de�ned
in a natural way, χ(G) = min{k: G has a k-signed coloring}.

This de�nition is compatible with the switch operation. In order to preserve a k-signed
coloring c of a graph G when switching a vertex v of G, it su�ces to switch the sign of the
color c(v).

Má£ajová, Raspaud and �koviera conjectured that the Four Color Theorem holds for the
signed planar graphs as well :

Conjecture 1 [1] Let G be a simple signed planar graph. Then χ(G) ≤ 4.

We prove here that Conjecture 1 does not hold.

Before introducing a counterexample to Conjecture 1, we translate the question of vertex-
coloring of a signed planar graph to a question of edge-labeling of its dual. We extend this
way the reduction from 4-coloring of a triangulation to 3-edge-coloring of the dual used in
the proof of the four-color theorem (see [2]).

Let G be a 3-connected signed planar graph, and let f be a face of G. We call the face
f positive (negative) if the facial cycle of f contains an even (odd, respectively) number of
negative edges.

Let G∗ be the dual graph of G. We call the vertices of G∗ corresponding to the positive
faces of G positive, and the vertices corresponding to the negative face of G negative.

Observe that in a signed planar graph G there is always an even number of negative faces,
and that the set of negative faces is invariant with respect to switching, so signature of the
vertices of the dual graph G∗ is the same for every graph G belonging to a same switch
equivalence class.

Let H be a 3-connected planar graph and let c be a {0, a, b}-edge-labeling of H. We
denote dx(v) the number of edges incident to v labelled x for v ∈ V (H) and x ∈ {0, a, b}.

De�nition 2 Let H be a 3-connected planar graph with an even number of negative vertices
and let c be a {0, a, b}-edge-labeling of H. The labeling c is a weak signed edge-labeling of H
if

(i) d0(v) ≡ dH(v) (mod 2), and

(ii.a) da(v) ≡ db(v) ≡ dH(v) (mod 2) if v is a positive vertex, or

(ii.b) da(v) ≡ db(v) ≡ dH(v) + 1 (mod 2) if v is a negative vertex.
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In particular, if H is a cubic graph with an even number of negative vertices (H corre-
sponds to the dual of a signed triangulation), then a weak signed edge-labeling of H is a
{0, a, b}-edge-labeling of H such that

• if v is positive, then it is incident to one edge of each label from {0, a, b},
• if v is negative, then it is incident to one edge labelled 0, and the two other edges have
the same label c ∈ {0, a, b}.

Conjecture 3 Let H be a 3-connected planar graph with an even number of negative vertices.
Then there exists a weak signed edge-labeling of H.

Theorem 4 Conjectures 1 and 3 are equivalent.

Proof. The principle of the reduction is the same as in the proof of 4CT [2]. If G is a signed
graph, given a 4-signed coloring c of G, a labeling ϕ∗ of G∗ is constructed such that if e∗

is an edge of G∗ corresponding to an edge e = uv of G, the label ϕ∗(e∗) corresponds to the
involutive permutation ψ of the set of colors {1, 2,−1,−2} such that ψ(c(u)) = c(v). More
precisely, the labeling is de�ned by the following formula:

ϕ∗(e∗) =





0 if c(u) = −σ(uv) · c(v),
a if σ(uv) · c(u) · c(v) = 2,
b if σ(uv) · c(u) · c(v) = −2.

(1)

The fact that c is a signed-coloring of G guarantees that (i), (ii.a), and (ii.b) hold.
Conversely, given a weak-labeling ϕ∗ of G∗, let T be a spanning tree of G rooted at r, and

let c(r) = 1. For each vertex u of G, with father v in T , and uv = e, let

c(u) =





σ(e) · (σ(c(v)) · 3− c(v)) if ϕ∗(e∗) = a,
−σ(e) · (σ(c(v)) · 3− c(v)) if ϕ∗(e∗) = b,
−σ(e) · ϕ(v) if ϕ∗(e∗) = 0.

(2)

It is not di�cult to check that the coloring c de�ned this way is indeed a signed-coloring
of G. �

De�nition 5 Let H be a 3-connected planar graph with an even number of negative vertices.
A {0, a, b}-edge-labeling c of H is a strong signed edge-labeling if

(i) c is a weak signed edge-labeling of H, and

(ii) d0(v) < dH(v) for every odd-degree vertex v of H.

Observe that d0(v) = dH(v) is possible only if v is a negative vertex of odd degree.

Conjecture 6 Let H be a 3-connected planar graph with an even number of negative vertices.
Then there exists a strong signed edge-labeling of H.

Theorem 7 Conjectures 3 and 6 are equivalent.

Proof. Trivially, Conjecture 6 implies Conjecture 3.
Conversely, assume Conjecture 3. We de�ne Wk as the graph obtained from a cycle of

length 2k with every other vertex negative by adding a pending edge to each positive vertex
of the cycle, and by adding a positive vertex adjacent to each negative vertex of the cycle (see
Figure 1 for illustration). Let H ′ be the graph obtained from H by replacing every negative
odd vertex v by Wd(v).

In order to prove that any weak labeling of H ′ can be reduced to a strong labeling of H,
it su�ces to observe that for a weak labeling of H ′ and for every copy of the gadget Wk, the
outgoing edges of Wk cannot all be labeled 0. �
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Figure 1: An example of a gadget used to replace an odd negative vertex (here k = 3).

Corollary 8 Let H be a cubic 3-connected planar graph with an even number of negative
vertices. H has a strong signed edge-labeling if and only if H has a 2-factor F such that every
cycle of F has an even number of positive vertices.

If H admits such a 2-factor F , we call F a consistent 2-factor.

Lemma 9 Let H be a cubic 3-connected planar graph with an even number of negative ver-
tices, containing a Tutte's fragment T0 attached by the edges e1, e2, e3, as depicted in Figure
2. Then every consistent 2-factor of H contains the edge e1.

Proof. Let F be a consistent 2-factor of H that does not contain e1. Then the edges e2, e3,
e4, e5, e9, e14, e15, e17 and e21 are in F unless there is a short cycle with an odd number of
positive vertices in F . Further detailed case analysis shows that there is always a cycle in F
with an odd number of positive vertices, a contradiction. �

e1

e2 e3

e4 e5
e6

e7

e8

e9 e10e11
e12

e13

e14

e15

e16

e17

e18

e19
e20

e21

e22

e23 e24

Figure 2: The Tutte's fragment.

Theorem 10 There exists a set of twelve vertices of the Tutte's graph T to be chosen negative
such that T does not have a consistent 2-factor.

Proof. Let the negative vertices of T be chosen as in Figure 3. Assume that H has a consistent
2-factor F .

The graph T can be viewed as a K4 where three of the four vertices were replaced by the
Tutte's fragment. By Lemma 9, all the three edges incident to the central vertex belong to
F , a contradiction. �

Corollary 11 Conjecture 1 is false.

To �nd a counterexample, it su�ces to consider the Tutte's graph T with a choice of
negative vertices as depicted in Figure 3 (left) and replace every negative vertex by the graph
W3 depicted in Figure 1, and then take the dual. This gives a signed triangulation on 61
vertices (see Figure 3 (right)).

We do not claim that the counterexample to Conjecture 1 described above is minimal ;
�nding a smallest one is still an open question.

However, if a graph is hamiltonian, then it has a consistent 2-factor (one of its hamiltonian
cycle); therefore, a minimum counterexample to Conjecture 6 can be easily deduced from a
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Figure 3: The Tutte's graph with a choice of negative vertex such that there is no consistent
2-factor (left); the corresponding signed triangulation, with negative edges denoted by the
dashed red lines (right).

minimum non-hamiltonian cubic 3-connected planar graph (see [3]): Such a graph (see Figure
4 ) is constructed from a pentagonal prism with two negative vertices, and where two vertices
are replaced by a Tutte's fragment (the triangles in Figure 4, with e1 attached to the vertex
of the inner cycle) with the same choice of negative vertices as in Figure 2. This graph has
38 vertices; the corresponding planar triangulation obtained by replacing a subset of negative
vertices by gadgets has 39 vertices, see Figure 4, right.

TT

Figure 4: A minimum non-hamiltonian cubic 3-conneted planar graph with a choice of neg-
ative vertices such that there is no consistent 2-factor (left); the smallest counterexample to
Conjecture 1 we are aware of so far (right).
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Extended Abstract

Introdcution. By a topological map we mean a 2-cell decomposition of a closed compact
surface, i.e., an embedding of a graph into a surface such that every face is homeomorphic to
an open disc. An automorphism of a map is a permutation of the vertices which preserves the
vertex-edge-face incidences. In this paper, we study symmetries of maps, which are captured
by their automorphism groups. Topologically, we can think about symmetries of maps as
symmetries of the underlying surface. For example, if the underlying surface is orientable,
then every map automorphism induces an automorphism of the surface, i.e., a conformal
homeomorphism of the surface into itself.

To every map there is a corresponding action of a discrete group on its underlying sur-
face. Moreover, every finite group appears as a discrete group of automorphisms of a closed
compact surface. Conversely, every finite group of automorphisms of a surface is a group of
automorphisms of some map. Therefore, studying automorphisms groups of maps is equiva-
lent to studying finite groups of automorphisms of surfaces. This motivates the study of the
automorphism groups of maps from the computational point of view. Our main results reads
as follows.

Theorem 1 For a map M on a surface of genus g, generators of the automorphism group
of M can be found in time f(g)‖M‖, where f(g) is some computable function and ‖M‖ is
the size of the map.

This has been investigated for a long time. Whitney’s theorem [17] states that 3-connected
planar graphs have (combinatorially) unique embeddings in the sphere. A consequence is that
the isomorphism problem for 3-connected planar graphs is equivalent to the isomorphism prob-
lem of spherical maps. Hopcroft andWong [5] solved the isomorphism problem for 3-connected
planar graphs in linear time and a part of our approach is based on their algorithm. They
show that every 3-connected spherical map must have an applicable isomorphism-preserving
reduction, or it is one of irreducible maps, for which they solve the problem by a special
algorithm.

Automorphism groups of 3-connected planar graphs are well-understood, they are exactly
the spherical groups, i.e., finite subgroups of the group of 3×3 orthogonal matrices. However,
it is not obvious how to modify the algorithm of Hopcroft and Wong [5] to compute the
generators of the automorphism group. In fact, Colbourn and Booth [3] posed this as an
open problem. Theorem 1 solves this in much greater generality and our approach provides
also several new insights into the algorithm of Hopcroft and Wong [5].

Another motivation stems from the study of the graph isomorphism problem, which is one
of the most fundamental problems in theoretical computer science and discrete mathemat-
ics. Many algebraic, combinatorial, and topological structures can be encoded by (possibly
infinite) graphs, while preserving the automorphism group [13]. The graph isomorphism prob-
lem is therefore of a special importance. Also, in complexity theory, it is the prime candidate
problem to be between between P and NP-complete problems. If the graph isomorphism was
NP-complete, then would the polynomial-time hierarchy collapse to its second level [14]. This
is considered to be an evidence for the contrary. The problem is polynomial-time equivalent
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to the problem of computing the generators of the automorphism group [10]. Currently, the
best upper bound for the complexity of these problems is due to Babai [1]. By fixing some
natural parameters, it is often possible to obtain a polynomial-time algorithm for some re-
stricted classes of graphs, e.g, graphs of bounded degree [9, 4], eigenvalue multiplicity [2],
treewidth [8], etc.

Every graph can be embedded into a surface of sufficiently large genus, which also pro-
vides an important parametrization of all graphs. The first polynomial-time algorithm testing
isomorphism of bounded genus graphs was given by Miller [11]. Only recently, a linear-time
algorithm was announced [7]. This already implies that the generators of the automorphism
group of a graph of bounded genus can be computed in polynomial time, however, an inter-
esting question, which remained open, is whether linear time can be achieved here as well.
The first unavoidable step is to show that for a map M on a fixed surface of genus g it is
possible to compute the automorphism group in linear time, which is our main result.
Oriented maps. In our algorithm, we first deal with the oriented maps on orientable
surfaces. Formally, a combinatorial oriented map is any triple M = (D,R,L), where D is a
finite non-empty set of darts, R is any permutation of darts, L is a fixed-point-free involution
of D, and the group 〈R,L〉 ≤ Sym(D) is transitive on D. The vertices, edges, and faces of
M are in one-to-one correspondence with the cycles of R, L, R−1L, respectively. We define
‖M‖ = |D|.

Two oriented maps M1 = (D1, R1, L1) and M2 = (D2, R2, L2) are isomorphic, in sym-
bols M1

∼= M2, if there exists a bijection ψ : D1 → D2, called an (orientation-preserving)
isomorphism from M1 to M2, such that ψR1 = R2ψ and ψL1 = L2ψ. The set of all
(orientation-preserving) isomorphisms from M1 to M2 is denoted by Iso+(M1,M2). The
(orientation-preserving) automorphism group of M is the set Iso+(M,M), and we denote it
by Aut+(M). Algebraically, Aut+(M) is just the centralizer of 〈R,L〉 in Sym(D). Note that
Aut+(M) acts semiregularly on the set of darts D.

We give a set of elementary reductions defined on labeled oriented maps, given by a
quadruple (D,R,L, `), where ` is a labeling of D. The output of each elementary reduction is
always a quadruple (D′, R′, L′, `′), satisfying D′ ⊆ D, |V (M ′)|+ |E(M ′)| < |V (M)|+ |E(M)|,
and Aut+(M ′) = Aut+(M). Here the automorphism groups of M and M ′ are considered
to be label-preserving. The purpose of the labelings is to ensure that the automorphism
group does not grow after an elementary reduction. The implementation of the labelings is
crucial for the proof that the algorithm runs in linear time. All the elementary reductions
are ordered according to a priority. At every step, the reduction with the highest possible
priority is applied.

Informally, these reductions proceed as follows. The highest priority has the deletion of
faces of degree 1 and 2. If a map has no faces of degree 1 and 2, it is face-normal, and by
the Euler’s formula, the minimum degree of a vertex is at most 6(1 − χ), where χ is the
Euler-Poincaré characteristic of the underlying surface S. Note that χ can be expressed as
a function of the genus of S. Vertices of degree at most 6(1 − χ) are called light. Next, is
the contraction of edges incident to light vertices. The edges to be contracted are canonically
chosen according to certain well-defined rules. Finally, there is the replacement of a light
vertex by a face which is applied if there is no canonical choice of the contractible edges.

If none of the reductions apply, the map is a uniform oriented map U , i.e., a map which
has the same cyclic vector of face sizes, called local type, at every vertex. Since the darts of
U form a subset of the darts of M , by semiregularity, every generator of Aut+(U) can be
extended to a generator of Aut+(M) in linear time.
Uniform oriented maps. If the genus of the underlying surface is at least g = 2, then from
Euler’s formula it follows that the number of uniform maps is bounded by a function of g.
To compute the generators of the automorphism group, a brute-force approach is sufficient.
The same works for sporadic uniform spherical maps which consist of the following: the 5
Platonic solids, the 13 Archimedean solids, and the pseudo-rhombicuboctahedron.

The infinite classes of spherical maps are cycles, dipoles, prisms, and antiprisms, all of
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which we reduce the first case. Finally, the infinite classes of uniform toroidal maps are those
with the local types in the following list [6]: (3, 3, 3, 3, 3, 3), (4, 4, 4, 4), (6, 6, 6), 2×(3, 3, 3, 3, 6),
(3, 3, 3, 4, 4), (3, 3, 4, 3, 4), (3, 4, 6, 4), (3, 6, 3, 6), (3, 12, 12), (4, 6, 12), and (4, 8, 8). One type
occurs two times, once as a mirror image of the other. Here all of them are reduced to the
first two cases.
Non-oriented maps. Let N be a map on any, possibly non-orientable, surface. In general,
a combinatorial non-oriented map is a quadruple (F, λ, ρ, τ), where F is a finite non-empty
set of flags, and λ, ρ, τ ∈ Sym(F ) are fixed-point-free involutions such that λτ = τλ and the
group 〈λ, ρ, τ〉 acts transitively on F . We define ‖N‖ = |F |.

Each flag corresponds uniquely to a vertex-edge-face incidence triple (v, e, f). Geometri-
cally, it can be viewed as the triangle defined by v, the center of e, and the center f . The
vertices, edges, and faces of N correspond uniquely to the orbits of 〈ρ, τ〉, 〈λ, τ〉, and 〈ρ, λ〉,
respectively. An isomorphism of two non-oriented maps N1 and N2 is a bijection ψ : F → F
which commutes with λ, ρ, τ .

The even-word subgroup 〈ρτ, τλ〉 has index at most two in 〈λ, ρ, τ〉. If it is exactly two,
the map N is called orientable. For every oriented map (D,R,L) it is possible to construct
the corresponding non-oriented map (F, λ, ρ, τ). Conversely, from an orientable non-oriented
map (F, λ, ρ, τ) it is possible two oriented maps M = (D,R,L) and M−1 = (D,R−1, L). The
map M−1 is called the mirror image of M . An orientation-reversing automorphism of M
is a mapping ϕ ∈ Iso+(M,M−1) and M is called reflexible if Iso+(M,M−1) is non-empty.
The full automorphism group of M , denoted by Aut(M), is generated by Aut+(M) and an
arbitrary ϕ ∈ Iso+(M,M−1).

For a non-oriented map N = (F, λ, ρ, τ), it is possible to test in linear time if N is
orientable [15, 16]. The barycentric subdivision B of N is constructed by placing a new
vertex in the center of every edge and face, and then joining the centers of faces with the
incident vertices and with the center of the incident edges. The dual of B is 3-valent map,
i.e., every vertex is of degree 3. Then N is orientable if and only if the underlying 3-valent
graph of the dual of the barycentric subdivision of N is bipartite.

If the input non-oriented map N = (F, λ, ρ, τ) is orientable, we compute its Euler-Poincaré
characteristic, and constructM andM−1. Using the algorithm for oriented maps, we compute
the generators of Aut+(M) and find an arbitrary ϕ ∈ Iso+(M,M−1).

If N is non-orientable, we reduce the problem of computing the generators of Aut(N)

to the problem of computing the generators of Aut+(Ñ), for some orientable map Ñ . In
particular, the map Ñ is the antipodal double cover of M .

Given a mapN = (F, λ, ρ, τ) on a non-orientable surface of genus γ, we define the antipodal
double cover Ñ = (D,R,L) by setting D := F , R := ρτ , and L := τλ. Since N is non-
orientable, we have 〈R,L〉 = 〈λ, ρ, τ〉, so 〈R,L〉 is transitive and Ñ is well-defined. For more
details on this construction see [12]. We note that χ̃ = 2χ, where χ̃ and χ is the Euler-Poincaré
characteristic of the underlying surface of Ñ and N , respectively.

We show that Aut(N) = {ϕ ∈ Aut+(Ñ) : ϕτ = τϕ}. If the non-orientable genus γ of
the underlying surface S of N is at least 2, then the orientable genus g of the underlying
surface of Ñ is also at least 2. By the Riemann-Hurwitz theorem, the order of Aut+(Ñ) is
bounded by a function of g, and a brute-force approach is sufficient to find Aut(N). If S is
the projective plane or the Klein bottle, then the underlying surface of Ñ is the sphere or the
torus, respectively. For these we give linear-time algorithms to compute the generators of the
group Aut(N).
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Extended Abstract

We consider only simple undirected connected graphs with no loops or multiple edges.
Let G be a graph with vertex set V (G) and edge set E(G). The distance dG(x, y) between
any pair of vertices x, y is the length of the shortest path between them. The diameter of a
graph is denoted by D(G) and defined as the maximum distance between any two vertices,
i.e., D(G) = max{dG(x, y);x, y ∈ G}.

For a graph G of order n and for a linear ordering s : (x1, x2, . . . , xn) of its vertices,
let d(s) =

∑n−1
i=1 dG(xi, xi+1). The upper traceable number of G, denoted t+(G), is t+(G) =

max dG(s), where the maximum is taken over all linear orderings s of vertices of G ([1, 2, 5,
6, 7]).

Due to their regular structure, generalized Petersen graphs are commonly used in in-
terconnection networks. This class of graphs was first introduced by Coxeter [2] in 1950
and defined by Watkins [3] as follows: for a given integers n and k < n

2 , we can define a
generalized Petersen graph GPG(n, k) as a graph on vertex-set {u0, . . . , un−1, v0, . . . , vn−1}.
The edge-set may be naturally partitioned into three equal parts (note that all subscripts
are assumed modulo n): the edges EO(n, k) = {uiui+1}n−1

i=0 from the outer rims, induc-
ing a cycle of length n; the edges EI(n, k) = {vivi+k}n−1

i=0 from the inner rims, induc-
ing gcd(n, k) cycles of length n

gcd(n,k) ; and the edges ES(n, k) = {uivi}n−1
i=0 , also called

spokes, that induce a perfect matching in GPG(n, k). Hence the edge-set may be defined
as E(G(n, k)) = EO(n, k) ∪ EI(n, k) ∪ ES(n, k).

Folowing the notation of Beenker and Van Lint [4], the circulant graph Cn(a1, a2) is defined
to be the graph on the vertices 0, 1, . . . , n− 1 with vertex i adjacent to the vertices i±a1 and
i± a2, where the calculations are performed modulo n.

In this paper, we investigate t+(Cn(1, k)) and t+(GPG(n, k)) for several values of n and
k. For that, we first establish a classification for the diameter of generalized Petersen graphs
D(GPG(n, k)) in terms of the diameter of circulant graphs D(Cn(1, k)). Then, we provide
exact values for both D(GPG(n, k)) and D(Cn(1, k)), for several values of n and k, as well
as an upper bound for D(GPG(n, k)) for all n and k. Finally, we show exact values of the
upper traceable number for both circulant and generalized Petersen graphs for several cases
of n and k. Then, we give an upper and lower bound of the same for generalized Petersen
graphs.

Proofs left out in this note will appear in the full version of the paper.

1 Diameter of generalized Petersen graphs
In [4], Beenker and Van Lint revealed a natural relation between the generalized Petersen

graph GPG(n, k) and the circulant graph Cn(1, k). The circulant graph Cn(1, k) can be
obtained from GPG(n, k) by contracting the vertices ui and vi for 0 ≤ i ≤ n − 1; by a
reversed procedure GPG(n, k) can be obtained from Cn(1, k). Beenker and Van Lint [4]
proved that D(GPG(n, k)) = D(Cn(1, k)) + ε with ε ∈ {1, 2}. The following theorem gives
away the classes of GPG(n, k) in which D(GPG(n, k)) = D(Cn(1, k)) + 1 and the others in
which D(GPG(n, k)) = D(Cn(1, k)) + 2.
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Theorem 1

D(GPG(n, k)) =

{
D(Cn(1, k)) + 1 if n = 4p and k = 2p− 1 with p > 2,

D(Cn(1, k)) + 2 otherwise.

Despite of the symmetric structure of Cn(1, k), the exact value of its diameter for all n
and k is not been determined yet. Next, we give the path class of Cn(1, k) and we define the
notion of distance in Cn(1, k) for all values of n and k.

Theorem 2 Let n, k and j be tree integers with 1 ≤ j < k and k ≤ bn2 c, k 6= n
2 . Let i be

a vertex of the graph Cn(1, k). Any path leading from 0 to i in Cn(1, k) belongs to the path
class of lengths l equals, in each of the following cases, to

1. i ≡ r1 mod k :

• l1 = r1 + b ik c, • l2 = 1 + k − r1 + b ik c.

2. jn+ i ≡ rj2 mod k :

• lj3 = rj2 + b jn+ik c, • lj4 = 1 + k − rj2 + b jn+ik c.

3. jn− i ≡ rj3 mod k :

• lj5 = rj3 + b jn−ik c, • lj6 = 1 + k − rj3 + b jn−ik c.

Theorem 3 Let n, k and j be tree integers with 1 ≤ j < k and k ≤ bn2 c, k 6= n
2 . For every

vertex i of Cn(1, k), the distance between 0 and i is equal to

dCn(1,k)(0, i) = min(l1, l2, l
j
3, l

j
4, l

j
5, l

j
6).

In this section, we apply Theorem 1 to determine exact values for the diameter ofGPG(n, k)
for several values of n and k. We also give an upper bound for the same for all n and k. Note
that other exact values for the diameter of GPG(n, k) will appear in the full version of the
paper.

1.1 Diameter of GPG(4p, 2p− 1) with p > 2

Theorem 4 Let p ≥ 2 be an integer. We have

D(C4p(1, 2p− 1)) = p.

Theorem 5 Let p > 2 be an integer. We have

D(GPG(4p, 2p− 1) = p+ 1.

1.2 Diameter of GPG(n, 2)
Theorem 6 For all integers n and p ≥ 1, we have

D(Cn(1, 2)) =

{
p if n = 4p or n = 4p+ 1,

p+ 1 if n = 4p+ 2 or n = 4p+ 3.

Theorem 7 For all integers n and p ≥ 1, we have

D(GPG(n, 2)) =

{
p+ 2 if n = 4p or n = 4p+ 1,

p+ 3 if n = 4p+ 2 or n = 4p+ 3.
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1.3 Diameter of GPG(αk, k), k > 3

Theorem 8 For all n = αk and all k > 3, we have

D(Cαk(1, k)) = b
α

2
c+ bk

2
c.

Theorem 9 For all n = αk and all k > 3, we have

D(GPG(αk, k)) = bα
2
c+ bk

2
c+ 2.

1.4 Upper bound for D(GPG(n, k))

Theorem 10 For all n and k, we have

D(Cn(1, k)) ≤ b
bn2 c
k
c+ dk

2
e.

Theorem 11 For all n and k, we have

D(GPG(n, k)) ≤ db
n
k c
2
e+ bk

2
c+ 2.

2 Upper traceable number of GPG(n, k) and Cn(1, k)

In this section, we give exact values of the upper traceable number of both circulant and
generalized Petersen graphs for several cases of n and k. Then, we show an upper and lower
bound of the same number for generalized Petersen graphs.

2.1 Upper traceable number of Cn(1, 2)

Theorem 12 Let p ≥ 1, an integer. We have

t+(Cn(1, 2)) =





p(4p− 1) if n = 4p,

4p2 if n = 4p+ 1 with p 6= 3j, j ≥ 1,

2(2p2 − 1) if n = 4p+ 1 with p = 3j, j ≥ 1,

(2p+ 1)2 − p if n = 4p+ 2,

2(2p+ 1)(p+ 1) if n = 4p+ 3.

2.2 Upper traceable number of C4p(1, 2p− 1)

Theorem 13 Let p ≥ 2, an integer. We have

t+(C4p(1, 2p− 1)) = 3p2 + (p− 1)2.

2.3 Upper traceable number of GPG(n, 2)
Theorem 14 For n even, we have

t+(GPG(n, 2)) =

{
8p(p+ 2)− (p+ 3) if n = 4p with p ≥ 3,

8p(p+ 3)− (p− 8) if n = 4p+ 2 with p ≥ 2.
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2.4 Upper traceable number of GPG(4p, 2p− 1)

Theorem 15 Let p ≥ 2, even. We have

t+(GPG(4p, 2p− 1)) = (8p− 1)(p+ 1).

Note that many other exact values for the upper traceable number of both circulant and
generalized Petersen graphs will appear in the full version of the paper.

2.5 Upper and lower bound for t+(GPG(n, k))
Theorem 16 For n ≥ 14, we have

2t+(Cn(1, k)) ≤ t+(GPG(n, k)) < 4t+(Cn(1, k)).
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On superperfection of edge intersection graphs of paths
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Extended Abstract

Flexgrid Elastic Optical Networks constitute a new generation of optical networks in response
to the sustained growth of data tra�c volumes and demands in communication networks. In
such networks, light is used as communication medium between sender and receiver nodes,
and the frequency spectrum of an optical �ber is divided into narrow frequency slots. Any
sequence of consecutive slots can form a channel that can be switched in the network to create
a lightpath (i.e., an optical connection represented by a route and a channel). The Routing
and Spectrum Assignment (RSA) problem consists of establishing the lightpaths for a set of
end-to-end tra�c demands, that is, �nding a route and assigning an interval of consecutive
frequency slots for each demand such that the intervals of lightpaths using a same edge in
the network are disjoint, see e.g. [11]. I.e., we are given a network G and a set D of tra�c
demands between pairs u, v of nodes in G specifying the number duv of required frequency
slots to satisfy this demand. The routing consists of selecting a (u, v)-path Puv in G, for
each such tra�c demand. The spectrum assignment can then be interpreted as an interval
coloring of the edge intersection graph I(P) of the set P of selected paths:

• Each path Puv ∈ P becomes a node of I(P) and two nodes are joined by an edge if the
corresponding paths in G are in con�ict as they share an edge (notice that we do not
care whether they share nodes).

• Any interval coloring in this graph I(P) weighted with the demands duv solves the
spectrum assignment: we assign an interval of duv consecutive frequency slots to every
node of I(P) (and, thus, to every path Puv ∈ P) in such a way that the intervals of
adjacent nodes are disjoint.

The interval chromatic number χI(I(P), d) is the smallest spectrum width such that I(P)
weighted with the vector d of tra�c demands duv for each path Puv has a proper interval
coloring. Given G and D, the minimum spectrum width of any solution of the RSA problem,
thus, equals χI(G,D) = min{χI(I(P), d) : P possible routing of demands D in G}.

For each routing P, the weighted clique number ω(I(P), d) is a natural lower bound for
χI(I(P), d). Thus, ω(G,D) = min{ω(I(P), d) : P possible routing of demands D in G} is a
lower bound for χI(G,D). However, it is not always possible to �nd a solution with ω(G,D)
as spectrum width, as weighted clique number and interval chromatic number are not always
equal. Graphs where both parameters coincide for all possible non-negative integral weights
are called superperfect. A graph G = (V,E) is comparability if and only if there exists a partial
order O on V × V such that uv ∈ E if and only if u and v are comparable w.r.t. O. Com-
parability graphs form a subclass of superperfect graphs [7], but there are also superperfect
non-comparability graphs such as e.g. even antiholes [4].

A complete list of minimal non-comparability graphs is presented in [3], the question which
minimal non-comparability graphs are superperfect has been addressed in [1]1. The minimal
non-comparability graphs which are not superperfect are thus minimal non-superperfect: the
graphs A1 and A2 shown in Fig. 1 and all

• odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2,

• the graphs Jk and J ′
k for k ≥ 2 (see Fig. 2),

• the complements of Dk for k ≥ 2 and of Ek, Fk for k ≥ 1 (see Fig. 3).

We examine, for di�erent underlying networks G, the question whether or not there is a
solution of the RSA problem with ω(G,D) as spectrum width which depends on the occurrence
of (minimal) non-superperfect graphs in the edge intersection graphs I(P).

1Note that A2 has been wrongly determined as superperfect in [1] which is, in fact, not the case as the
weights indicated in Fig. 1 show.
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Figure 1: The graphs A1 and A2.
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Figure 2: Minimal non-superperfect graphs: Jk, J
′
k for k ≥ 2.

For some networks G, the edge intersection graphs form well-studied graph classes: if G
is a path (resp. tree, resp. cycle), then I(P) is an interval graph (resp. EPT graph, resp.
circular-arc graph). Modern optical networks do not fall in any of these classes, but are
2-connected, sparse planar graphs with small maximum degree.

We �rst study the special cases and then examine the general case showing that all minimal
non-comparability non-superperfect graphs can occur in I(P) (which implies that there is not
always a solution of the RSA problem with ω(G,D) as spectrum width).

Finally, we give some new examples of minimal non-superperfect graphs and propose to
extend the concept of χ-binding functions introduced in [6] for usual coloring to interval col-
oring in weighted graphs to describe how large the gap between weighted clique number and
interval chromatic number can be in the worst case.

If the underlying network is a path P , then there is exactly one (u, v)-path Puv in P for
every tra�c demand between a pair u, v of nodes. Hence, P and I(P) are uniquely determined
for any set of demands, and the RSA problem reduces to the spectrum assignment part.
The edge intersection graph I(P) of the (unique) routing P is an interval graph (i.e. the
intersection graph of intervals in a line, here represented as subpaths of a path). Based on
the characterization of minimal non-interval graphs from [9], we can show:

Theorem 1 If P is a set of paths in a path, then the interval graph I(P) can contain the
graphs Jk and J ′

k for all k ≥ 2 and E2, but none of the other minimal non-comparability
non-superperfect graphs.

If the underlying network is a tree T , then there is also exactly one (u, v)-path Puv in
T for every tra�c demand between a pair u, v of nodes and, thus, P and I(P) are uniquely
determined. The edge intersection graph I(P) of the (unique) routing P is called an EPT
graph. Based on results from [5], we can show:

Theorem 2 If P is a set of paths in a tree, then the EPT graph I(P) can contain A1, A2 and

• odd holes C2k+1 for k ≥ 2, but no odd antiholes C2k+1 for k ≥ 3,

• the graphs Jk and J ′
k for all k ≥ 2,

• D2, D3, E1, E2, E3, F 1, F 2, F 3, but none of Dk, Ek, F k for k ≥ 4.

If the underlying network is a cycle C, then there exist exactly two (u, v)-paths Puv

in C for every tra�c demand between a pair u, v of nodes. Hence, the number of possible
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Figure 3: Minimal non-superperfect graphs: the complements of Dk, Ek, Fk.

routings P (and their edge intersection graphs I(P)) is exponential in |D|. Moreover, the edge
intersection graphs of paths in a cycle are clearly circular-arc graphs (that are the intersection
graphs of arcs in a cycle, here represented as paths in a hole Cn). Based on di�erent results
on circular-arc graphs, e.g. surveyed in [2], we can show:

Theorem 3 If P is a set of paths in a cycle, then the circular-arc graph I(P) can contain
A1 but not A2,

• all odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2,

• the graphs Jk and J ′
k for all k ≥ 2,

• D2, D3, D4, but not the graphs Dk for k ≥ 5,

• E1 and E2, but not the graphs Ek for k ≥ 3,

• F 2, but not F 1 neither the graphs F k for k ≥ 3.

Modern optical networks have clearly not a tree-like structure neither are just cycles due to
survivability aspects concerning node or edge failures in the network G, see e.g. [8]. Instead,
today's optical networks are 2-connected, sparse planar graphs with small maximum degree,
see e.g. [10]. Based on the previous results, we can show:

Theorem 4 All minimal non-comparability non-superperfect graphs can occur in edge inter-
section graphs I(P) of sets P of paths in optical networks G.

In addition, there are further minimal non-superperfect graphs in edge intersection graphs
of paths in networks. Fig. 4 shows two examples containing C6 (the smallest minimal non-
comparability superperfect graph) together with weight vectors d causing a gap between
weighted clique and interval chromatic number. Note that these two graphs are neither EPT
graphs nor circular-arc graphs, but have a path representation in sparse planar graphs.
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2 2

2 2
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1

1
a d

b

c

e

f

2 2

2 2

2 2

g h
11

Figure 4: Minimal non-superperfect graphs C6,0 and C6,2 containing C6.

From the examples presented in Fig. 4, we can construct an in�nite family of new minimal
non-superperfect graphs. Let C2k be an even antihole for some k ≥ 3 and let C2k,j be the
graph obtained from C2k by adding two adjacent nodes x and y, where x is adjacent to all
nodes of C2k but 1 and 2, and y is adjacent to all nodes of C2k but 2 + j and 3 + j, for all
even j with 0 ≤ j < k. Note that F 1 can be considered to be C4,0; C6,0 and C6,2 are the
graphs shown in Fig. 4.
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Concluding remarks. From the fact that both, EPT graphs and circular-arc graphs, are
not necessarily superperfect, we notice that also edge intersection graphs of paths in networks
are not necessarily superperfect. If we restrict the networks to paths, then I(P) is an interval
graph, but still not necessarily superperfect. Hence, in all networks, it depends on the weights
d induced by the tra�c demands whether there is a gap between the weighted clique number
ω(I(P), d) and the interval chromatic number χI(I(P), d). To determine the size of this gap,
we propose to extend the concept of χ-binding functions introduced in [6] for usual coloring
to interval coloring in weighted graphs, that is, to χI -binding functions f with

χI(I(P), d) ≤ f(ω(I(P), d))

for edge intersection graphs I(P) in a certain class of networks and all possible non-negative
integral weights d.

Furthermore, in networks di�erent from trees, the routing part of the RSA problem is
crucial and raises the question whether it is possible to select the routes in P in such a way
that neither non-superperfect graphs nor unnecessarily large weighted cliques occur in I(P).

Finally, giving a complete list of minimal non-superperfect graphs is an open problem, so
that our future work comprises to �nd more minimal non-superperfect graphs and to examine
the here addressed questions for them.
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Extended Abstract

Given a graph G, a set of vertices X ⊆ V (G) is called a dominating set if every vertex
not in X is adjacent to at least one vertex in X. The cardinality of a smallest dominating set
is called the domination number of G, which is denoted γ(G). A graph G is S-fractionally
dominated if there exists a function w : V (G) → R≥0 such that

∑
x∈N [v] w(x) ≥ 1 and∑

v∈V (G) w(v) ≤ S. The fractional domination number of a graph G, denoted γf (G), is the
smallest value of S such that G can be S-fractionally dominated. It is not difficult to see that
γ(G) can be expressed as the solution to an integer program and γf (G) is the solution to its
linear relaxation. Fractional domination was introduced in [4] and has since been well-studied.

We study a variation on the eternal domination game. In this game, a dominating set of
size k is first occupied by k “guards”. An infinite sequence of vertices is then revealed one at
a time (each reveal is called an “attack”). After each attack, a guard adjacent to the attacked
vertex must move from its current location to the attacked vertex. After each attack, the
guards’ positions must still be a dominating set. The minimum number of guards required
to defend any infinite sequence of attacks on V (G) is called the eternal domination number
of G, denoted γ∞(G). In the original version of the game, first appearing in [1], only one
guard may move after each attack. In a variation introduced in [3], any number of guards
may move after each attack. The minimum number of guards required in this model, known
as the m-eternal domination number of G, is denoted γ∞m (G).

In this talk, we present the fractional eternal domination model, which may be considered
a fractional relaxation of m-eternal domination. One assigns non-negative real weights to
V (G) so that S-fractional domination can be maintained for some fixed value S subject
to vertex attacks. For each vertex v ∈ V (G), set w0(v) = w(v) so that G is fractionally
dominated. At discrete time steps k = 1, 2, 3, . . . an adversary attacks an arbitrary v ∈ V (G).
To respond to the kth attack, one may move any non-negative amount of weight, say m, from
u to v as long as m ≤ wk−1(u) and u is adjacent to v. We may do this simultaneously along
as many edges as necessary, but require that G is fractionally dominated by the resulting
weighting wk. We denote by γ∞f (G) the infimum over all S for which G can be eternally
S-fractionally dominated, and call the parameter the fractional eternal domination number
of G. This idea was first suggested in [2], in the more general context of the Spy Game.

In this talk, we present some (partial) progress on the following general questions.

1. How does γ∞f (G) relate to other domination parameters?

It is not difficult to see that each of the following inequalities must always hold:

γf (G) ≤ γ∞f (G) ≤ γ∞m (G)
γf (G) ≤ γ(G) ≤ γ∞m (G)

This may lead one to ask whether or not γ∞f (G) and γ(G) are, in general, comparable.
Our first results show that, in general, the two parameters are not related.
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Theorem 1 For any integer N , there exist graphs G and H such that γ∞f (G) − γ(G) > N
and γ(H)− γ∞f (H) > N .

Considering the ratio of the two parameters, we can see that γ∞f (G)/γ(G) can be made
arbitrarily small, but not arbitrarily large.

Theorem 2

1. For any ε > 0, there exists a graph G such that γ∞f (G)/γ(G) < ε.

2. For any graph G, γ∞f (G)/γ(G) ≤ 2.

Furthermore, the bound in statement 2 is tight.

2. Can we determine exact values, or good bounds, for γ∞f (G)?

Computing the exact values of γ∞f (G) for complete graphs, paths, cycles, complete graphs,
and complete multipartite graphs is straightforward. As a consequence of the aforementioned
results in [2], it is known that γ∞f (T ) = γ∞m (T ) for any tree T . Beyond this, computing exact
values of γ∞f (G) even for restricted graph classes appears to be non-trivial. Bounds for grids
and tori can be found in [2]. We prove bounds for split graphs (the upper bound is best
possible) and graphs with high connectivity:

Theorem 3 If G is a split graph, then γf (G) ≤ γ∞f (G) ≤ γf (G) + 1.

Theorem 4 If G has connectivity κ, then γ∞f (G) ≤ n+κ
κ+1 .

As a consequence of Theorem 4, we are able to deduce that γ∞f (G) does not differ signif-
icantly from γf (G) in abelian Cayley graphs (and so, in particular, for hypercubes).

Theorem 5 If G is an abelian Cayley graph, then γ∞f (G)− γf (G) < 1.

By applying a classification of cubic abelian Cayley graphs from [5], we are able to prove
the following stronger result for this class:

Theorem 6 If G is an abelian cubic Cayley graph, then γ∞f (G) = γ(G) if and only if G
is not isomorphic either to C4k+2�K2 or to Cay(Z8k, {±1, 4k}) for some integer k ≥ 1.
Furthermore, if G falls into either of these two exceptional families, then γ∞f (G) < γ(G).

Determining the exact values of γ∞f (G) for the two exceptional families stated in Theorem
6 remains largely an open problem; though we are able to determine the exact value in a few
special cases, even the value of γ∞f (C6�K2) remains undecided.

3. What numerical values of γ∞f (G) are possible?

We give a construction of a family of graphs which shows the following:

Theorem 7 For any rational number q ≥ 2, there exists an infinite family of graphs Gq such
that γ∞f (G) = q for every G ∈ Gq.

A number of open problems related to the possible numerical values of γ∞f (G) will be
presented as avenues for future research.
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The existence of a path-factor involving paths of order eleven
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Extended Abstract

This talk is based on joint work with M. Murakami.
In this talk, all graphs are finite and simple. For a graph G and an integer l ≥ 1, we

let cl(G) denote the number of components of G having order l. For an integer l ≥ 2, we
let Pl denote the path of order l. A path-factor of a graph G is a spanning subgraph whose
components are paths of order at least 2. By a {P2, P2k+1}-factor of a graph G, we mean
a spanning subgraph of G each of whose components is isomorphic to P2 or P2k+1. Since
every path of order at least 2 can be partitioned into paths of orders 2 and 3, a graph has a
path-factor if and only if it has a {P2, P3}-factor.

In [1], a necessary and sufficient condition for the existence of a path-factor was obtained.

Theorem A A graph G has a {P2, P3}-factor is and only if c1(G − X) ≤ 2|X| for all
|X| ⊆ V (G).

In [2], it was shown that if a graph G satisfies c1(X) + 2c3(G − X)/3 ≤ 4|X|/3 for all
X ⊆ V (G), than G has a {P2, P5}-factor. The following conjecture was also made in [4].

Conjecture B Let k ≥ 3 be an integer, and let G be a graph such that
∑

0≤j≤k−1 c2j+1(G −
X) ≤ (4k + 6)|X|/(8k + 3) for all X ⊆ V (G). Then G has a {P2, P2k+1}-factor.

For k = 3, 4, Conjecture B was settled in [3] as follows.

Theorem C Let G be a graph such that c1(G − X) + c3(G − X)/3 + c5(G − X)/3 ≤ 2|X|/3
for all X ⊆ V (G). Then G has a {P2, P7}-factor.

Theorem D Let G be a graph such that c1(G−X)+c3(G−X)+2c5(G−X)/3+c7(G−X)/3 ≤
2|X|/3 for all X ⊆ V (G). Then G has a {P2, P9}-factor.

For k = 5, we have recently proved the following theorem.

Theorem 1 Let G be a graph such that c1(G − X) + c3(G − X) + c5(G − X) + 4c7(G −
X)/15 + 4c9(G − X)/15 ≤ 8|X|/15 for all X ⊆ V (G). Then G has a {P2, P11}-factor.

Note that Theorems D and 1 imply that the coefficient of (4k+6)/(8k+3) of |X| in Conjecture
B is not best possible for k = 4 and 5. We have also proved the following proposition, which
implies that the coefficient of |X| in Theorem 1 is best possible in the sense that it cannot be
replaced by any number greater than 8/15.

Proposition 2 There exist infinitely many graphs G having no {P2, P11}-factor such that∑
0≤j≤4 c2j+1(G − X) ≤ 8|X|/15 + 4/15 for all X ⊆ V (G).

In this talk, I will describe about a sketch of the proof of Theorem 1 and show examples
which satisfy the conditions of Proposition 2. I will also describe the sharpness of other
coefficients.
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r-hued coloring of planar graphs with girth at least 8
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Extended Abstract

In this paper, we consider simple undirected graphs without loops. A proper k-coloring
of the vertices of a graph G = (V,E) is an assignment of colors from 1 to k such that no
two adjacent vertices have the same color. The chromatic number of G, denoted χ(G), is
the smallest integer k so that G has a proper k-coloring. In 1969, Kramer and Kramer
introduced the notion of 2-distance k-coloring [23] which is a proper k-coloring such that no
pair of vertices at distance 2 have the same color. The 2-distance chromatic number of G,
denoted χ2(G), is the smallest integer k so that G has a 2-distance k-coloring. An example
of 2-distance coloring is given in Figure 1a.

Figure 1: A graph G with χ2(G) = 6 and χ(G) = 3

Note that for any graph G with maximum degree ∆, ∆ + 1 ≤ χ2(G) ≤ ∆2 + 1. The lower
bound is trivial since, in a 2-distance coloring, every neighbor of a vertex v with degree ∆, and
v itself must have a different color. As for the upper bound, a greedy algorithm shows that
χ2(G) ≤ ∆(G)2+1. Moreover, this bound is tight for some graphs, for example, Moore graphs
of type (∆, 2), which are graphs where all vertices have degree ∆, are at distance at most two
from each other, and the total number of vertices is ∆2 + 1. The Moore graphs of type (3,2)
and of type (7,2) are the Petersen graph and the Hoffman-Singleton graph respectively.

In this paper, we focus on planar graphs which are graphs that can be drawn in the plane
without crossing the edges. One motivation to study this class of graphs is the following
famous conjecture stating an upper bound which is linear in ∆:
Conjecture 1 (Wegner, 1977 [31]) Let G be a planar graph with maximum degree ∆.
Then,

χ2(G) ≤





7, if ∆ ≤ 3,
∆ + 5, if 4 ≤ ∆ ≤ 7,
b 3∆

2 c+ 1, if ∆ ≥ 8.

Wegner showed that the upper bounds of the conjecture are tight. For instance when
∆ ≥ 8 consider the Wegner graph obtained as follows : take a triangle xyz, multiply each
edge 3

2∆ times, subdivide them once, then add an edge between x and y. The case ∆ ≤ 3
of Conjecture 1 was proved independently by Thomassen [29] and by Hartke et al. [17]. For
∆ ≥ 8, Havet et al. [18] proved that the bound is 3

2∆(1 + o(1)), where o(1) is as ∆→∞.
The coefficient before ∆ becomes 1 when the girth, the length of a shortest cycle, of the

graph increases. Extensive researches have been done in this case, and many results have
taken the following form: every planar graph G of girth g ≥ g0 and ∆(G) ≥ ∆0 satisfies
χ2(G) ≤ ∆ + c(g0,∆0), where c(g0,∆0) is a constant depending only on g0 and ∆0. Table 1
shows all known such results on the 2-distance chromatic number of planar graphs with fixed
girth, up to our own knowledge.
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g0\χ2(G) ∆ + 1 ∆ + 2 ∆ + 3 ∆ + 4 ∆ + 5 ∆ + 6 ∆ + 7 ∆ + 8

3 X ∆ = 3[29, 17]
4 X
5 X ∆ ≥ 107[1] ∆ ≥ 339[15] ∆ ≥ 312[14] ∆ ≥ 15[8] ∆ ≥ 12[7] ∆ 6= 7, 8[14] all ∆[30]
6 X ∆ ≥ 17[4] ∆ ≥ 9[7] all ∆[10]
7 ∆ ≥ 16[19] ∆ = 4[12]

8
∆ ≥ 10[19]

∆ ≥ 9 (Corollary 4)
∆ = 5[6]

9 ∆ ≥ 8[3] ∆ = 5[6] ∆ = 3[13]
10 ∆ ≥ 6[19]
11 ∆ = 4[12]
12 ∆ = 5[19] ∆ = 3[5]
13
14 ∆ ≥ 4[2]
. . .
22 ∆ = 3[19]

Table 1: The latest results with a coefficient 1 before ∆ in the upper bound of χ2.

For example, the result from line "7" and column "∆ + 1" from Table 1 reads as follows :
"every planar graph G of girth at least 7 and of ∆ at least 16 satisfies χ2(G) ≤ ∆ + 1". The
crossed out cases in the first column correspond to the fact that, for g0 ≤ 6, there are planar
graphs G with χ2(G) = ∆ + 2 for arbitrarily large ∆[16]. The lack of results for g ≥ 4 is due
to the fact that the Wegner graph without xy has girth 4, and χ2 = b 3∆

2 c − 1 for all ∆.
The "2-distance" condition in 2-distance colorings requires that vertices at distance at

most two have different colors. In other words, all neighbors of the same vertex must have
different colors. Recently, this condition was generalized and the notion of r-hued coloring
was introduced [26]. Let r, k ≥ 1 be two integers. An r-hued k-coloring of the vertices of G
is a proper k-coloring of the vertices, such that all vertices are r-hued. A vertex is r-hued
if the number of colors in its neighborhood NG(v) = {x|xv ∈ E} is at least min{dG(v), r}.
The r-hued chromatic number of G, denoted χr(G), is the smallest integer k so that G has
an r-hued k-coloring. It is indeed a generalization of 2-distance colorings which correspond
to the case r ≥ ∆, as all vertices in the same neighborhood will have different colors. More
generally, its link to proper coloring and 2-distance coloring resides in the following equation:

χ(G) = χ1(G) ≤ χ2(G) ≤ · · · ≤ χ∆(G) = χ∆+1(G) = · · · = χ2(G) (1)

Examples of r-hued colorings are given in Figure 1b and Figure 1c.
Similar to the 2-distance chromatic number, the r-hued chromatic number is linear in r

when it comes to planar graphs. In 2014, Song et al. proposed a generalization of Conjecture
1:
Conjecture 2 (Song et al., 2014 [27]) Let G be a planar graph. Then,

χr(G) ≤





r + 3, if 1 ≤ r ≤ 2,
r + 5, if 3 ≤ r ≤ 7,
b 3r

2 c+ 1, if r ≥ 8.

Note that Conjecture 2 implies Conjecture 1 except for the case r = 3. Moreover, the
only extremal known examples reaching the upper bounds of Conjecture 2 are the same as for
Conjecture 1. It is less clear what would be the expected upper bound when r < ∆. In 2018,
Song and Lai [28] proved that, if r ≥ 8, then every planar graph G verifies χr(G) ≤ 2r + 16.
Similar to 2-distance coloring, the coefficient before r in this upper bound becomes 1 for graphs
with a higher girth. Table 2 shows all known results of the following form: let r and r0 be
integers such that r ≥ r0, all planar graph G of girth g(G) ≥ g0 satisfies χr(G) ≤ r+c(g0, r0),
where c(g0, r0) is a constant depending only on g0 and r0. The result from the "9" line and
"r+1" column reads "for r ≥ 8, all planar graph G of girth at least 9 satisfies χr(G) ≤ r+1".

Since r + 1 is a trivial lower bound for χr, we study the class of planar graphs verifying
χr = r + 1 and show the following:
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g0\χr(G) r + 1 r + 2 r + 3 r + 4 r + 5 r + 6 r + 7 . . . r + 10

3 r = 2[20]1 r = 2[20] r = 2[22] r = 3[25]
4
5 r ≥ 15[8] all r[8]
6 r ≥ 3[24]
7 r = 2[22] r = 3[21]
8 r ≥ 9 (Theorem 3)
9 r ≥ 8[9] r = 3[21]
10 r ≥ 6[9]
11
12 r ≥ 5[9]
13
14 r = 3[11]

Table 2: The latest results with a coefficient 1 before r in the upper bound of χr.

Theorem 3 If G is a planar graph with g(G) ≥ 8, then χr(G) = r + 1 for r ≥ 9.

Our proof uses the discharging method and exploits planarity arguments.
For r ≥ ∆, Theorem 3 gives an improvement of a result on 2-distance coloring published

in [19] (see Table 1):

Corollary 4 If G is a planar graph with g(G) ≥ 8 and ∆(G) ≥ 9, then χ2(G) = ∆(G) + 1.
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Switching (m,n)-edge-coloured mixed graphs
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Extended Abstract

1 Overview
In what follows, we define a switching operation for (m,n)-edge-coloured mixed graphs in
such a way that it generalizes the pushing operation for oriented graphs (e.g. see [4, 6]), and
the switching operation for m-edge-coloured graphs (e.g. see [1, 7, 9]). The first step is to
define (m,n)-edge-coloured mixed graphs and indicate how they generalize oriented graphs
and edge-coloured graphs. That is done in the next section. In Section 3 we define the general
switching operation with respect to a finite group, the concept of switch equivalence, and the
concept of a switchable homomorphism. We state results which show that the main results of
the theory previously developed for pushing and switching hold in this more general context.
Subsequently, we focus on the situation where the group of possible switches is Abelian, and
indicate that other results from the theories of pushing and switching hold. In particular, for
each (m,n)-edge coloured graph H there is a special (m,n)-edge-coloured graph P (H) such
that G has a switchable homomorphism to H if and only if there is a homomorphism of G
to P (H). This theorem extends and contains results from [1, 6, 7, 9]. In the last section
we define the switchable core of a (m,n)-edge-coloured mixed graph and state an extension
of a result of Brewster and Graves [1] for switching m-edge-coloured graphs with respect to
a cyclic group to switching (m,n)-edge-coloured mixed graphs with respect to an Abelian
group.

2 (m,n)-edge-coloured mixed graphs
A mixed graph is an ordered triple G = (V (G), E(G), A(G)), where V (G) is a set of objects
called vertices, E(G) is a multi-set of unordered pairs of not necessarily distinct vertices called
edges, and A(G) is a multi-set of ordered pairs of not necessarily distinct vertices called arcs.
The mixed graph G is called simple if its underlying undirected graph is a simple graph.

A mixed graph G is (m,n)-edge-coloured if each edge is assigned one of the m colours
1, 2, . . . ,m and each arc is assigned one of the n colours 1, 2, . . . , n. For 1 ≤ i ≤ m, let Ei(G)
be the multi-set of edges of colour i, and for 1 ≤ j ≤ n, let Aj(G) be the multi-set of arcs of
colour j.

When the context is clear we write V,E and A instead of V (G), E(G) and A(G), respec-
tively, and similarly for other subsets or parameters related to a graph.

Let G and H be (m,n)-edge-coloured mixed graphs. A (coloured) homomorphism of G to
H is a function f : V (G)→ V (H) such that if the edge ab ∈ Ei(G), then f(a)f(b) ∈ Ei(H),
and if the arc ab ∈ Aj(G) then f(a)f(b) ∈ Aj(H). A homomorphism G→ H preserves edges,
arcs, and colours. If there is a homomorphism of G to H, we may write G→ H.

Observe that (1, 0)-edge coloured mixed graphs are undirected graphs, (m, 0)-edge coloured
mixed graphs are m-edge-coloured graphs, and (0, 1)-edge-coloured mixed graphs are directed
graphs. The definition of homomorphism given above restricts to the usual definition in each
of these cases. The (m,n)-edge-coloured mixed graphs and homomorphisms between them
were first introduced in [8] as a means of unifying the seemingly parallel theories of homo-
morphisms of oriented graphs and homomorphisms of 2-edge-coloured graphs: quite often
statements that hold for oriented graphs, for example, also hold for 2-edge-coloured graphs
with virtually the same proof (e.g. see [5]). In such cases it is reasonable to look for a general
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theorem about (m,n)-edge-coloured mixed graphs that contains these statements as special
cases (for example, see [8]).

3 Switching and switch equivalence
We now define the switching operation on a (m,n)-edge-coloured mixed graph G = (V,E,A).
Let φ ∈ Sm, ψ ∈ Sn, and π = (p1, p2, . . . , pn) ∈ (Z2)n. For the ordered triple γ = (φ, ψ, π),
define γ-switching at v ∈ V to be the operation that transforms G into the (m,n)-edge-
coloured mixed graph Gv,γ by switching colours of the edges incident with v according to φ,
the colours of the arcs incident with v according to ψ, and reversing the orientation of arcs
of colour j incident with v if and only if pj = 1. If E or A contains a loop vv, then the
permutation φ or ψ is applied twice because there are two incidences with v. Thus, edges of
colour i joining distinct vertices in G have colour φ(i) in Gv,γ , arcs of colour j joining distinct
vertices in G have colour ψ(j) in Gv,γ and their orientation is reversed if and only if pj = 1.
Edge loops in G of colour i have colour φ(φ(i)) in Gv,γ , and arc loops in G of colour i have
colour ψ(ψ(i)) in Gv,γ

It follows from the definition of the wreath product Sn o S2 (also known as the hype-
roctahedral group) that the collection of all possible γ-switches is naturally isomorphic to
Sm⊗ (Sn oSn). As an aside, it is known that the hyperoctahedral group is the automorphism
group of the n-dimensional hypercube [3].

Let Γ be a fixed subgroup of Sm ⊗ (S2 o Sn). Then, the relation ∼Γ on the set of all
(m,n)-edge-coloured mixed graphs defined by G ∼Γ H if and only if there is a finite sequence
of switches at vertices of G that transforms G into H is an equivalence relation. More
formally, G ∼Γ H if and only if there is a finite sequence of (m,n)-edge-coloured mixed
graphs G0, G1, . . . , Gk where G0 = G, Gk = H, and for 0 ≤ i ≤ k − 1, Gi+1 = (Gi)

vi,γi for
some vi ∈ V and Γi ∈ Γ. When G ∼Γ H we say that G and H are Γ-switch equivalent. The
equivalence class of the (m,n)-edge coloured mixed graph G is denoted by [G]Γ.

Let G and H be (m,n)-edge-coloured mixed graphs. We say that there is a Γ-switchable
homomorphism of G to H if there is a homomorphism from some element G′ ∈ [G]Γ to H.
If some such homomorphism exists, we say that G is Γ-switchably homomorphic to H, and
write G −→

Γ
H.

Our definition for γ-switching restricts to the definitions given in [1, 6, 7, 9] for switching
or pushing in the case of (m, 0) or (0, 1) graphs. In the former case, Γ consists of elements
of the form (φ, e, e), where e is the identity element. In the latter case, Γ consists of the two
elements (e, e, 0) and (e, e, 1). Our definition of a Γ-swichable homomorphism thus naturally
restricts to the previous definitions of switching and pushing.

The following statements can be proved in the same way as the corresponding results for
oriented graphs with the pushing operation, and m-edge-coloured graphs with a switching
operation.

Theorem 1 Let F,G and H be (m,n)-edge-coloured mixed graphs.

1. If G ∈ [H]Γ, then G −→
Γ
H.

2. If G→ H, then G −→
Γ
H.

3. If F is a subgraph of G and G −→
Γ
H, then F −→

Γ
H.

4. If H ′ ∈ [H]Γ and G→ H, then there exists G′ ∈ [G]Γ such that G′ → H ′.

5. If G −→
Γ
H, then G′ −→

Γ
H ′ for all G′ ∈ [G]Γ and all H ′ ∈ [H]Γ.
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4 Abelian groups and the switching graph
When Γ is Abelian the order in which elements of Γ are applied at various vertices does
not matter. For this reason, to obtain any element of [G]Γ, one can simply switch at every
vertex v ∈ G with some element γv ∈ Γ (possibly the identity). It follows that if G can be
transformed into H, then it can be done with a sequence of at most |V (G)| switches. Thus
the question of deciding whether G and H are Γ-switch equivalent is a finite question. By
contrast, when Γ is non-Abelian it is not clear how many switches are required to transform
G into H, if it is possible to do so.

Let Γ be an Abelian subgroup of Sm ⊗ (S2 o Sn), and G be a (m,n)-edge-coloured mixed
graph. The Γ-switching graph of G is the (m,n)-edge-coloured mixed graph PΓ(G) with
vertex set V (PΓ(G)) = V (G)× Γ, and edges and arcs defined as follows:

1. If xy ∈ Ei(G) and γ1 = (φ1, ψ1, π1) and γ2 ∈ (φ2, ψ2, π2) are in Γ, then (x, γ1)(y, γ2) ∈
Er(PΓ(G)), where r = φ1(i)φ2(i).

2. If xy ∈ Aj(G) and γ1 = (φ1, ψ1, π1) and γ2 = (φ2, ψ2, π2) are in Γ, where π1 =
(p1,1, p1,2, . . . , p1,n) and π2 = (p2,1, p2,2, . . . , p2,n), then

(a) if p1,j = p2,j , then (x, γ1)(y, γ2) ∈ Es(PΓ(G)), where s = ψ1(j)ψ2(j), and
(b) if p1,j 6= p2,j , then (y, γ2)(x, γ1) ∈ Es(PΓ(G)), where s = ψ1(j)ψ2(j).

The next theorem shows that, as in the cases of oriented graphs and the pushing operation,
or m-edge coloured graphs and an Abelian switching operation, the Γ-switching graph gives
a representation of [G]Γ.

Define a transversal subgraph of PΓ(G) to be a subgraph of PΓ(G) induced by a transversal
of the collection of |V (G)| sets {(x, γ) : γ ∈ Γ}, x ∈ V (G).

Theorem 2 Let G be a (m,n)-edge-coloured mixed graph. Then G′ ∈ [G]γ if and only if G′

is a transversal subgraph of PΓ(G).

The Γ-switching graph, PΓ(G), transforms questions about Γ-switchable homomorphisms
into questions about (ordinary) homomorphisms.

A Γ-switchable isomorphism between G and H is an isomorphism G′ ∼= H, where G′ ∈
[G]Γ. If some such isomorphism exists we say G is Γ-switchably isomorphic toH, and G ∼=Γ H.
Equivalently, G is Γ-switchably isomorphic to H if and only if G ∈ [H]Γ

Theorem 3 Let G and H be (m,n)-edge-coloured mixed graphs. Then

1. G ∼=Γ H if and only if PΓ(G) ∼= P (H),

2. G −→
Γ
H if and only if PΓ(G)→ P (H), and

3. G −→
Γ
H if and only if G→ P (H).

5 Switchable cores
A (m,n)-edge coloured mixed graph is a Γ-switchable core if it admits no Γ-switchable homo-
morphism to a proper subgraph. As in the previous section, for Abelian groups Γ we transform
the problem of whether a graph is a Γ-switchable core into a problem that does not involve
switching. The (m,n)-edge-coloured mixed graph PΓ(G) defined in the previous section is
not in itself sufficient to accomplish this; however, a particular of PΓ(G) subgraph suffices
for this purpose. The development below follows results implicit in [1] for m-edge-coloured
graphs and switching with respect to cyclic groups.

For each vertex x ∈ G, define an equivalence relation ≈x on Γ by γ1 = (φ1, ψ1, π1) ≈x
γ2 = (φ2, ψ2, π2) if and only if
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1. φ1(f) = φ2(f) for every edge f incident with x,

2. ψ1(a) = ψ2(a) for every arc a incident with x, and

3. π1 = π2.

Let G be an (m,n)-edge-coloured mixed graph. The (m,n)-edge-coloured mixed graph
SΓ(G) is obtained from PΓ(G) by identifying vertices (x, γ1) and (x, γ2) whenever γ1 ≈x γ2

(note: necessarily the same x). Then SΓ(G) is a transversal subgraph of PΓ(G). Further, the
mapping just defined is a homomorphism. Recall that H is a retract of G if it is an induced
subgraph of G and there is a homomorphism G→ H that fixes H.

Theorem 4 Let G be a (m,n)-edge-coloured mixed graph, and Γ be an Abelian group. Then
SΓ(G) is a retract of G. Further, all of the previous results hold with SΓ(G) in place of PΓ(G).

In the following we generalize a result of Brewster and Graves [1] for m-edge-coloured
graphs and switching with respect to cyclic groups to (m,n)-edge-coloured mixed graphs and
switching with respect to Abelian groups.

Theorem 5 Let G be a (m,n)-edge-coloured mixed graph, and Γ be an Abelian group. Then
G is a Γ-switchable core if and only if SΓ(G) is a core.

Hell and Nešetřil [2] proved that it is NP-complete to decide that a given graph is not
a core. The following corollary arises from applying their result to (m,n)-edge-cololoured
graphs with only edges of one colour.

Corollary 6 The problem of deciding whether a given (m,n)-edge-coloured graph is not a
core is NP-complete.

If Γ is an Abelian group, then there is a Γ-switchable homomorphism P (G) −→
Γ
G. Thus,

if G is a (m,n)-edge-colouloured graph with only edges of one colour, then the Γ-switchable
core of P (G) is the core of G. Hence G is a Γ-switchable core if and only if G is a core.

Corollary 7 Let Γ be an Abelian group. The problem of deciding whether a given (m,n)-
edge-coloured graph is not a Γ-swichable core is NP-complete.
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Extended Abstract

Abstract

We consider a cops and robber game where the cops are blocking edges of a graph, while
the robber occupies its vertices. At each round of the game, the cops block some set
of edges and right after the robber is obliged to move to another vertex traversing at
most s unblocked edges (s can be seen as the speed of the robber). Both parts have
complete knowledge of the opponent’s moves and cops win when they occupy all edges
incident to the robbers position. We introduce the capture cost on G against a rob-
ber of speed s. This defines a hierarchy of invariants, namely δ1e , δ2e , . . . , δ∞e , where δ1e
is the classic degeneracy invariant, while when δ∞e is an edge-analogue of the admissi-
bility invariant, namely the edge-admissibility of a graph. We prove that the problem
asking wether δse(G) ≤ k, is polynomially solvable when s ∈ {1, 2, 3,∞} while, other-
wise, it is NP-complete. Our main result is a structural theorem for graphs of bounded
edge-admissibility. We prove that every graph of edge-admissibility at most k can be
constructed using (≤ k)-edge-sums, starting from graphs whose all vertices, except pos-
sibly from one, have degree at most k. Our structural result is approximately tight in
the sense that graphs generated by this construction have always edge-admissibility at
most 2k− 1. Our proofs are based on a precise structural characterization of the graphs
that do not contain θr as an immersion, where θr is the graph on two vertices and r
parallel edges.

Keywords: Graph Immersions, Graph Degeneracy, Structural Graph Theory, Graph Ad-
missibility, Graph Searching Games

1 Introduction
All graphs in this paper are undirected, finite, loopless, and may have parallel edges. We
denote by V (G) the set of vertices of a graph G while we use E(G) for the multi-set of its
edges.

An (k, s)-hide out in a graph G is a subset S of its vertices such that for each vertex v ∈ S
there are at least k paths from v to S \ {v} that have no common vertices different than v.
The s-degeneracy of a graph G has been introduced in [10] as the minimum k for which G
contains a (k, s)-hide out. s-degeneracy, denoted also by δs, defines a hierarchy of parameters
that when s = 1 gives the classic parameter of graph degeneracy [7, 1, 6] and, when s = ∞,
gives the parameter of ∞-admissibility that has been studied in [3, 5, 9, 2, 8, 11, 4]. In
this paper we introduce the edge analogue of this graph parameter hierarchy, namely the
s-edge-degeneracy hierarchy.

In Section 2 we introduce a graph searching game for this parameter and we provide
alternative definitions whose equivalence is certified by a min-max theorem. Also we identify
the computational complexity of s-edge-degeneracy for different values of s. In Section 3
we provide a structural characterization for the case where s = ∞. This characterization
can be seen as the edge-counterpart of the corresponding structural characterization of ∞-
admissibility in [3].

1The first, second, and third author is supported by project ESIGMA (ANR-17-CE23-0010). The second,
and third author is supported by project DEMOGRAPH (ANR-16-CE40-0028). The last author is supported
by the Research Council of Norway and the French Ministry of Europe and Foreign Affairs, via the Franco-
Norwegian project PHC AURORA 2019.
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2 s-edge-degeneracy

2.1 A search game.
We define a graph searching game, where the opponents are a group of cops and a robber. In
this game, the cops are blocking edges of the graph, while the robber resides on the vertices.
The first move of the game is done by the robber, who chooses a vertex to occupy. Then,
the game is played in rounds. In each round, first the cops block a set of edges and next the
robber moves to another vertex via paths consisting of at most s unblocked edges. The robber
is captured if, after the move of the cops, all the edges incident to his/her current location are
blocked qnd therefore cannot move anymore. Both cops and robbers have full knowledge of
their opponent’s current position and they take it into consideration before they make their
next move. We next give the formal definition of the game.

The game is parameterized by the speed s ∈ N+
≥1 of the robber. A search strategy on G

for the cops is a function f : V (G) → 2E(G) that, given the current position x ∈ V (G) of
the robber in the end of a round, outputs the set f(v) of the edges that should be blocked
in the beginning of the next round. The cost of a cop strategy f is defined as cost(f) =
max{|f(v)| | v ∈ V (G)}, i.e., the maximum number of edges that may be blocked by the cops
according to f .

An escape strategy on G for the robber is a pair R = (vstart, g) where vstart is the vertex
of robber’s first move and g : 2E(G) × V (G) → V (G) is a function that, given the set F of
blocked edges in the beginning of a round and the current position x of the robber, outputs
the vertex u = g(F, v) where the robber should move. Here the natural restriction for g is
that there is a path of at most s edges from v to u in G \ F . Clearly, if F is the set of edges
that are incident to v, then g(F, v) should be equal to v and this expresses the situation where
the robber is captured.

Let f and R = (vstart, g) be strategies for the cop and the robber respectively. The
game scenario generated by the pair (f,R) is the infinite sequence v0, F1, v1, F2, v2, . . . , where
v0 = vstart and for every i ∈ N≥1, Fi = f(vi−1) and vi = g(Fi, vi−1). If vi = vi−1 for some
i ∈ N≥1, then (f,R) is a cop-winning pair, otherwise it is a robber-winning pair.

The capture cost against a robber of speed s in a graph G, denoted by ccs(G) is the
minimum k for which there is a cop strategy f , of cost at most k, such that for every robber
strategy R, (f,R) is a cop-winning pair.

2.2 A min-max theorem for s-edge-degeneracy
Edge-degeneracy. Let G be a graph, x ∈ V (G), S ⊆ V (G) \ {x}, and s ∈ N+

≥1. We say
that a set A ⊆ E(G) is an (s, x, S)-edge-separator if every path of G from x to some vertex
in S, of length at most s, contains some edge from A. We define suppG(s, x, S) to be the
minimum size of a (s, x, S)-edge-separator in G.

Let G be a graph and let L = 〈v1, . . . , vr〉 be a layout (i.e. linear ordering) of its vertices.
Given an i ∈ [r], we write L≤i = 〈v1, . . . , vi〉. Given a s ∈ N+

≥1, we define the s-edge-support
of a vertex vi in L as suppG(s, vi, L≤i−1). The s-edge-degeneracy of the layout L of G, is the
maximum s-edge-support of a vertex in L. The s-edge-degeneracy of G, denoted by δse(G) is
the minimum s-edge-degeneracy over all layouts of G.

Edge hide-outs. Let s ∈ N+
≥1 and k ∈ N. A (k, s)-edge-hide-out in a graph G is any set

R ⊆ V (G) such that, for every x ∈ R, suppG(s, x,R \ {x}) ≥ k. A (k, s)-edge-hide-out S
is maximal if there is no other (k, s)-edge-hide-out S′ with S ( S′. It is easy to verify that
every graph contains a unique maximal (k, s)-edge-hide-out.

(k, s)-edge-hide-outs can be seen as obstructions to small s-edge-degeneracy. In particular
we prove the following min-max theorem, characterizing the search game that we defined in
Subsection 2.1.
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Theorem 1 Let G be a graph and let s ∈ N+
≥1 and k ∈ N. The following three statements

are equivalent.

(1) ccs(G) ≤ k, i.e., there is a cop strategy f on G of cost less than k, such that for every
robber strategy R on G, (f,R) is cop-winning.

(2) G has no (k + 1, s)-edge-hide-out.

(3) δse(G) ≤ k.
Also, we settle the computational complexity of the s-edge-degeneracy δse as follows.

Theorem 2 If s ∈ {1, 2, 3,∞}, then the problem that, given a graph G and a k ∈ N, asks
whether δse(G) ≤ k, is polynomially solvable, while it is NP-complete if s ∈ N≥4.

3 A structural theorem for edge-admisibility

3.1 Edge-admissibility
The 2-admissibility of a graph G was defined in [5, 2] as the minimum k for which there
exists a layout L = 〈v1, . . . , vn〉 of V (G) such that for every i ∈ [n] there are at most k
vertex-disjoint paths from vi to L≤i−1 in G. If in this definition we replace “vertex-disjoint”
by “edge-disjoint” we have an edge analogue of the admissibility invariant that, because of
Menger’s theorem is the same invariant as δ∞e . This encourages us to alternatively refer to
δ∞e (G) as the edge-admissibility of the graph G.

The purpose of this section is to give a structural characterization for graphs of bounded
edge-admissibility. For this we need first a series of definitions. Analogous structural results
for the notion of (vertex)-∞-admissibility where given by Zdeněk Dvořák in [3, Theorem 6].

Immersions. Given a graph G and two incident edges e and f of G (i.e., edges with a
common endpoint) the result of lifting e and f in G is the graph obtained from G after
removing e and f and then adding the edge formed by the symmetric difference of e and
f . We say that a graph H is an immersion of a graph G, denoted by H ≤ G, if a graph
isomorphic to H can be obtained from some subgraph of G after a series of liftings of incident
edges. Given a graph H, we define the class of H-immersion free graphs as the class of all
graphs that do not contain H as an immersion.

Edge sums. Given a graph G and a vertex v, we define EG(v) as the multi-set of all edges
of G that are incident to v.

Let G1 and G2 be graphs, let v1, v2 be vertices of V (G1) and V (G2) respectively such
that k = edegG(v1) = edegG(v2), and consider a bijection σ : EG1

(v1) → EG2
(v2), where

EG1
(v1) = {ei1 | i ∈ [k]}. We define the k-edge sum of G1 and G2 on v1 and v2, with respect

to σ, as the graph G obtained if we take the disjoint union of G1 and G2, identify v1 with v2,
and then, for each i ∈ {1, . . . , k}, lift ei1 and σ(ei1) to a new edge ei and remove the vertex
v1. We say that G is a (≤ k)-edge sum of G1 and G2 if either G is the disjoint union of G1

and G2 or there is some k′ ∈ [k], two vertices v1 and v2, and a bijection σ as above such that
G is the k-edge sum of G1 and G2 on v1 and v2, with respect to σ.

Let G be some graph class. We recursively define the (≤ k)-sum closure of G, denoted
by G(≤k), as the set of graphs containing every graph G ∈ G and every graph G that is the
(≤ k)-edge sum of two graphs G1 and G2 in G where |V (G1)|, |V (G2)| < |V (G)|.

A graph G has almost k-bounded edge-degree if all its vertices, except possibly from one,
have edge degree at most k. We denote this class of graphs by Ak.

Given a k ∈ N≥1, we denote by θk the graph with two vertices an k parallel edges between
them. We prove the following structural characterization of the graphs excluding θk+1 as an
immersion.
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Figure 1: The graphs G1 and G2 and the graph created after the edge-sum of G1 and G2.

Theorem 3 For every graph G and k ∈ N, G is θk+1-immersion free if and only if G ∈ A(≤k)
k .

It is easy to see that if θk+1 ≤ G, then δ∞e (G) > k. We prove the following approximate
version of the opposite direction.

Theorem 4 Let G be a graph and k ∈ N≥1. If θk+1 � G, then δ∞e (G) ≤ 2k − 1.

Based on Theorems 3 and 4 we are able to prove our main structural result on edge-
admissibility that is the following.

Theorem 5 For every graph G and k ∈ N≥0, if δ∞e (G) ≤ k, then G can be constructed
by almost k-bounded edge-degree graphs after a series of (≤ k)-edge sums, i.e., G ∈ A(≤k)

k .
Conversely, for every k ∈ N≥1, every graph in A(≤k)

k has edge-admissibility at most 2k − 1.
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Extended Abstract

Introduction. Due to Vizing's theorem [6] subcubic graphs have chromatic index at
most four. Deciding, whether the chromatic index is 1, 2, or at least three is easy. On the
other hand deciding whether the chromatic index is 3 or 4 is a well known NP-hard problem
[4]. As if a graph has a vertex of degree at least four, then it's chromatic index is at least four,
only graphs of maximal degree three are of interests while deciding 3-edge-colorability. Cubic
graphs with bridges have chromatic index 4, thus only bridgeless cubic graphs are of interest
while deciding 3-edge-colorability. Bridgeless cubic graphs that are not 3-edge colorable are
called snarks. Snarks form an intriguing class of cubic graphs. Many important problems
(e.g. Four color theorem, Five-Flow conjecture, Cycle double cover conjecture) can be reduced
naturally into a problem concerning snarks. That is why are snarks studied both theoretically
and computationally [2]. Fast algorithms to decide 3-edge-colorability and compute several
related invariants are therefore of substantial interests in the study of snarks.

Until now, the asymptotically fastest algorithm to decide 3-edge-colorability of a subcubic
graph was proposed by Kowalik [5] and it runs in O(1.344|V (G)|) time. Kowalik's paper
also notes, that there is a O(6(1/6+ε)·|V (G)|) = O(1.349|V (G)|)-algorithm that uses dynamic
programming with path decomposition provided by the algorithm of Fomin and Høie [3].

A path decomposition of a graph G is a sequence (X1, X2, . . . , Xk) of subsets of V (G), for
some integer k, such that each vertex of G occurs contiguously in the sequence and for each
edge both its endvertices are in at least one set together. The width of this decomposition is
maxki=1 |Xi| − 1. The pathwidth of a graph G is the minimal width of a path decomposition
of G. Fomin and Høie showed [3] that for every ε > 0 there exists a polynomial-time algorithm
that �nds a path decomposition of a cubic graph G of width at most (1/6 + ε) · |V (G)|. To
avoid degenerate cases we will consider only path decompositions with k ≤ |E(G)| (otherwise
the path decomposition contains sets that can be removed).

In our paper we re�ne the dynamic programming approach hinted by Kowalik and show
that for a given path decomposition D of a subcubic graph G, we can decide whether G
is 3-edge-colourable in time O(|V (G)| · 3w(D)). Thus for each ε > 0, there is an algorithm
that decides 3-edge-colorability of G in time O(3(1/6+ε)·|V (G)|) = O(1.201|V (G)|). We also
propose related algorithms that calculate resistance (the least number of vertices that has
to be removed to make a cubic graph 3-edge colorable), weak oddness (the least number of
odd factors in an even factor of a cubic graph), and strong oddness (the least number of odd
circuits in a 2-factor of a cubic graph), in similar running time.

Throughout this paper, we �x G to be the graph whose 3-edge colorability we want to
decide and we denote n the order and m the size of G.

Deciding 3-edge-colorability of cubic graphs. For simplicity, in this section we as-
sume that the graph G is cubic (the ideas here can be straightforwardly extended to subcubic
graphs) and loopless (graphs with loops are not colorable by de�nition). To ease the algo-
rithm description we assume that instead of an ordinary path decomposition of G we use a
decomposition pair ((X1, X2, . . . , Xm), f), where (X1, X2, . . . , Xm) is a path decomposition
of G and f is a bijective mapping from {1, . . . ,m} to E(G) such that for each i ∈ {1, . . . ,m}
both end-vertices of f(i) are in Xi. Such a special path decomposition can be constructed
from an arbitrary path decomposition straightforwardly. Using the algorithm of Fomin and
Høie we can, in polynomial time, calculate a decomposition pair ((X1, X2, . . . , Xm), f), such
that the path decomposition (X1, X2, . . . , Xm) of G has width at most (1/6 + ε) · n.

The subgraph at step j, denoted by Gj is a subgraph of G that has the same vertex-set as
G but it contains only edges f(i) for i ∈ {1, . . . , j − 1}. The degree of v at step j, denoted by
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dj(v), equals the degree of v in Gj . Note that due to the de�nition of path decomposition,
vertices that are not in Xj have degree zero or three at step j. Let D1,j and D2,j be the sets of
vertices from Xj that have degree one and two, respectively, at step j. Let rj = |D1,j ∪D2,j |.

All edge colorings in this section are proper 3-edge-colorings and use colors 0, 1, and 2.
We will call such a coloring simply coloring. Let c be a coloring of Gj . For a vertex v ∈ D1,j ,
the color of v in c at step j, is the unique color of the edge incident with v in Gj . For a
vertex v ∈ D2,j , the color of v in c at step j is the unique color that is not present on the
edges incident with v in Gj . In both cases we denote the color of v in c at step j by cj(v).
The main idea of our algorithm compared to the ordinary dynamic programming approach is
that at each step j it is su�cient to maintain only information about the tuples of admissible
colors of vertices from D1,j ∪D2,j .

Our dynamic programming at step j, j ∈ {1, . . . ,m+1}, stores two data structures. First
is the ordering array oj that orders the vertices from D1,j ∪D2,j (thus the array contains rj
distinct vertices from Xj). Let o be an ordering array and v be a vertex. If v is in o, then
o−v denotes the ordering array that contains all elements of o other than v in the same order
as they were in o. If v is not in o, then o · v denotes the ordering array created from o by
adding v as the last element.

Second structure uses a special bitarray, whose length is a power of 3. To index in
such a bitarray b of length 3k, instead of ordinary indices, we use sequences a1a2 . . . ak−1ak
of ternary digits, that is for each i ∈ {1, . . . , k} we have ai ∈ {0, 1, 2} and the sequence

b[a1 . . . ak] represents the (
∑k

i=1 ai · 3i−1)-th bit of b. For each integer k let false(k) be the
bitarray of length 3k that contains only false values. For two bitarrays b1 and b2, b1 · b2
denotes the concatenation and if the two arrays have equal length then b1 | b2 denotes the
bitwise or operation.

The second structure in our dynamic programming, the coloring array bj , is a bitarray
de�ned as follows. It has length 3rj . The value of bj [a1 . . . arj ] is true if and only if Gj has a
coloring c such that for each i ∈ {1, . . . , rj} the color cj(oj [i]) = ai.

Let i, i′ ∈ {0, 1, 2} and v, v′ ∈ D1,j ∪ D2,j , v 6= v′. Let k and k′ be the positions of v
and v′ in oj , respectively. Assume without loss of generality that k′ > k. We de�ne bj{v, i}
and bj{v, v′, i, i′} to be bitarrays of length 3rj−1 and 3rj−2, respectively, such that for each
a1, . . . , arj ∈ {0, 1, 2}:

• bj{v, i}[a1 . . . ak−1ak+1 . . . arj ] = bj [a1 . . . ak−1iak+1 . . . arj ];

• bj{v, v′, i, i′}[a1 . . . ak−1ak+1 . . . ak′−1ak′+1 . . . arj ] =
= bj [a1 . . . ak−1iak+1 . . . ak′−1i′ak′+1 . . . arj ].

Now we are �nally in position to describe the algorithm. Clearly, o1 = () and b1 = (true).
Then for each j ∈ {1, . . . ,m} we compute oj+1 and bj+1 as follows. Let u and v be two
endvertices of f(j). We may without loss of generality assume that dj(u) ≤ dj(v).

As when we reduce coloring of Gj+1 to Gj it is still a coloring, every coloring of Gj+1 can
be obtained from a coloring of Gj by setting the color of the edge f(j).

We consider six cases according to dj(u) and dj(v).

• dj(u) = 0, dj(v) = 0:

Let oj+1 = oj · v · u. Consider a coloring c of Gj . We can extend it into a coloring c′

of Gj+1 by setting f(j) = x, for arbitrary x ∈ {0, 1, 2}. For every w ∈ D1,j ∪ D2,j ,
cj(w) = c′j+1(w). For vertices u and v we have c′j+1(u) = c′j+1(v) = x. Thus we can
compute bj+1 as

bj+1 = bj · false(rj) · false(rj)
· false(rj) · bj · false(rj)
· false(rj) · false(rj) · bj .
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• dj(u) = 0, dj(v) = 1:

Consider the coloring c of Gj and let x be the color of v in c at step j. To extend this
coloring to Gj+1 we have to color the edge f(j) with a color y other than x. We name
the extended coloring c′. We have c′j+1(u) = y and c′j+1(v) is the unique color from
{0, 1, 2} − {x, y}. Thus we can compute bj+1 as

oj+1 = (oj − v) · v · u
bj+1 = false(rj − 1) · bj{v, 2} · bj{v, 1}

· bj{v, 2} · false(rj − 1) · bj{v, 0}
· bj{v, 1} · bj{v, 0} · false(rj − 1).

• dj(u) = 0, dj(v) = 2:

Consider the coloring c of Gj and let x be the color of v in c at step j. To extend this
coloring to Gj+1 we have to color the edge f(j) with a color x. We name the extended
coloring c′. We have c′j+1(u) = x. Thus we can compute bj+1 as

oj+1 = (oj − v) · u
bj+1 = bj{v, 0} · bj{v, 1} · bj{v, 2}.

• dj(u) = 1, dj(v) = 1:

Consider the coloring c of Gj and let x = cj(u) and y = cj(v). If x = y, then to extend
c to Gj+1 we have to color the edge f(j) with a color z other than x. Let z′ be the third
color. We have c′j+1(u) = c′j+1(v) = z. On the other hand, if x 6= y, then the third
color has to be used to color f(j). In this case we have c′j+1(u) = y and c′j+1(v) = z.
Thus we can compute bj+1 as

oj+1 = (oj − u− v) · v · u
bj+1 = (bj{u, v, 1, 1} | bj{u, v, 2, 2}) · bj{u, v, 0, 1} · bj{u, v, 0, 2}

· bj{u, v, 1, 0} · (bj{u, v, 0, 0} | bj{u, v, 2, 2}) · bj{u, v, 1, 2}
· bj{u, v, 2, 0} · bj{u, v, 2, 1} · (bj{u, v, 0, 0} | bj{u, v, 1, 1}).

• dj(u) = 1, dj(v) = 2:

Consider the coloring c of Gj and let x = cj(u) and y = cj(v). We can extend the
coloring only if x 6= y and we have to color the edge f(j) with color y. Let z be the
color other than x and y. We have c′j+1(u) = z. Thus we can compute bj+1 as

oj+1 = (oj − u− v) · u
bj+1 = (bj{u, v, 1, 2} | bj{u, v, 2, 1})

· (bj{u, v, 0, 2} | bj{u, v, 2, 0})
· (bj{u, v, 0, 1} | bj{u, v, 1, 0}).

• dj(u) = 2, dj(v) = 2:

Consider the coloring c of Gj and let x = cj(u) and y = cj(v). We can extend the
coloring only if x = y and we have to color the edge f(j) with color x. We can compute
bj+1 as

oj+1 = (oj − u− v)
bj+1 = (bj{u, v, 0, 0}|bj{u, v, 1, 1}|bj{u, v, 2, 2}).
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After m steps the coloring array has just one element that determines whether the graph
admits a 3-edge-coloring.

Implementation and extensions. Our algorithm can be easily modi�ed to allow various
calculation typical in study of subcubic graphs and snarks, among others:

• deciding if a partial coloring is extensible to the whole graph,

• compute the set of admissible colors on halfedges,

• determine the resistance of a cubic graph,

• determine the strong and weak oddness of a cubic graph.

To determine invariants like resistance, oddness and weak oddness one has to save k coloring
arrays, where k is a bound on the parameter for the studied graph. The i-th coloring array
contains information on which color tuples are admissible if we allow i − 1 speci�c errors in
the coloring. For resistance, an error in the coloring means that an edge may have di�erent
colors at its ends. For strong oddness, an error in the coloring means that an edge may have
color 1 at one end and color 2 at the other. For weak oddness, an error in the coloring means
that an edge may have color 1 at one end and color 2 at the other, or that a vertex is incident
with three edges that have color 0.

In our implementation we replaced the Fomin-Høie algorithm (which is quite hard to
implement) by a simple path decomposition heuristics: we start with a vertex and then we
repeatedly �nd shortest ears and expand the decomposition pair so it contains the edges of
the shortest ear. We tested our approach on random 120 vertex cubic graphs. This simple
heuristic produced path decompositions of widths between 15 and 20. Our implementation
(which de�nitely can be improved) was able to deal even with the (rare) path decompositions
of width 20, it required one and half minute (single threaded, 3MHz) and 5GB RAM.

Note that there are various heuristics that �nd 3-edge-colouring of random graphs easily.
Thus one can expect that for �interesting� instances of the problem, one can �nd path decom-
positions of even shorter width. Indeed, with our colleagues we already used the algorithm
successfully to verify properties of several quite large graphs (e.g. graphs from [1]).
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Extended Abstract

In this talk we consider the problem of the 3-colorability of a subclass of 4-regular planar
graphs. Deciding whether a planar graph (even of maximum degree 4) is 3-colorable is NP-
complete [6]. Heawood [9] proved that a plane triangulation is 3-colorable if and only if all
its vertices have even degrees. On the other hand, a wellknown result by Grötzsch's [7] shows
that if there are no cycles of length 3 in a planar graph, then it is 3-colorable. This result
was later improved by Grünbaum [8] to planar graphs with at most three triangles.

Allowing some triangles in a graph, but still retaining 3-colorability yielded two intriguing
conjectures. Havel conjectured that a planar graph that contains only triangles that are su�-
ciently far apart is 3-colorable. This conjecture was proved by Dvo°ák, Krá©, and Thomas [4].
The second conjecture is due to Steinberg, who conjectured that every planar graph without
cycles of length 4 and 5 is 3-colorable. The conjecture was disproved by Cohen-Addad et
al [2]; however a number of weaker results have been proved.

All the problems listed above are even harder in a more general setting of list coloring. As
shown by Voigt [12], planar graphs are not 4-choosable; Thomassen [10] proved that they are
5-choosable. An equivalent of Grötzsch's result does not hold in the list setting; as shown by
Voigt [13], there are triangle-free planar graphs which are not 3-choosable. Thomassen [11]
however proved that girth 5 is a su�cient condition for their 3-choosability.

An analogue of Havel's conjecture hence requires cycles of length 3 and also 4 to be
su�ciently distant. Dvo°ák [3] proved that distance 26 between them is su�cient. The list-
version of Steinberg's conjecture clearly requires more excluded cycles. Dvo°ák and Postle [5]
showed that planar graphs without cycles of lengths from 4 to 8 are 3-choosable. It is still
not known if it su�ces to forbid only cycles from 4 to 7 or even from 4 to 6.

In this talk, we prove the following:

Theorem 1 Every medial graph (with eventual loops removed) of a bipartite plane graph is
3-choosable.

Let G be a bipartite plane graph with δ(G) ≤ 2. The medial graph M(G) is a graph with
the vertex set V (M(G)) = E(G) and two vertices u and v being adjacent if the edges of G
corresponding to u and v appear successively on the boundary of some face of G. Hence,
M(G) is 4-regular, it can have close triangles (even incident), and it has no short cycles
forbidden.

There are two types of faces in M(G): the ones corresponding to the vertices of G (we
call them black), and the ones corresponding to the faces of G (we call them white). Notice
that all white faces have even length, since G is bipartite. Moreover, every edge in M(G) is
incident to two faces, one black and one white (see the left graph in Figure 1 for an example).

Let
−→
M(G) be a directed graph obtained from M(G) by directing the edges such that

each edge has its black face on the left hand side when going from its initial vertex to its
terminal vertex. This in particular means that every vertex has precisely two incoming and
two outgoing edges, and therefore d−(v) = d+(v) = 2 for every v ∈ V (~G).

For
−→
M(G) we use the following well-known result due to Alon and Tarsi [1].

Theorem 2 (Alon & Tarsi, 1992) Let D be a directed graph, and let L be a list-assignment
such that |L(v)| ≥ d+D(v) + 1 for each v ∈ V (D). If Ee(D) 6= Eo(D), then D is L-colorable.
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Figure 1: The left graph is the medial graph M(Q3) of the cube Q3; its vertices and edges
are depicted as full circles and solid edges, while the vertices and edges of Q3 are depicted
with empty circles and dashed edges. The black faces of M(Q3) are shaded. The right graph
is the directed graph

−→
M(Q3) such that the edges have a black face always on their left hand

side.

It can be shown that every odd Eulerian spanning subgraph of
−→
M(G) can be injectively

mapped to an even Eulerian spanning subgraph of
−→
M(G); and that there is an even Eulerian

subgraph of
−→
M(G) to which no odd subgraph is mapped, and thus fulfill the assumptions of

Theorem 2. That will imply 3-choosability of M(G).
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Extended Abstract

1 Introduction
We consider finite undirected graphs with neither loops nor multiple edges. For a graph G,
V (G) denotes the vertex set of G and E(G) denotes the edge set of G. The order of G is
denoted by |G|. For a positive integer m, we denote by K1,m a star with m end-vertices and
Cm a cycle of order m ≥ 3. For a set of undirected graphs H, a spanning subgraph F of
a graph G is called an H-factor if every connected component of F is isomorphic to some
element of H. Tutte showed the characterization on the existence of perfect matchings in
graphs [5]. Berge [2] extended Tutte’s theorem to a min-max formula for the maximum order
of a matching in graphs. For a graph G, o(G) denotes the number of odd components (those
having an odd number of vertices).

Theorem 1 (Tutte [5]) A graph G has a perfect matching if and only if

o(G − S) ≤ |S| for all S ⊆ V (G).

Berge [2] extended the above Tutte’s theorem to a min-max formula, known as the Berge-
Tutte formula, for the maximum order of a matching in a graph.

Theorem 2 (Berge [2]) Let G be a graph. The order of a maximum matching of G equals

|V (G)| − max
X⊆V (G)

{o(G − S) − |S|}.

Let G be a graph and f an integer-valued function defined on V (G) such that f(x) ≥ 1
for all x ∈ V (G). Then a subgraph of G is called an f -star if it is isomorphic to the star K1,t

such that the degree t of its center x satisfies 1 ≤ t ≤ f(x). Berge and Las Vergnas obtained
the necessary and sufficient condition for graphs to have a spanning subgraph each of whose
components is an f -star. Note that i(G) stands for the number of isolated vertices in a graph
G.

Theorem 3 (Berge and Las Vergnas [3]) Let G be a graph and f an integer-valued func-
tion defined on V (G) such that f(x) ≥ 2 for all x ∈ V (G). Then G has a spanning subgraph
each of whose components is an f -star if and only if

i(G − S) ≤
∑

x∈S

f(x) for all S ⊆ V (G).

Theorem 4 (Berge and Las Vergnas [3]) Let G be a graph and f an integer-valued func-
tion defined on V (G) such that f(x) ≥ 1 for all x ∈ V (G). Then G has a spanning subgraph
of G every component of which is either an f -star or an odd cycle C with f(x) = 1 for every
vertex x ∈ V (C) if and only if

i(G − S) ≤
∑

x∈S

f(x) for all S ⊆ V (G).
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A vertex of a tree T with degree one is often called a leaf and the leaf degree of a vertex
x ∈ V (T ) is defined as the number of leaves in T adjacent to x, and is denoted by leafT (x).
Let f be an integer-valued function defined on V (G) such that f(x) ≥ 0 for all x ∈ V (G).
A tree T of G is said to be an f -leaf-tree of G if the leaf degree of each vertex x ∈ V (T ) is
at most f(x). For a positive integer m, an f -leaf-tree is an m-leaf-tree if f(x) = m for any
x ∈ V (G).

A spanning subgraph each of whose components is an f -star can be regarded as a spanning
forest with bounded leaf degree. Thus we are interested in the similar criterions for a spanning
‘tree’ with bounded leaf degree. In fact, Kaneko gave a necessary and sufficient condition for
graphs to have a spanning m-leaf-tree, which gives the similar criterion with Theorems 3 and
4.

Theorem 5 (Kaneko [4]) Let m be an integer with m ≥ 1. A connected graph G has a
spanning m-leaf-tree if and only if for every nonempty subset S ⊆ V (G),

i(G − S) ≤ (m + 1)|S| − 1

unless G is isomorophic to C3 and m = 1.

2 Main Results
Motivated by Kaneko’s theorem, we obtain two results on an f -leaf-tree in a graph.

Our first theorem is a necessary and sufficient condition for graphs to have a spanning
f -leaf-tree. The above Kaneko’s result assumes m ≥ 1, that is, the upper bound of each leaf
degree is at least one, but our result contains the case when the leaf degrees of some vertices
are zero.

Theorem 6 Let G be a connected graph and f an integer-valued function defined on V (G)
such that f(x) ≥ 0 for all x ∈ V (G). Suppose that the set of vertices x with f(x) = 0 is
independent in G. Then G has a spanning f -leaf-tree if and only if for every nonempty subset
S ⊆ V (G),

i(G − S) ≤
∑

x∈S

(
f(x) + 1

)
− 1

unless G is isomorophic to C3 such that f(x1) ≤ 1 = f(x2) = f(x3) for each xi ∈ V (C3) with
i = 1, 2, 3.

Our second result is the maximum order of an f -leaf-tree in a graph, which is the Berge-
Tutte type theorem for an f -leaf-tree.

Theorem 7 Let G be a connected graph and f an integer-valued function defined on V (G)
such that f(x) ≥ 1 for all x ∈ V (G). For each interger k with 1 ≤ k ≤ |V (G)|, define a
function g(k) as follows.

g(k) := max
S1,...,Sk⊆V (G)
Si ̸=∅ for 1≤i≤k

Si∩Sj=∅ for 1≤i<j≤k

k∑

j=1

(
i(G − Sj) −

∑

x∈Sj

(
f(x) + 1

)
+ 1

)
.

Then the maximum order of an f -leaf-tree of G is given by

|V (G)| − max
1≤k≤|V (G)|

{g(k), 0}

unless G is isomorophic to C3 such that f(x1) = f(x2) = f(x3) = 1 for each xi ∈ V (C3) with
i = 1, 2, 3.
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Extended Abstract

The celebrated Erdős-Pósa theorem [3] states that every undirected graph that does not
admit a family of k vertex-disjoint cycles contains a feedback vertex set (a set of vertices hitting
all cycles in the graph) of size O(k log k). After being known for long as Younger’s conjecture,
a similar statement for directed graphs has been proven in 1996 by Reed, Robertson, Seymour,
and Thomas [8]. However, in their proof, the dependency of the size of the feedback vertex
set on the size of vertex-disjoint cycle packing is not elementary.

We show that if we compare the size of a minimum feedback vertex set in a directed graph
with quarter-integral cycle packing number, we obtain a polynomial bound. More precisely,
we show that if in a directed graph G there is no family of k cycles such that every vertex of
G is in at most four of the cycles, then there exists a feedback vertex set in G of size O(k4).
On the way there we prove a more general result about quarter-integral packing of subgraphs
of high directed treewidth: for every pair of positive integers a and b, if a directed graph G
has directed treewidth Ω(a6b8 log2(ab)), then one can find in G a family of a subgraphs, each
of directed treewidth at least b, such that every vertex of G is in at most four subgraphs.

More precisely, we prove that if one compares the feedback vertex set number of a directed
graph to the quarter-integral cycle packing number (i.e., the maximum size of a family of cycles
in G such that every vertex lies on at most four cycles), one obtains a polynomial bound.

Theorem 1 If a directed graph G does not contain a family of k cycles such that every vertex
in G is contained in at most four cycles, then there exists a feedback vertex set in G of size
O(k4).

Directed treewidth is a directed analog of the successful notion of treewidth, introduced
in [7]. For a directed graph G, let fvs(G), dtw(G), and cp(G) denote the feedback vertex set
number, directed treewidth, and the cycle packing number of G, respectively. The following
lemma is a direct consequence of [1, Lemma 4.2].

Lemma 2 For a directed graph G it holds that fvs(G) ≤ (dtw(G) + 1) cp(G).

In the light of Lemma 2 and since a directed grid minor of size k contains k vertex-disjoint
cycles, the directed grid theorem of Kawarabayashi and Kreutzer [5] is a generalization of the
directed Erdős-Pósa property due to Reed, Robertson, Seymour, and Thomas [8].

Theorem 1 is a direct corollary of Lemma 2 and the following statement that we prove.

Theorem 3 If a directed graph G does not contain a family of k cycles such that every vertex
in G is contained in at most four cycles, then dtw(G) = O(k3).

Furthermore, if one asks not for a cycle packing, but a packing of subgraphs of large directed
treewidth, we prove the following packing result.

1The conference version of this article will appear on ESA 2019 [6]. The full version is available
on arXiv:1907.02494 This research is a part of projects that have received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and innovation programme Grant

Agreements 648527 (IM) and 714704 (all authors). Tomáš Masařík is also affiliated with Charles
University, Prague, Czech Republic. He was also supported by Charles University, student grant number
SVV–2017–260452.
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Theorem 4 There exists an absolute constant c with the following property. For every pair
of positive integers a and b, and every directed graph G of directed treewidth at least c · a6 ·
b8 · log2(ab), there are directed graphs G1, G2, . . . , Ga with the following properties:

1. each Gi is a subgraph of G,

2. each vertex of G belongs to at most four graphs Gi, and

3. each graph Gi has directed treewidth at least b.

Note that by setting b = 2 in Theorem 4, one obtains Theorem 3 with a slightly weaker bound
of O(k6 log2 k) and, consequently, Theorem 1 with a weaker bound of O(k7 log2 k).

Theorem 4 should be compared to its undirected analog of Chekuri and Chuzhoy [2] that
asserts that in an undirected graph G of treewidth at least cmin(ab2, a3b) one can find a
vertex-disjoint subgraphs of treewidth at least b. While we still obtain a polynomial bound,
we can only prove the existence of a quarter-integral (as opposed to integral, i.e., vertex-
disjoint) packing of subgraphs of high directed treewidth.

Preliminaries. Let G = (V (G), E(G)) be a directed graph and let A,B be subsets of V (G)
with |A| = |B|. A linkage from A to B in G is a set L of |A| pairwise vertex-disjoint paths
in G, each with a starting vertex in A and ending vertex in B. The order of L is |L| = |A|.
For X,Y ⊆ V (G) and a linkage L from X to Y , we denote A(L) := X and B(L) := Y . For
a path or a walk P , by start(P ) and end(P ) we denote the starting and ending vertex of P ,
respectively. A vertex set W ⊆ V (G) is well-linked if for all subsets A,B ⊆W with |A| = |B|
there is a linkage L of order |A| from A to B in G \ (W \ (A∪B)). Let L and K be linkages.
The intersection graph of L and K, denoted by I(L,K), is the bipartite graph with the vertex
set L ∪ K and an edge between a vertex in L and a vertex in K if the corresponding paths
share at least one vertex. We say that G is d-degenerate if and only if every subgraph of G
contains a vertex of degree at most d. In this paper we do not need the exact definition of
directed treewidth. Instead, we rely on the following two results.

Lemma 5 ([7]) Every directed graph G of directed treewidth k contains a well-linked set of
size Ω(k).

Lemma 6 ([5]) There is an absolute constant c′ with the following property. Let α, β ≥ 1
be integers and let G be a digraph of dtw(G) ≥ c′ · α2β2. Then there exists a set of α vertex-
disjoint paths P1, . . . , Pα and sets Ai, Bi ⊆ V (Pi), where Ai appears before Bi on Pi, both
|Ai|, |Bi| = β, and

⋃α
i=1Ai ∪Bi is well-linked.

We also need the following two auxiliary results. Note that a coloring in Lemma 7 can be
arbitrary and is not necessarily proper.

Lemma 7 ([9, Lemma 4.3]) Let r ≥ 2, d be a real, and H be an r-colored graph with color
classes V1, . . . , Vr, such that for every i it holds that |Vi| ≥ 4e(r− 1)d and for every i 6= j the
graph H[Vi ∪Vj ] is d-degenerate. Then there exists an independent set {x1, . . . , xr} such that
xi ∈ Vi for every i ∈ [r].

Lemma 8 ([4, Lemma 5.5]) Let G be a digraph and P1, . . . , Pk be disjoint paths such that
each Pi consists of two subpaths Ai and Bi, where Ai precedes Bi. Furthermore, let {Li,j : i, j ∈
[k], i 6= j} be a set of pairwise disjoint paths, such that Li,j starts in Bi and ends in Aj. Then
dtw

(⋃
i Pi ∪

⋃
i 6=j Li,j

)
≥ k

8 .

Partitioning Lemma. Here, we develop a main technical tool that we use in the proof
of Theorem 4. Intuitively, in a subcase of the proof, we will have a bipartite graph of large
minimum degree which we partition into subgraphs induced by pairs of vertex sets (Ui,Wi).
These subgraphs will define the Gi from the statement of Theorem 4. To obtain a lower bound
on the directed treewidth of Gi, we need that the parts (Ui,Wi) each induce a subgraph of
large average degree. This will be achieved using the following lemma.
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Lemma 9 Let k, r ≥ 1 be two integers and let G be a bipartite graph with bipartition classes
X = {x1, x2, . . . , xa} and Y = {y1, y2, . . . , yb} and minimum degree at least 1200 · r · k. Then
there are k sets U1, U2, . . . , Uk, and k sets W1,W2, . . . ,Wk, such that:

1. for each i ∈ [k] the set Ui is a segment of [a] and the set Wi is a segment of [b],

2. for each distinct i, j ∈ [k] we have Ui ∩ Uj = ∅ and Wi ∩Wj = ∅,

3. for every i ∈ [k], the average degree of the graph G[Ui ∪Wi] is at least r.

The Dense Case. In this section, we prove Theorem 4 roughly in the case when there
are two linkages L and K such that their set A(L)∪A(K)∪B(L)∪B(K) of endpoints is well
linked and such that the paths in L and K intersect a lot. The formal statement proved in
this section is as follows.

Lemma 10 Let a, b ∈ N+. Let D be a directed graph and L and K be two linkages in D
such that A(L)∪B(L)∪A(K)∪B(K) is well-linked in D. Suppose that the intersection graph
I(L,K) has degeneracy more than 384 000 · a · b · log2(|L|/b). Then there are directed graphs
D1, D2, . . . , Da with the following properties:

(i) each Di is a subgraph of D,

(ii) each vertex of D belongs to at most four graphs Di, and

(iii) each graph Di has directed treewidth at least b.

Proof Outline. The basic idea of the proof of Lemma 10 is as follows. We first fix a pair
of linkages Lback and Kback which are dual to L and K, respectively. (This is possible because
of well-linkedness of the endpoints.) The subgraphs Di that we construct will subpartition
the vertex set of each of the four linkages L,Lback,K,Kback and hence each vertex of G is in
at most four subgraphs Di. we apply the partitioning lemma (Lemma 9) to the intersection
graph of L and K, obtaining a subpartition I1, . . . , Ik of L and a subpartition J1, . . . , Jk of K.
These subpartitions have the nice property that each intersection graph I(Ii, Ji) induced by a
pair Ii, Ji contains many edges (representing intersections between the corresponding paths)
and that only a constant number of cycles of Aux(L) and Aux(K) cross Ii or Ji. By closing
each of these crossing cycles by introducing an artificial new path, we obtain a pair of dual
linkages Ii, I ′i, and a pair of dual of linkages Ji, J ′

i . Using then Lemma 11 below, we will
obtain a lower bound on the directed treewidth of the graph induced by Ii∪Ji∪I ′i∪J ′

i , which
constitute our desired subgraph Di.

Lemma 11 2 Let k, d ∈ N+ and P,Pback,Q,Qback be four half-integral linkages in a directed
graph such that P and Pback are dual to each other and Q and Qback are dual to each other.
Let the intersection graph I(P,Q) have minimum degree at least d where d ≥ 8k log 4

3
( |P|
24k ) +

24k + 4. Then the graph
⋃

(P ∪ Pback ∪Q ∪Qback) has directed treewidth at least k.

Proof of Theorem 4. Let G be a directed graph of dtw(G) ≥ c · a6b8 log2(ab), where c is a
large constant, whose value will follow from the reasoning below. First, we invoke Lemma 6
with β = 237a2b3 log(ab) and α = 8ab (here we assume that c is sufficiently large so that
the assumption is satisfied). We obtain a set of vertex-disjoint paths P1, . . . , P8ab and sets
Ai, Bi ⊆ V (Pi), where Ai appears before Bi on Pi, and |Ai| = |Bi| = 237a2b3 log(ab), and the
set
⋃8ab
i=1Ai ∪Bi is well-linked. Denote by Li,j a linkage from Bi to Aj .

We split the 8ab paths Pi into a segments, each consisting of 8b paths. Formally, for every
ι ∈ [a] we define Iι = {j | 8(ι− 1)b < j ≤ 8ιb}.

2The proof of Lemma 11 is inspired by the proof of Lemma 5.4 in [4]. We could use Lemma 5.4 here as
well, but its proof, unfortunately, contains errors. Nevertheless, we derive an incomparable bound which is
much better for our use since the lower bound claimed in Lemma 5.4 [4] is k2.
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Now we set r = 64ab2 and create an auxiliary r-colored graph H, whose vertices will be
paths of appropriately chosen linkages Li,j . More specifically, for every ι ∈ [a], and every
i, j ∈ Iι, we introduce a vertex for every path in Li,j and color it (i, j). Two vertices of
H are adjacent if and only if their corresponding paths share a vertex in G. Note that
for two linkages Li,j and Li′,j′ , the graph H[Li,j ∪ Li′,j′ ] is precisely the intersection graph
I(Li,j ,Li′,j′).

We set d := 227ab log(ab) and consider two cases:

(i) for all i, j, i′, j′ the graph I(Li,j ,Li′,j′) is d-degenerate.

(ii) there exist i, j, i′, j′, for which the graph I(Li,j ,Li′,j′) is not d-degenerate.

An intuition behind case (i) is that for each subgraph of H there is always a path (in G) such
that it shares a vertex with at most d paths from all used linkages back.

Case (i) We use Lemma 7 on H. Graph H has 64ab2 color classes such that for each
(i, j) 6= (i′, j′) the graph H[Li,j ∪ Li′,j′ ] is d-degenerate. Note that |Li,j | = 237a2b3 log(ab) ≥
4e(r − 1)d is sufficiently large to satisfy the last assumption of the lemma. We are given an
independent set x1, . . . , x64ab2 that represents pairwise disjoint paths Li,j from Bi to Aj for
all i, j ∈ Iι. We also recall that Ai and Bi lie on Pi and all Pi’s are pairwise disjoint.

Let Gι consist of all paths Pi for i ∈ Iι and Li,j for i, j ∈ Iι. By Lemma 8 for k = 8b we
obtain dtw(Gι) ≥ b while each vertex is in at most 2 such subgraphs. Indeed, each vertex
can appear only once on some Pi and once on some Li,j .

Case (ii) The claim follows from Lemma 10. Since |L| = 237a2b3 log(ab) then d =
227ab log(ab) > 219ab log(237a2b2 log(ab)).
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On the Circumference of 3-Connected Maximal 1-Planar Graphs1

Samuel Mohr

Technische Universität Ilmenau, Germany

Abstract
Chen and Yu verified a conjecture of Moon and Moser that there is a positive constant

c such that the length of a longest cycle of each 3-connected planar graph G is at least
c · |V (G)|log3 2.

A graph is 1-planar if it has a drawing in the plane such that each edge is crossed
at most once by another edge and it is maximal 1-planar if it is 1-planar and no edge
between non-adjacent vertices can be added to keep its 1-planarity. We will confirm the
results of Moon and Moser and Chen and Yu for the class of maximal 1-planar that a
longest cycle of 3-connected maximal 1-planar is at least c · |V (G)|log3 2 and this bound
is asymptotically optimal.

Keywords: 1-planar graph, spanning subgraph, longest cycle, circumference, hamiltonicity.

Extended Abstract

We use standard terminology of graph theory and consider finite and simple graphs, where
V (G) and E(G) denote the vertex set and the edge set of a graph G, respectively. These
graphs are represented by drawings in the plane, such that vertices are distinct points and
edges are arcs, i. e. non-self-intersecting continuous curves.

A graph G is planar if there exists a drawing of G such that two arcs only meet at end
vertices. There are several approaches to generalize the concept of planarity. One of them is
to allow a given constant number of crossings for each edge in a drawing. It is easy to see
that a drawing can be changed locally to a different drawing with fewer crossings if two edges
with a shared end vertex cross or if two edges cross several times. Thus, in the sequel we will
consider drawings with the property that if two edges cross, then they do so exactly once and
their four end vertices are mutually distinct.

If there exists a drawing of a graph G such that each edge is crossed at most once by another
edge, then G is 1-planar. This class of graphs was introduced by Ringel [9] in connection
with the simultaneous vertex-face colouring of plane graphs. Properties of 1-planar graphs
are widely studied and can be found for example in [4, 5, 6, 8].

A graph G from a family G of graphs is maximal if G + uv /∈ G for any two non-adjacent
vertices u, v ∈ V (G). In this sense, a graph is maximal 1-planar if it is 1-planar but each
G + uv for non-adjacent vertices u, v ∈ V (G) is not.

The length (number of vertices) of a longest cycle of a graph G (also called circumference
of G) is denoted by circ(G). If circ(G) = n for a graph G on n vertices, then G is hamiltonian
and a longest cycle of G is a hamiltonian cycle.

In 1931, Whitney [10] proved that each 4-connected maximal planar graph is hamiltonian.
However, in the 3-connected case, Moon and Moser [7] constructed infinitely many maximal
planar graphs G with circ(G) ≤ 9|V (G)|log3 2. Furthermore, it is conjectured in [7] that there
is a constant c such that each 3-connected planar graph G has circ(G) ≥ c · |V (G)|log3 2. This
was proved later by Chen and Yu [2].

We are interested in the circumference of 3-connected maximal 1-planar graphs. In [4],
the question remained open whether every maximal 1-planar graph is hamiltonian. Moreover,
the question arises whether such a construction as the one of Moon and Moser is also possible
in the class of 3-connected maximal 1-planar graphs.

1joint work with I. Fabrici, J. Harant, T. Madaras, R. Soták, and C. Zamfirescu supported by DAAD,
Germany (as part of BMBF) and the Ministry of Education, Science, Research and Sport of the Slovak
Republic within the project 57447800.
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An affirmative answer to both questions is given by Theorem 1:

Theorem 1
(i) If H is a maximal planar graph on n ≥ 3 vertices, then there is a 3-connected maximal

1-planar graph G on 7n − 12 vertices such that circ(G) ≤ 4 · circ(H).
(ii) Each 3-connected maximal 1-planar graph has a spanning 3-connected planar subgraph.

Given a 3-connected maximal planar graph H with circ(H) ≤ 9|V (H)|log3 2, e. g. these
graphs constructed by Moon and Moser in [7]. For the graph G obtained from H in Theorem 1
(i), circ(G) ≤ c′ · |V (G)|log3 2 for a suitable constant c′ holds. Hence, the circumference of
these graphs is still sublinear in the same magnitude.

On the other hand, let G be a 3-connected maximal 1-planar graph on n vertices and H
be a planar 3-connected spanning subgraph which is guaranteed by Theorem 1 (ii). Using
Chen and Yu’s result, H has a cycle of order at least c · nlog3 2. But this is also a cycle of G
and immediately Corollary 2 follows:

Corollary 2 There are positive constants c and c′ such that each 3-connected maximal 1-
planar graph G has circ(G) ≥ c · |V (G)|log3 2 and an infinitely family of maximal 1-planar
graphs G with circumference circ(G) ≤ c′ · |V (G)|log3 2 exists.

We showed how to extend the result of Chen and Yu to 3-connected maximal 1-planar
graphs. In the same vein, using Theorem 1 (ii), the result of Barnette [1] that a 3-connected
planar graph has a spanning tree of maximum degree at most 3, the result of Gao [3] that a
3-connected planar graph has a spanning 2-connected subgraph of maximum degree at most 6,
and any other result concerning the existence of a certain subgraph of a planar 3-connected
graph can easily extended to the class of 3-connected maximal 1-planar graphs.
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A new lower bound of the number of contractible edges on longest
cycles in a 3-connected graph
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Extended Abstract

1 Introduction

In this paper, we consider only �nite, simple, undirected graphs with no loops and no multiple
edges.

Let G = (V (G), E(G)) be a graph. A graph G is called 3-connected if |V (G)| ≥ 4 and
G − S is connected for any subset S of V (G) having cardinality 2. Let G be a 3-connected
graph. An edge e of G (|V (G)| ≥ 5) is called contractible if the graph which we obtain from
G by contracting e into one vertex (and replacing each of the resulting pairs of parallel edges
by a simple edge) is 3-connected; otherwise e is called noncontractible. We let Ec(G) denote
the set of contractible edges of G and Enc(G) denote the set of noncontractible edges of G;
thus E(G) = Ec(G) ∪ Enc(G) (disjoint union).

In [11], Tutte proved that if G is a 3-connected graph other than K4, then Ec(G) ̸= ∅.
In [2], Dean, Hemminger and Ota proved that if G is a 3-connected graph other than K4 or
K2 × K3, then every longest cycle C of G satis�es |E(C) ∩ Ec(G)| ≥ 3. In [3], Ellingham,
Hemminger and Johnson proved that if G is a nonhamiltonian 3-connected graph, then every
longest cycle C of G satis�es |E(C) ∩ Ec(G)| ≥ 6. Further the classi�cation of those pairs
(G,C) of a 3-connected graph G and a longest cycle C of G such that 3 ≤ |E(C)∩Ec(G)| ≤ 5
(then C is hamiltonian) has been completed by [1, 4, 5, 9] and [10]. On the other hand, in
[10], Ota made a conjecture that there exists a constant α > 0 such that if G is a 3-connected
graph of order at least 5, then G has a longest cycle C such that |E(C) ∩ Ec(G)| ≥ α|E(C)|.
In [4] and [7], Fujita proved that such a constant exists if we restrict ourselves to 3-connected
graph.

Theorem A Let G be a 3-connected hamiltonian graph of order at least 5. Then there exists

a hamiltonian cycle C of G such that |E(C) ∩ Ec(G)| ≥ ⌈ 1
8 |E(C)| + 9

8⌉.
Further in [8], we showed that the same conclusion holds for 3-connected graphs in general.

Theorem B Let G be a 3-connected graph of order at least 5. Then there exists a longest

cycle C of G such that |E(C) ∩ Ec(G)| ≥ ⌈ 1
8 |E(C)| + 9

8⌉.
Furthermore, in [6], Fujita proved the following theorem which is a re�nement of Theorem

B.

Theorem C Let G be a 3-connected graph of order at least 5. Then there exists a longest

cycle C of G such that |E(C) ∩ Ec(G)| ≥ ⌈ 1
7 |E(C)| + 1⌉.

In this talk, we introduce the following theorem, which is a re�nement of Theorem C.

Theorem 1 Let G be a 3-connected graph of order at least 5. Then there exists a longest

cycle C of G such that |E(C) ∩ Ec(G)| ≥ ⌈ 1
6 |E(C)| + 5

6⌉.

Let α0 denote the supremum of those real numbers α which make true the aforementioned
conjecture of Ota. Theorem C shows α0 ≥ 1

7 , and we obtain α0 ≥ 1
6 . On the other hand,

α0 ≤ 1
3 . To see this, let G be the line graph of a graph obtained from a 3-regular 3-connected

graph by subdividing all edges once. Then G is 3-connected, and |E(C) ∩ Ec(G)| = |E(C)|
3

for every longest cycle C of G. Thus we make a conjecture as follows.
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Conjecture 2 Let G be a 3-connected graph of order at least 5. Then there exists a longest

cycle C of G such that |E(C) ∩ Ec(G)| ≥ ⌈ 1
3 |E(C)|⌉.

Our notation and terminology are standard except possibly for the following. Let G be a
graph. A subset S of V (G) is called a cutset if G − S is disconnected; thus G is 3-connected
if and only if |V (G)| ≥ 4 and G has no cutset of cardinality 2. If G is 3-connected, then for
e = uv ∈ E(G), we let K(e) = K(u, v) denote the set of vertices x of G such that {u, v, x} is
a cutset; thus e is contractible if and only if K(e) = ∅. If e = uv is noncontractible, then for
each x ∈ K(e), {u, v, x} is called a cutset associated with e.

2 Statement of Propositions

Let G be a 3-connected graph of order at least 5, and let C be a longest cycle of G such that
no longest cycle has more contractible edges than C. i.e.,

there is no longest cycle C ′ of G such that |E(C ′) ∩ Ec(G)| > |E(C) ∩ Ec(G)|. (2.1)

If E(C) ∩ Enc(G) = ∅, then E(C) ∩ Ec(G) = E(C), and hence then Theorem 1 trivially
holds. Thus we may assume that E(C) ∩ Enc(G) ̸= ∅. Write

C = v0v1 · · · vnv0, where n ≥ 4.

Without loss of generality, we may assume that vnv0 ∈ Enc(G). Let {vn, v0, vk} be a cutset
associated with it. Set

P1 = vnv0v1 · · · vk and P2 = vkvk+1 · · · vnv0.

Then |E(P1)|+ |E(P2)| = |E(C)|+1, and |E(P1)∩Ec(G)|+ |E(P2)∩Ec(G)| = |E(C)∩Ec(G)|
since vnv0 ∈ Enc(G). Thus to prove Theorem 1, it su�ces to prove the following proposition.

Proposition 2.1 |E(P1) ∩ Ec(G)| ≥ 1
6 |E(P1)| + 1

3 and |E(P2) ∩ Ec(G)| ≥ 1
6 |E(P2)| + 1

3 .

Now, we de�ne the following set F .

De�nition 2.2 F = {P ⊊ C | there exsit x, y, z ∈ V (G) such that P is an x-zpath, xy ∈
E(P ) and z ∈ K(x, y)}.

Note that vivi+1 · · · vj ∈ F if and only if vj ∈ K(vi, vi+1) or vi ∈ K(vj−1, vj) (indices are
to be read modulo n + 1).

Note also that P1 ∈ F and P2 ∈ F because vk ∈ K(vn, v0). Hence Proposition 2.1 follows
from the following proposition.

Proposition 2.3 Let W ∈ F . Then |E(W ) ∩ Ec(G)| ≥ 1
6 |E(W )| + 1

3 .

Now, we de�ne Type L as a name of special paths on C.

De�nition 2.4 Set A = vivi+1 · · · vj (indices are to be read modulo n + 1). A is said to be

of Type L if and only if j = i + 4 (so |E(A)| = 4 and A = vivi+1vi+2vi+3vi+4) and one of the

following holds:

(i) vi+4 ∈ K(vi, vi+1) and vi+2vi+3 ∈ Enc(G); or

(ii) vi ∈ K(vi+3, vi+4) and vi+1vi+2 ∈ Enc(G).

The following two lemmas appear as Lemmas 3.1 and 3.2, respectively, in [6].

Lemma 2.5 If A is of Type L, then A ∈ F .
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Lemma 2.6 If A is of Type L, then |E(A) ∩ Ec(G)| ≥ 1.

Having Lemmas 2.5 and 2.6 in mind, in order to prove Proposition 2.3, it su�ces to prove
the following proposition.

Proposition 2.7 Let W ∈ F such that W is not of Type L. Then |E(W ) ∩ Ec(G)| ≥
1
6 |E(W )| + 1

2 .

We conclude this section with the following lemma which appears as Lemma 3.3 in [6].

Lemma 2.8 Let A ∈ F . Then |E(A)| ≥ 1. Further if |E(A)| = 3, then |E(A) ∩ Ec(G)| ≥ 1.

3 Admissible partition

In [7], an admissible partition is de�ned under the condition that G is a 3-connected hamil-
tonian graph. But even if G is nonhamiltonian, an admissible partition can be de�ned in the
identical way. In this section, we de�ne an admissible partition for a 3-connected graph in
general.

As in the preceding section, let G be a 3-connected graph of order at least 5, let C be a
longest cycle of G satisfying (2.1), and write C = v0v1 · · · vnv0. Assume that E(C)∩Enc(G) ̸=
∅, and let F be as in De�nition 2.2. The following lemma appears as Lemma 4.29 in [7].

Lemma 3.1 Let P ∈ F , and write P = vivi+1 · · · vj (indices are to be read modulo n + 1).
Then there exists

B = {A1, A2, . . . , At}

such that

E(P ) − {vivi+1} =
t∪

h=1

E(Ah) (disjoint union)

or

E(P ) − {vj−1vj} =

t∪

h=1

E(Ah) (disjoint union)

according as vj ∈ K(vi, vi+1) or vi ∈ K(vj−1, vj),

|E(P ) ∩ Ec(G)| =
t∑

h=1

|E(Ah) ∩ Ec(G)|,

and for each 1 ≤ h ≤ t, one of the following holds:

(i) Ah ∈ F (so |E(Ah)| ≥ 3);

(ii) Ah /∈ F , |E(Ah)| = 5 and |E(Ah) ∩ Ec(G)| ≥ 2;

(iii) |E(Ah)| = 2 and |E(Ah) ∩ Ec(G)| ≥ 1; or

(iv) |E(Ah)| = |E(Ah) ∩ Ec(G)| = 1.

Having Lemma 3.1 in mind, an admissible partition can be de�ned as in the same way as in
De�nition 4.5 of [7].

De�nition 3.2 (an admissible partition) For P ∈ F , a family B = {A1, A2, . . . , At} of

paths satisfying the conditions stated in Lemma 3.1 is called an admissible partition of P . For

Ah ∈ B, Ah is said to be of Type R, Type F , Type S, or Type T according as Ah satis�es

(i), (ii), (iii), or (iv) of Lemma 3.1.
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4 An outline of the proof of Proposition 2.7

We prove Proposition 2.7 by induction on |E(W )|. By Lemma 2.8, |E(W )| ≥ 3. If |E(W )| =
3, then |E(W ) ∩ Ec(G)| ≥ 1 by Lemma 2.8, and hence |E(W ) ∩ Ec(G)| ≥ 1

6 |E(W )| + 1
2 ,

as desired. Thus let |E(W )| = w ≥ 4, and assume that |E(P ) ∩ Ec(G)| ≥ 1
6 |E(P )| +

1
2 for any P ∈ F such that P is not of Type L and |E(P )| ≤ w − 1.

Further by way of contradiction, suppose that |E(W ) ∩ Ec(G)| < 1
6 |E(W )| + 1

2 . Then we
obtain the following claim.

Claim 4.1 Let Q be a member of F such that Q ⊆ W and |E(Q)| ≥ 4, and let B be

an admissible partition of Q. Then, if |E(W )| − |E(Q)| ≤ 1, the following (i) occurs, if

|E(W )| − |E(Q)| = 2, the following (i) or (ii) occurs, and if |E(W )| − |E(Q)| = 3, the

following (i), (ii) or (iii) occurs.

(i) |B| = 1, and if we write B = {B}, then we have |E(Q)| − |E(B)| = 1 and B ∈ F .

(ii) |B| = 2, and if we write B = {B1, B2}, then B1, B2 ∈ F and either B1 or B2 is of

Type L.

(iii) |B| = 2, and if we write B = {B1, B2}, then B1, B2 ∈ F and both B1 and B2 are not

of Type L.

We prove Proposition 2.7 by using Claim 4.1 and �nding the cycle C ′ which satis�es
either |E(C ′)| = |E(C)| and |E(C ′)∩Ec(G)| > |E(C)∩Ec(G)| or |E(C ′)| > |E(C)| since this
contradicts (2.1) or the maximality of the length of C, respectively.
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1 Introduction
In a recent work, [6], Sivaraman gave a characterization of graphs whose bicircular matroids
are signed-graphic and in that way he extended a result of Matthews in [2] who characterized
graphs whose bicircular matroids are graphic. In the same work, Sivaraman stated, among
other interesting open research issues, the following question: "Characterize signed graphs
whose matroids are bicircular". Towards answering this question, we identify classes of signed
graphs whose frame matroids (i.e. signed-graphic matroids) are bicircular.

We assume that the reader is familiar with basic notions of matroid theory and signed
graphs as provided in [3] and [8], respectively. In the next section, we provide some prelim-
inaries regarding signed-graphic matroids and bicircular matroids while in the Section 3 we
present the results. Finally, at the last section we state interesting problems related directly
to the question of Sivaraman mentioned in the preceding paragraph.

2 Preliminaries
The class of bicircular matroid was introduced in [2] and is defined on the edge set of graph.
Specifically, given a graph G the circuits of the bicircular matroid of G, denoted by B(G),
are the edge sets of subgraphs of G being a subdivision of one of the graphs of Figure 2.

Figure 1: Circuits in a bicircular matroid.

Signed-graphic matroids were introduced by Zaslavsky in [8] and are defined on the edge
set of a signed graph. A signed graph can be viewed as group-labeled graph where each edge
(link or loop) is labeled as either positive or negative. Given a signed graph Σ, the graph
obtained by Σ if we ignore the signs on its edges is called the underlying graph of Σ. A
cycle of a signed graph is said to be negative if it contains an odd number of negative edges;
otherwise, it is a positive cycle. The signed-graphic matroid of a signed graph Σ, denoted by
M(Σ), has as a circuit the edge set of a subgraph of Σ which is either: (a) a positive cycle
or (b) two negative cycles which have exactly one common vertex, or (c) two vertex-disjoint
negative cycles connected by a path which has no common vertex with the cycles apart from
its end-vertices. Examples of such circuits are given in Figure 2, where dashed lines depict
negative edges while solid lines depict positive edges.

3 Classes of signed graphs with bicircular matroids
In the following result, we utilize the circuit-based definitions of bicircular matroids and
signed-graphic matroids, given in the preceding section, in order to identify a class of signed
graphs whose frame matroids are bicircular.
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(a) (b) (c)

Figure 2: Example circuits in a signed-graphic matroid.

Theorem 1 If each component of a signed graph Σ can be obtained from a subdivision of a
tree by replacing each edge of the tree by a negative cycle or a link (positive or negative) and
attaching at each node any number of negative loops, then M(Σ) is bicircular.

Proof: Let G be the underlying graph of Σ; we shall show that M(Σ) = B(G). Since
the ground sets of M(Σ) and B(G) coincide, it remains to show that each circuit of M(Σ) is
a circuit of B(G) and vice versa. By the way Σ has been constructed there is no circuit of
B(G) corresponding to a subgraph of G which is a subdivision of a theta graph (third graph
in Figure 2). Thus, all circuits of B(G) are edge sets of subgraphs of G which are either two
cycles which have exactly one common vertex or two vertex-disjoint negative cycles connected
by a path which has no common vertex with the cycles apart from its end-vertices. Given
the fact that by construction all cycles are negative we have that each of these edge sets in Σ
correspond to a circuit of M(Σ). Finally, by construction Σ has no positive cycles; therefore
each circuit of M(Σ) corresponds to an edge set which induces a graph of type (b) or (c) of
Figure 2 and therefore, it corresponds to a circuit of B(G). �

In the next result we restrict ourselves to balanced signed graphs, i.e. signed graphs having
no negative cycles. Taking into account that the signed-graphic matroids of balanced signed
graphs are graphic, the following result may be viewed as a direct consequence of Matthews
characterization of graphs whose bicircular matroids are graphic given in [2].

Theorem 2 Let Σ be a balanced signed graph. Then M(Σ) is bicircular if and only if Σ
has no subgraph homeomorphic to any of the signed graphs of Figure 3, where all cycles are
positive and a graph with a dotted edge represents either the graph itself or the graph obtained
when the dotted edge is contracted.

Figure 3: Forbidden balanced signed graphs.

4 Related problems
The problem under consideration, i.e. the characterization of signed graphs whose matroids
are bicircular, could be relaxed if we consider only the case of tangled signed graphs, where
a tangled signed graph is a signed graph with no two vertex-disjoint negative cycles. As
known (see e.g. [7]), tangled signed graphs represent binary signed-graphic matroids and
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thus, in that way, we could restrict ourselves on signed-graphical representations of bicircular
matroids which fall into the class of binary matroids. Finally, the recognition problem of
bicircular matroids remains open (a progress has been made in [1]); we believe that having a
way to obtain signed-graphical representations for a class of bicircular matroids and utilizing
the results of [4, 5] may be of critical importance on devising a polynomial time algorithm
that would recognize whether a given a matroid belongs or not to the class of signed-graphic
bicircular matroids.
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Extended Abstract

1 Introduction
Coloring a graph G consists in finding an assignment of colors c : V (G) → {1, . . . , p} such
that any pair of adjacent vertices receive different colors. The minimum integer p such that
a coloring exists is called the chromatic number of G, denoted by χ(G). We denote by ∆(G)
the maximum degree of the graph G. Note that regarding coloring, we may only consider
connected graphs. Using a greedy algorithm, it is easy to show that every graph G can be
colored with ∆(G) + 1 colors. A seminal result from Brooks characterizes the cases when this
bound is tight:

Theorem 1 ([2]). For every graph G, χ(G) 6 ∆(G) excepted if G = K∆(G)+1 or ∆ = 2 and
G is an odd cycle.

Given an integer k > 1 and a graph G, the k-th power of G is the graph obtained from G
by adding an edge between vertices at distance at most k in G. We are interested in coloring
such powers of graphs. First note that coloring powers of paths and cycles is settled by the
following result, hence we may only consider graphs with maximum degree at least 3. In
particular, none of the graphs we consider below is a cycle.

Proposition 2 ([6]). Let n, k be two integers. Then

• χ(P k
n ) = min(n, k + 1)

• If n > k + 1, then χ(Ck
n) = k + 1 + d rq e where n = q(k + 1) + r and r 6 k.

• χ(Ck
n) = n otherwise.

For the case of squares of graphs (i.e. k = 2), we have ∆(G2) 6 ∆(G)2 (and this can
be tight). Therefore, applying Brooks’ theorem on G2 states that ∆(G)2 colors are sufficient
excepted when G2 is a clique on ∆(G)2 + 1 vertices. Such graphs are called Moore graphs,
and there are only finitely many of them [4]. For all the other graphs, the ∆(G)2 bound can
actually be improved, as shown by the following result.

Theorem 3 ([3]). If G is not a Moore graph, then χ(G2) 6 ∆(G)2 − 1.

These results have been generalized for higher powers of graphs. Assume that k > 3.
Then, the maximum possible value of ∆(Gk) is f(k,∆(G)), where

f(k,∆) = ∆

k−1∑

i=0

(∆− 1)i = ∆
(∆− 1)k − 1

∆− 2

is the number of nodes of a ∆-regular tree of height k, without its root. Thus, Brooks’ theorem
gives that f(k,∆) colors are sufficient to color every graph G with maximum degree ∆, as
soon as it is not a generalized Moore graph, i.e. Gk is not a clique on f(k,∆) + 1 vertices.
However, such a graph does not exist when k > 3 [4]. Therefore, the bound χ(Gk) 6 f(k,∆)
always holds. Moreover, as shown below, this upper bound can be lowered by 1.

Theorem 4 ([1]). For k > 3 and every graph G, we have χ(Gk) 6 f(k,∆)− 1.
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When k = 2, note that f(2,∆) = ∆2. Hence, together with Theorem 3, this result
settles a conjecture of [5], stating that two colors can be spared from the naive upper bound
f(k,∆) + 1, excepted when k = 2 and G is a Moore graph.

In [1], the authors conjecture that we can improve this result, by sparing k colors for
higher values of k, excepted for a finite number of graphs.

Conjecture 5 ([1]). For every k > 2, all but finitely many graphs G satisfy χ(Gk) 6
f(k,∆(G)) + 1− k.

Towards this conjecture, we prove that most of the time, k − 2 colors can be spared:

Theorem 6. For every k,∆, there are only finitely many graphs G of maximum degree ∆
such that χ(Gk) > f(k,∆) + 3− k.

Note that Brooks’ theorem gives an infinite list of graphs such that χ > ∆. However, for
every ∆ > 3, this list contains only one graph of given maximum degree ∆. In this setting,
Theorem 6 can be seen as a generalization of Brooks’ theorem for powers of graphs. However,
observe that the bounds we obtain for k 6 2 are worse than those given by Brooks’ theorem.

2 Overview of the proof
In this section, we give a proof of Theorem 6. First note that the case k = 1 is easy since
every graph G can be colored with ∆(G) + 1 6 f(1,∆) + 2. Moreover, the case k = 2 is
already handled by Theorem 3. Thus, we only consider the case k > 3. In the following, we
denote by G a graph of maximum degree ∆ > 3 such that χ(Gk) > f(k,∆) + 3− k, if any.

To prove Theorem 6, we prove that G cannot have some configurations, until we get to
the point where G is proved to lie in a finite set. For each of these configurations, assuming
that G contains it, we design a procedure to give a valid coloring of G, and thus reach a
contradiction. This procedure roughly consists in coloring the vertices greedily by decreasing
distance to the configuration. We first apply this technique to prove that G is ∆-regular.

Lemma 7. The graph G has minimum degree ∆.

Proof. Assume that G has a vertex u of degree at most ∆− 1. Let H be the graph obtained
from G by attaching to u a pending path u1, . . . , uk. Observe that ∆(H) = ∆ since u has
degree at most ∆ − 1 in G. To reach a contradiction, we color vertices of G in H in order
corresponding to decreasing distance to uk.

Note that, usually, we remove elements of G, and use some minimality argument to obtain
a coloring to extend. In this case, we instead add some vertices. This is not related to some
inductive argument (we do not even color these new vertices). The goal of this modification
is to make the gap between the number of forbidden colors and the upper bound easier to
find, by counting the uncolored vertices in the neighborhood at distance k instead.

Let v be a vertex of G, at distance d from uk. Note that the d neighbors on a shortest
path from v to uk are uncolored. Thus, v has at most f(k,∆) − d colored neighbors in Gk,
hence v has at least d − k + 3 available colors. Since v ∈ V (G), we have d > k, hence v can
always be colored.

We thus obtain χ(Gk) 6 f(k,∆)− k + 3, a contradiction.

We can prove in a similar fashion that G has large girth. Assuming that G has a small
cycle, we color the vertices of G by decreasing distance to the cycle. Then, when only the
cycle remains to be colored, each of its vertices has at least p+ 1 available colors, where p is
the length of the cycle. Thus we can prove the following.

Lemma 8. The graph G has girth at least k + 2.
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To obtain Theorem 6, we actually prove that G has bounded diameter. Since the number
of ∆-regular graphs with bounded diameter is finite, Theorem 6 thus boils down to proving
the following lemma.

Lemma 9. The graph G has diameter at most 2k − 1.

The remainder of this section is devoted to giving the main ideas of this proof. Assume
that G contains two vertices u1 and vk at distance 2k from each other. Thus there is an
induced path P = u1 · · ·ukxv1 · · · vk on 2k + 1 vertices in G.

For i ∈ {1, . . . , k}, observe that dist(ui, vi) = k + 1 so we can give color i to ui and vi.
We fix the following ordering of the vertices of P : u1 > vk > u2 > vk−1 > · · · > uk > v1 > x.
For every remaining vertex v of G, we define the root rv of v as the largest vertex of P on a
shortest path between x and v (in case of equality, rv is taken as one of the vi’s).

We then color every uncolored vertex v of G by decreasing (lexicographic) order of
(rv,dist(v, rv)). The goal is to prove that, each time we consider a vertex v, at most
f(k,∆)− k + 2 colors are present on its neighbors. To this end, we count two objects:

• The p uncolored vertices in the neighborhood of v in Gk.

• The q colors appearing at least twice in the neighborhood of v in Gk.

Note that the number of forbidden colors is then at most f(k,∆) − p − q. Thus, if
p+ q > k − 2, we can always find an available color for v. Lemma 9 is obtained by counting
p+ q for each vertex v we have to color. The main idea is that if v is far away from x, then
p is high. Otherwise, many neighbors of v in Gk share the same color, and q is high.

When rv 6= x, we show that p > k−2. We find k−2 uncolored vertices in the neighborhood
of v, by considering three types of vertices, as shown in Figure 1. The number of vertices of
each type depends on dist(v, rv) and dist(rv, x), but there are at least k − 2 of them.

xuk

2

uk−1

2

ui+1

2

rv = uiu1 v1 v2 vk

3 x1

33x2

33x3

33x k
2

v

T
ype

1

Figure 1: Global picture of the situation when considering v: black vertices are already
colored, white ones are uncolored. Integers inside vertices represent types.

When rv = x, then we again consider some cases: if dist(v, x) is large enough, then
p is large. Then, when dist(v, x) gets smaller, p decreases but q increases. Indeed, when
dist(v, x) < k

2 , the vertex v is at distance at most k of vertices in P sharing the same color.
This ends the proof sketch of Theorem 6. As a final remark, observe that the proofs of

Lemmas 7 and 8 are still valid both in the list coloring setting (since we use only degeneracy
arguments) and in the case where we want to spare more colors (say at most k). This is not
the case anymore for Lemma 9. However, maybe some more involved arguments could bound
the diameter of G in these two more general settings.
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3 Conclusion and open problems
We prove that we can spare roughly k colors from the naive lower bound when coloring k-th
power of many graphs. However, the only known examples that do not satisfy the bound of
Conjecture 5 have small ∆. A first question is thus to know whether the bound we obtain
can be strengthened using different assumptions, for example ∆ > 4, or ∆ > k.

Another natural question is about the number of exceptions given by Theorem 6. We
give here a proof that all possible counterexamples of our statement have diameter less than
2k − 1, with no more insight on their structure. The coloring procedure we used to bound
the diameter is quite simple, and considering more involved patterns (instead of a long path)
could lead to much structure and hence a better bound.

Finally, Conjecture 5 has been stated in the list coloring setting. The arguments we use do
not translate directly to this wider setting, and it would probably be interesting to determine
whether Theorem 6 can be extended or not.
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Extended Abstract

1 Introduction
Throughout this paper, G = (V,E) denotes a connected simple graph with vertex set V =
V (G) and edge set E = E(G). G is planar if it can be embedded in the plane, i.e., it can
be drawn on the plane such that no edges cross each other. The crossing number cr(G) of
a simple graph G = (V,E) is the minimum number of edge crossings in any drawing of G
in the plane. The skewness µ(G) of a simple graph G = (V,E) is the minimum number of
edges whose removal makes the graph planar. It is obvious that µ(G) ≤ cr(G). However
the skewness and the crossing number of a graph can differ widely, since µ(G) can be of size
O(|V |2), while cr(G) can be as large as O(|V |4). A general lower bound for the skewness of
a graph is given by the following:

Theorem 1 ([13]) If G = (V,E) is a connected simple graph with girth g ≥ 3 then:

µ(G) ≥ |E| − g(|V | − 2)

g − 2
.

Equality holds if and only if G has a spanning planar subgraph that is face-regular of degree
g.

It is easy to use Theorem 1 to show that Petersen’s Graph has skewness and crossing
number 2, while Heawood’s Graph has skewness and crossing number 3. It is less obvious
to show that Grötzsch’s Graph has skewness 3 and crossing number 5 (for more information
see [13]). However, an exact formula for the skewness of an arbitrary nonplanar graph is
unknown:

Theorem 2 ([10]) Determining the skewness of an arbitrary nonplanar graph is NP-complete.

Exact formulae are known for several classes of graphs, including the complete graphs on
n vertices Kn, and the complete bipartite graphs on m+ n vertices Km,n:

Theorem 3 ([9]) If Kn and Km,n are the complete graph on n vertices and the complete
bipartite graph on m+ n vertices respectively, then:

1. µ(Kn) =
(n−3)(n−4)

2

2. µ(Km,n) = mn− 2(m+ n) + 4

In this paper we investigate the relationship between the skewness, the minimum degree,
and the chromatic number of a graph. In Section 2 we show that among all graphs with
minimum degree n ≥ 6, the complete graph on n + 1 vertices Kn+1 is the one with the
smallest skewness, and among all triangle-free graphs with minimum degree n ≥ 4, the
complete bipartite graph on 2n vertices Kn,n is the one with the smallest skewness. We also
consider graphs with girth 5 or higher. In Section 3 we show that among all graphs requiring
n colors, the complete graph on n vertices Kn is the one with the smallest skewness.
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Figure 1: The Grötzsch graph has skewness 3 and crossing number 5.

2 Skewness and Minimum Degree
In this section we investigate the relationship between the skewness and the minimum degree
of a graph.

Theorem 4 Let G be any simple graph and let n ≥ 7 be a positive integer.
If δ(G) ≥ n− 1, then µ(G) ≥ µ(Kn).

The following result holds for triangle-free graphs:

Theorem 5 Let G be any simple triangle-free graph and let n ≥ 4 be a positive integer. If
δ(G) ≥ n, then µ(G) ≥ µ(Kn,n).

It is easy to see that the conclusions of Theorems 4 and 5 do not hold when n = 6 and
n = 3 respectively. The following results hold for graphs of girth 5 and 6 respectively.

Theorem 6 If G has girth 5 and δ(G) ≥ 4, then µ(G) ≥ 10.

Theorem 7 If G has girth 6 and δ(G) ≥ 3, then µ(G) ≥ 3.

3 Skewness and Chromatic Number
In this section we investigate the relationship between the skewness and the chromatic number
of a graph of a graph. Here is our main result:

Theorem 8 Let G be any simple graph and let n be any positive integer.
If χ(G) ≥ n then µ(G) ≥ µ(Kn).

The statement is trivial when n ≤ 4, is equivalent to the Four Color Theorem when n = 5,
and is equivalent to a generalization of the Five Color Theorem by Kainen [8] when n = 6
since µ(K6) = 3. The statement follows from Theorem 4 by induction on |V | when n ≥ 7.

We note that a conjecture by Albertson, where the skewness in Theorem 8 is replaced by
the crossing number is still open for n > 16:

Conjecture 9 ([1], [4]) Let G be any simple graph and let n be any positive integer.
If χ(G) ≥ n then cr(G) ≥ cr(Kn).

In [14], the author notes that if we replace the skewness in Theorem 8 with the genus
γ(G) (the minimum genus of the orientable surface on which G is embeddable), we obtain
a true statement that easily follows from Heawood’s upper bound for the chromatic number
of a graph embeddable on an orientable surface of a given genus [5] and the Ringel-Youngs
Theorem [15]:
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Theorem 10 Let G be any simple graph and let n be any positive integer.
If χ(G) ≥ n then γ(G) ≥ γ(Kn), where χ(G) is the chromatic number of G.

Also In [14], the author notes that if we replace the skewness in Theorem 8 with the
thickness θ(G) (the minimum number of planar subgraphs of G whose union is G), the
corresponding statement "if χ(G) ≥ n then θ(G) ≥ θ(Kn)" is not true for all n. The Sulanke
graph K11 − C5 is a counterexample when n = 9. When n = 10, 11, or 12, determining the
truth value of this statement is equivalent to Ringel’s famous Earth-Moon problem. However,
the corresponding statement is true for infinitely many values of n:

Theorem 11 Let G be any simple graph and let n ≥ 13 be a positive integer such that
n ≡ 1, 2, 3, or 4 (mod 6).

If χ(G) ≥ n then θ(G) ≥ θ(Kn), where χ(G) is the chromatic number of G.
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1 Irregularity strength and the 1–2–3 Conjecture.
Regular graphs are well defined and understood objects. This is however not the case with
their antonyms, which one could call irregular graphs. Actually it is a well-known fact that
there are no such things, understood as graphs with pairwise distinct vertex degrees, except
the trivial 1-vertex graphs. In [7] Chartrand, Erdős and Oellermann proposed a few alternative
definitions of such objects in their paper entitled ‘How to Define an Irregular Graph’ ; while
Chartrand et al. [8] turned towards measuring the level of irregularity of graphs instead.
Capitalizing in particular on the fact that there are plenty irregular multigraphs (multigraphs
with pairwise distinct degrees), they asked for a given graph G = (V,E) what is the minimum
k such that we may obtain an irregular multigraph of G by blowing each edge e of G into
at most k parallel copies of e. This value was called the irregularity strength of a graph, and
was investigated in numerous papers, see e.g.[3, 8, 10, 11, 13]. The same concept was in an
obvious way alternatively defined in the language of graph weightings or labellings as the
least k for which there exists a k-weighting ω : E → {1, 2, . . . , k} of the edges of G such that
every vertex v in V receives a distinct weighted degree:

dω(v) =
∑

e3v

ω(v),

that is the sum of its incident weights. The irregularity strength constitutes also the corner-
stone of the now vast branch within the discipline of graph colourings and labellings. One
of the most well known problems directly related with the irregularity strength was its local
variant, where the distinction dω(u) 6= dω(v) is required only for the neighbours in G, i.e. in
the case when uv ∈ E. If this holds for any given k-weighting of the edges of G, we say that G
is k-weight colourable (as in particular dω defines a proper vertex colouring of G then). This
concept was proposed by Karoński, Łuczak and Thomason in [15], where the authors asked a
very intriguing and simply formulated question many researchers have been trying to answer
since then, which is usually referred to as the 1–2–3 Conjecture in the literature nowadays.

Conjecture 1 (1–2–3 Conjecture) Every graph without isolated edges is 3-weight colourable.

In other words they suspected that for all such graphs, it is enough to use just weights 1,2,3
in order to distinguish adjacent vertices with their associated sums – the weighted degrees.

2 Crucial results concerning the 1–2–3 Conjecture.
In the first paper concerning this problem the authors did not provide any finite bound
supporting their suspicion; though they confirmed the conjecture e.g. for the case of graphs
with chromatic number at most 3, and proved a finite set of 183 real numbers admitted as
weights would suffice for all graphs without isolated edges. The first general upper bound
was later proved by Addario-Berry, Dalal, McDiarmid, Reed and Thomason, who showed that
weights in the set {1, 2, . . . , 30} are sufficient, using a theorem on so-called degree-constrained
subgraphs, see [1]. This set was then narrowed down by Addario-Berry, Dalal and Reed [2] to
{1, 2, . . . , 16} and next to {1, 2, . . . , 13} by Wang and Yu [20], who used a similar technique as
the authors of [1]. Interestingly, it was also proved in [2] that a random graph (chosen from
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Gn,p for a constant p) is asymptotically almost surely already 2-weight colourable. Dudek
and Wajc [9] however verified that deciding whether a given graph without an isolated edge
is 2-weight colourable is NP-complete. On the other hand, as showed by Thomassen, Wu
and Zhang [19], the same problem can be solved in polynomial time in the class of bipartite
graphs, which were all nicely characterized by them in terms of their weight-colourability.
The 1–2–3 Conjecture was also quite recently confirmed by Zhong [23] for very dense graphs
with minimum degree at least 0.99985|V |. Before I turn to the main known general result
in this area and our contribution, I will mention a different problem, whose formulation was
crucial for obtaining these results.

3 Total and list weightings.
In [17] Przybyło and Woźniak proposed the natural total variant of the 1–2–3 Conjecture,
where one additionally assigns a weight to every vertex v of G, which then is counted in
the weighted degree of v, and asked if maybe in this case, every graph is totally 2-weight
colourable. This was later almost solved by Kalkowski [12] by means of a very inventive yet
surprisingly simple deterministic algorithm, which implied that it is in fact sufficient to use
just weights in {1, 2, 3} for the edges and weights in {1, 2} for the vertices of any graph. This
result was then generalised by a beautiful paper of Wong and Zhu [22], who proved that the
same holds also in a natural list version of the problem investigated by Kalkowski. To achieve
this, Wong and Zhu applied an elegant algebraic approach exploiting graph polynomials
and Alon’s Combinatorial Nullstellensatz (see [4]). Such approach was first proposed in the
context of the 1–2–3 Conjecture by Bartnicki, Grytczuk and Niwczyk, see [5]; we mention a
few conjectures related with this direction at the end of the extended abstract.

4 Main results.
It was Kalkowski’s algorithm from [12] that inspired the best known upper bound concerning
the 1–2–3 Conjecture, and actually a modification of a general idea behind this algorithm
enabled Kalkowski, Karoński and Pfender to prove the following.

Theorem 2 ([14]) Every graph without isolated edges is 5-weight colourable.

Our main contribution is the following.

Theorem 3 Every d-regular graph with d ≥ 2 is 4-weight colourable.

This is in fact the main result of a short note [16], which we would like to fully present
during the talk. It is worth noting that this was previously known for d ∈ {2, 3} by [15]
and for d = 5 by the result of Bensmail [6]. The main idea of the proof of Theorem 3 is
based on first choosing a maximal independent set I in a given graph G and then dividing
the remaining vertices into two subsets S1 and S2, the first consisting of these vertices which
have no neighbours outside I and the second including all the remaining vertices. We then
choose appropriate starting weights for all the edges in the graph and apply in some sense
a variant of Kalkowski’s algorithm to distinguish the sums of the vertices in S2, carefully
enough though to keep the weighted degrees in this set relatively small. In fact these shall
be all smaller than the weighted degrees in our chosen maximal independent set I. At the
end of the proof we analyze all the remaining vertices – those in S1, switching weights of
their incident edges to get read of all the possible remaining conflicts in the graph, see details
in [16].
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5 Further problems.
At the end we present a few aforementioned related conjectures. The first is a direct and
natural list generalisation of the 1–2–3 Conjecture due to Bartnicki, Grytczuk and Niwczyk,
see [5] for details

Conjecture 4 ([5]) Every graph without isolated edges is 3-weight choosable.

Despite the result of Wong and Zhu [21] a similar list problem is also far from being
solved in the total setting. There are two main conjectures here the first of which was posed
independently in two papers.

Conjecture 5 ([18, 22]) Every graph is totally weight choosable from any lists (of real num-
bers) of size 2 associated to its edges and vertices.

Conjecture 6 ([18, 22]) Every graph without isolated edges is totally weight choosable from
any lists (of real numbers) of size 3 associated to its edges and size 1 associated to its vertices.

Note that the last conjecture is a direct strengthening of Conjecture 4.
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Distinguishing vertices of a graph - palettes and automorphisms

Mariusz Woźniak

Department of Discrete Mathematics, AGH University, Cracow, Poland

Extended Abstract

The aim of the talk is discussion about the relationship between two different approaches
to the problem of distinguishing vertices of a graph.

Let G = (V, E) be a graph of order n. The function f : E(G) 7−→ {1, 2, . . . , k} is called an
edge coloring. Any such coloring assigns to the vertices of a graph palette of colors, i.e. the
set of colors on incidental edges. In general, this coloring does not have to be proper, but we
will only consider the proper ones.

Two vertices are called similar if they have the same palettes. Coloring distinguishes all
vertices if there are no two similar vertices. Observe that if G contains more than one isolated
vertex or any isolated edges, then no coloring of G is vertex-distinguishing. We will consider
only connected graphs with n ≥ 3.

A completely different approach to coloring distinguishing all vertices refers to the concept
of automorphism. This approach is not related to local properties. It’s about colorings that
break down all non-trivial automorphisms. Over twenty years ago, Albertson and Collins
(see [1]) initiated investigations of distinguishing colorings, where "distinguishing" means
"symmetry breaking". They were looking for the least number of colors in a vertex coloring
(not necessarily proper) of a graph that is preserved only by the trivial automorphism. In
other words, such a coloring breaks every automorphism different from the identity, and it
distinguishes vertices of a graph in this sense. The proper coloring was considered in this
context for the first time by Collins and Trenk (see [7]).

Interestingly, the edge version appeared relatively recently. A few years ago, Kalinowski
and Pilśniak (see [8]) initiated studying distinguishing edge colorings. This new concept met
quite a big interest within specialists working on distinguishing vertex colorings. Moreover,
they extended this concept also to a proper coloring. In this case, the corresponding parameter
is called the distinguishing chromatic index and is denoted by χ′

D. Recently, this idea was
extended also to the case of total colorings in [10] where the corresponding parameter is
denoted by χ′′

D.
The minimum number of colors required to find a vertex-distinguishing coloring of a

graph G without isolated edges and with at most one isolated vertex is called the vertex-
distinguishing index and is denoted by vdi(G).

This index was introduced and studied by Burris and Schelp in [5] and, independently, by
Černý, Horňák and Soták in [6] (see also [4], [2]) .

Among the graphs G for which we know the value of vdi(G), the largest value is realized
when G = Kn with n even and equals n+1. The paper [3] contains the proof that inequality
vdi(G) ≤ n + 1 holds for all graphs.

Since an automorphism of a connected graph G preserving colors preserves also palettes
we have (for a connected graph G of order at least three):

χ′
D(G) ≤ vdi(G).

However, for some families of graphs, the difference between parameters can be significant.
For instance, let us consider a vertex-distinguishing coloring of a cycle of length n with k
colors. Since each palette is of size two, and the number of all possible palettes should be not
smaller than n, we have

(
k
2

)
≥ n. Thus, vdi(Cn) ≥

√
2n.

Note, however, that for cycles Cn, n ≥ 7, three colors are enough to get a coloring that
breaks non-trivial automorphism. Two examples are given in Figure 1.

The authors of the paper [9] proposed to distinguish the vertices by another way: we shall
be able to compare not only the palettes of given vertices, but also to move using color-walks
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Figure 1: Two 3-coloring breaking all nontrivial automorphisms.

and compare the palettes in attained vertices. We need some definitions. For given vertex
x ∈ V , each walk emanating from x defines a sequence of colors. The set of all color sequences
obtained in this way is denoted by W (x). We say that two vertices x and y are similar if
W (x) = W (y). The coloring f personalizes (distinguishes) the vertices of G if there is no
similar vertices. The minimum number of colors we need to obtain this property is denoted
by µ(G).

Evidently, a vertex-distinguishing coloring personalizes the vertices of G. Moreover, it
suffices to use the walks of length one. However, if we are allowed to use the walks of
arbitrary length, the number of colors we need is surprisingly small. We have the following
theorem (see [9]).

Theorem 1 Let G be a connected graph of order n ≥ 3. Then

µ(G) ≤ ∆(G) + 1

except for seven graphs of small order: C4, K4, C6, K3�K2, K3,3, K6 − M (the complete
graph with a perfect matching removed) and K6.

The paper [10] concerns the transfer of this result to the case of proper total coloring (with
evident definitions of color walks, etc.) and contains the following result.

The minimum number of colors we need to obtain a coloring without similar vertices is
now denoted by µt(G).

Theorem 2 Let G be a connected graph. Then

µt(G) ≤ χ′′(G) + 1.

Moreover, if χ′′(G) ≥ ∆(G) + 2 then µt(G) = χ′′(G).

In the case of proper vertex coloring (again with evident definitions of color walks, etc.),
the minimum number of colors we need to obtain a coloring without similar vertices is denoted
by p(G).

Theorem 3 Let G be a connected graph of order n. Then

p(G) ≤ 2∆(G).

In general, this bound cannot be improved. It is worth noting that Collins and Trenk,
showed in [7] that χD ≤ 2∆(G) for a connected graph of order n where χD denote the
minimum number of colors in a proper vertex coloring of a graph G breaking all nontrivial
automorphisms.

Since an automorphism of a connected graph G preserving colors preserves also color walks
we have (for a connected graph G of order at least three):
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Figure 2: A 3-coloring breaking all nontrivial automorphisms with all vertices having the
same set of color walks

• χ′
D(G) ≤ µ(G)

• χ′′
D(G) ≤ τ(G)

• χD(G) ≤ p(G)

Note that, for example, in the case of edge coloring, we have even equality for class II
graphs. In general, the equality does not hold as the example in Figure 2 shows.
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